JPH04289541A - Magneto-optical pickup device - Google Patents

Magneto-optical pickup device

Info

Publication number
JPH04289541A
JPH04289541A JP150191A JP150191A JPH04289541A JP H04289541 A JPH04289541 A JP H04289541A JP 150191 A JP150191 A JP 150191A JP 150191 A JP150191 A JP 150191A JP H04289541 A JPH04289541 A JP H04289541A
Authority
JP
Japan
Prior art keywords
magneto
light
beam splitter
light receiving
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP150191A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP150191A priority Critical patent/JPH04289541A/en
Publication of JPH04289541A publication Critical patent/JPH04289541A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To improve the workability to easily reduce the production cost by making a light beam accurately incident on a photodetector without accurate alignment of a polarizing beam splitter and the photodetector. CONSTITUTION:With respect to a photomagnetic signal detecting element 18, a polarized light selecting film 32 is provided between first and second parallel plane plates 28 and 30 to constitute a polarizing beam splitter 40, and this polarizing beam splitter is provided with photodetectors 24 and 26. The reflected light from a magneto-optical disk 10 passes a through hole 22 of a semiconductor substrate 20 and is transmitted through the first parallel plane plate 28, and a part of this light is transmitted through the second parallel plane plate 30 as it is, but the other part is reflected by the polarized light selecting film 32. The reflected light is made incident on the photodetector 24. The light transmitted through the second parallel plane plate is reflected by a reflection film 34 and is made incident on the photodetector 26.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光磁気ピックアップ装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical pickup device.

【0002】0002

【従来の技術】従来の光磁気ピックアップ装置では、A
 New FocusSsevo Method fo
r Magneto−Optical Disc Sy
stems(Japanese Journal of
 Applied Physics,Vol.26(1
987))に記載されているように、光磁気記録媒体か
らの反射光を2個の受光素子に入射させるために、複雑
な形状を有する微小なマイクロプリズムにより形成され
た偏光ビームスプリッタを用いている。
[Prior Art] In a conventional magneto-optical pickup device, A
New FocusSsevo Method for
r Magneto-Optical Disc Sy
stems (Japanese Journal of
Applied Physics, Vol. 26 (1
987)), a polarizing beam splitter formed by minute microprisms with a complicated shape is used to make the reflected light from the magneto-optical recording medium incident on two light receiving elements. There is.

【0003】0003

【発明が解決しようとする課題】光磁気記録媒体からの
反射光を2個の受光素子に夫々正確に入射させるために
は、偏光ビームスプリッタであるマイクロプリズムと受
光素子との正確な位置合わせが必要であり、前記マイク
ロプリズムの加工精度を厳しくしなければならず、製作
コストの低減が困難となる。
[Problem to be Solved by the Invention] In order to make the reflected light from the magneto-optical recording medium enter the two light-receiving elements accurately, it is necessary to accurately align the microprism, which is a polarizing beam splitter, with the light-receiving element. Therefore, the processing precision of the microprism must be made strict, making it difficult to reduce manufacturing costs.

【0004】本発明の目的は、偏光ビームスプリッタと
受光素子との正確な位置合わせを行わなくても受光素子
への光ビームの正確な入射が可能であり、加工性を向上
させることができ、製作コストの低減が容易な光磁気ピ
ックアップ装置を提供することにある。
[0004] An object of the present invention is to enable a light beam to be accurately incident on a light receiving element without performing accurate alignment between a polarizing beam splitter and a light receiving element, and to improve processability. An object of the present invention is to provide a magneto-optical pickup device whose manufacturing cost can be easily reduced.

【0005】[0005]

【課題を解決するための手段】本発明による光磁気ピッ
クアップ装置においては、光源から発射された光ビーム
を集光レンズによって光磁気記録媒体上に集光させ、前
記光磁気記録媒体からの反射光の一部をビームスプリッ
タで受光素子へ導くものであり、入射する光ビームを透
過する第1の平行平板及び第2の平行平板と、これら第
1の平行平板と第2の平行平板との間に設けられ偏光方
向によって透過率が異なる偏光選択膜と、第2の平行平
板に設けられた反射膜とを有する偏光ビームスプリッタ
と、この偏光ビームスプリッタの前記反射膜の反対側の
面に設けられた2個以上の受光素子とを備える光磁気信
号検出素子を具備することを特徴とする
[Means for Solving the Problems] In a magneto-optical pickup device according to the present invention, a light beam emitted from a light source is focused onto a magneto-optical recording medium by a condenser lens, and reflected light from the magneto-optical recording medium is collected. A part of the light beam is guided to a light receiving element by a beam splitter, and a first parallel plate and a second parallel plate transmit the incident light beam, and a space between the first parallel plate and the second parallel plate. A polarizing beam splitter having a polarization selective film provided on the surface and having a transmittance different depending on the polarization direction, and a reflective film provided on a second parallel plate; and a magneto-optical signal detection element having two or more light receiving elements.

【0006】[0006]

【作用】本発明の光磁気ピックアップ装置においては、
光源から発射された光ビームは集光レンズによって光磁
気記録媒体上に集光される。光磁気記録媒体からの反射
光の一部は、ビームスプリッタによって光磁気信号検出
素子の受光素子へ導かれる。光ビームは偏光ビームスプ
リッタの第1の平行平板に達する。この後光ビームは偏
光選択膜によって一部が透過され、一部が反射される。 透過された一部は、偏光ビームスプリッタの第2の平行
平板の反射膜によって反射され、受光素子のうちの1個
に入射する。一方、反射された一部は、別の受光素子に
入射する。各受光素子は入射した光ビームを信号として
検出する。
[Operation] In the magneto-optical pickup device of the present invention,
A light beam emitted from a light source is focused onto a magneto-optical recording medium by a focusing lens. A portion of the reflected light from the magneto-optical recording medium is guided by the beam splitter to the light receiving element of the magneto-optical signal detection element. The light beam reaches the first parallel plate of the polarizing beam splitter. A portion of this rear light beam is transmitted by the polarization selective film, and a portion is reflected. A portion of the transmitted light is reflected by the reflective film of the second parallel plate of the polarizing beam splitter and enters one of the light receiving elements. On the other hand, the reflected part enters another light receiving element. Each light receiving element detects the incident light beam as a signal.

【0007】[0007]

【実施例】以下に、本発明の一実施例を図1乃至図3を
用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 3.

【0008】図1において符号2は光源であるレーザ素
子を示す。このレーザ素子2から発射されたレーザ光は
、コリメータレンズ4によって平行光束となる。この平
行光束となったレーザ光は、ビームスプリッタ6を透過
し、集光レンズ8によって光磁気記録媒体である光磁気
ディスク10上に集光される。光磁気ディスク10から
の反射光は、ビームスプリッタ6によって全反射ミラー
12の方向に反射され、2分の1波長板14を通過した
後に収束レンズ16によって光磁気信号検出素子18の
方向に集光される。
In FIG. 1, reference numeral 2 indicates a laser element which is a light source. The laser beam emitted from the laser element 2 is turned into a parallel beam by the collimator lens 4. This collimated laser beam passes through a beam splitter 6 and is focused by a condenser lens 8 onto a magneto-optical disk 10 which is a magneto-optical recording medium. The reflected light from the magneto-optical disk 10 is reflected in the direction of the total reflection mirror 12 by the beam splitter 6, and after passing through the half-wave plate 14, it is focused by the converging lens 16 in the direction of the magneto-optical signal detection element 18. be done.

【0009】図1に示すように、この光磁気信号検出素
子18は、側面から見て光路に対して所定の角度をもつ
ように設置されている。又、図2の(B)に示すように
、この光磁気信号検出素子18は、カー回転が生じてい
ない状態の光ビームの偏光面に対して光磁気信号検出素
子18の入射面が45度傾くように設置されている。
As shown in FIG. 1, the magneto-optical signal detecting element 18 is installed at a predetermined angle with respect to the optical path when viewed from the side. Further, as shown in FIG. 2B, the magneto-optical signal detection element 18 has an incident surface of 45 degrees with respect to the polarization plane of the light beam in a state where Kerr rotation has not occurred. It is set up so that it is tilted.

【0010】この光磁気信号検出素子18は半導体基板
20を有する。この半導体基板20には、光を入射する
ための貫通孔22が設けられている。又、半導体基板2
0の上面には、2個の受光素子24,26が形成されて
いる。これら受光素子24,26は、図2の(B)に示
すように3つの領域から構成されている。図2の(B)
においてこれら領域を、受光素子24のものについては
a,b,cの符号で、受光素子26のものについてはe
,f,gの符号で夫々示す。そしてこれら受光素子24
,26は、中央の領域に光ビームの光軸が当たるように
設定されている。受光素子24,26が形成された半導
体基板20の上には、ガラスよりなる第1の平行平板2
8が接合されている。この第1の平行平板28の上面に
は、ガラスよりなる第2の平行平板30が接合されてい
る。これら第1の平行平板28と第2の平行平板30と
の間には、偏光方向によって透過率が異なる偏光選択膜
(例えばP成分の透過率が100%)32が設けられて
いる。この偏光選択膜32に対向する第2の平行平板3
0の面には、入射した光を反射する反射膜34が設けら
れている。
This magneto-optical signal detection element 18 has a semiconductor substrate 20. This semiconductor substrate 20 is provided with a through hole 22 through which light enters. Moreover, the semiconductor substrate 2
Two light-receiving elements 24 and 26 are formed on the top surface of 0. These light receiving elements 24 and 26 are composed of three regions as shown in FIG. 2(B). (B) in Figure 2
These areas are denoted by a, b, c for the light receiving element 24, and e for the light receiving element 26.
, f, and g, respectively. And these light receiving elements 24
, 26 are set so that the optical axis of the light beam hits the central region. A first parallel flat plate 2 made of glass is placed on the semiconductor substrate 20 on which the light receiving elements 24 and 26 are formed.
8 are joined. A second parallel flat plate 30 made of glass is bonded to the upper surface of the first parallel flat plate 28. Between the first parallel plate 28 and the second parallel plate 30, there is provided a polarization selective film 32 whose transmittance varies depending on the polarization direction (for example, the transmittance of the P component is 100%). A second parallel plate 3 facing this polarization selective film 32
A reflective film 34 that reflects incident light is provided on the 0 surface.

【0011】光磁気信号検出素子18の方向に集光され
た光は半導体基板20の貫通孔22を通り、第1の平行
平板28を透過して、偏光選択膜32に達する。偏光選
択膜32に達した光のうち、P成分は偏光選択膜32を
透過し、S成分は偏光選択膜32に反射される。反射さ
れたS成分は受光素子24に入射する。一方、偏光選択
膜32を透過したP成分は第2の平行平板30を透過し
、反射膜34に反射され、偏光選択膜32と第1の平行
平板28とを透過した後、受光素子26に入射する。 受光素子24,26の各々の3つの領域、即ちa,b,
c及びd,e,fの領域の出力信号を以下の2式で演算
して検出するのである。 焦点検出信号……(a+c−b)−(d+f−e)光磁
気信号………(a+b+c)−(d+e+f)上述した
光磁気信号検出素子18の製作工程を、図3の(A)乃
至(C)を用いて以下に説明する。
The light focused in the direction of the magneto-optical signal detection element 18 passes through the through hole 22 of the semiconductor substrate 20, passes through the first parallel plate 28, and reaches the polarization selection film 32. Of the light that has reached the polarization selective film 32, the P component is transmitted through the polarization selective film 32, and the S component is reflected by the polarization selective film 32. The reflected S component enters the light receiving element 24. On the other hand, the P component that has passed through the polarization selective film 32 passes through the second parallel flat plate 30, is reflected by the reflective film 34, passes through the polarization selective film 32 and the first parallel flat plate 28, and then reaches the light receiving element 26. incident. Three areas of each of the light receiving elements 24 and 26, namely a, b,
The output signals in the regions c, d, e, and f are calculated and detected using the following two equations. Focus detection signal...(a+c-b)-(d+fe-e) Magneto-optical signal...(a+b+c)-(d+e+f) The manufacturing process of the magneto-optical signal detection element 18 described above is shown in FIGS. This will be explained below using C).

【0012】まず第1工程において、ガラスにより第1
及び第2の平行平板28,30を形成する。第1の平行
平板28には偏光選択膜32を、第2の平行平板30に
は反射膜34を夫々コートする。次に、偏光選択膜32
及び反射膜34をコートした第1及び第2の平行平板2
8,30を接合し、偏光ビームスプリッタ40を形成す
る。第2程においては、図3の(A)に示すように、半
導体基板20の元となるシリコンウエハ36に、受光素
子24,26を所定の個数、所定の数の列に並べるよう
に形成する。第3工程においては、図3の(B)に示す
ように、貫通孔22をプレスもしくはエッチングにより
形成する。貫通孔22の位置精度は、貫通孔22の中心
が受光素子24,26のほぼ中心にくるような程度で良
い。第4工程においては、図3の(C)に示すように、
あらかじめ形成しておいた、第1及び第2の平行平板2
8,30よりなる偏光ビームスプリッタ40を前記貫通
孔22及び受光素子24,26よりも少し大きい幅の短
冊状に切断し、受光素子24,26及び貫通孔22に合
わせてシリコンウエハ36上に接着する。そして第5工
程においては、図3の(C)に示すように、シリコンウ
エハ36を前記短冊状の偏光ビームスプリッタ40の幅
よりも少し大きめの幅の短冊状に切断した後、図中左側
に示すように個々の素子に合わせて切断する。
First, in the first step, the first
and second parallel flat plates 28, 30 are formed. The first parallel plate 28 is coated with a polarization selective film 32, and the second parallel plate 30 is coated with a reflective film 34, respectively. Next, the polarization selective film 32
and first and second parallel flat plates 2 coated with a reflective film 34
8 and 30 are joined to form a polarizing beam splitter 40. In the second step, as shown in FIG. 3A, a predetermined number of light receiving elements 24 and 26 are formed on a silicon wafer 36, which is the source of the semiconductor substrate 20, so as to be arranged in a predetermined number of rows. . In the third step, as shown in FIG. 3B, a through hole 22 is formed by pressing or etching. The positional accuracy of the through hole 22 may be such that the center of the through hole 22 is approximately at the center of the light receiving elements 24 and 26. In the fourth step, as shown in FIG. 3(C),
First and second parallel flat plates 2 formed in advance
A polarizing beam splitter 40 consisting of 8 and 30 is cut into strips having a width slightly larger than the through-hole 22 and the light-receiving elements 24 and 26, and is glued onto the silicon wafer 36 in alignment with the light-receiving elements 24 and 26 and the through-hole 22. do. In the fifth step, as shown in FIG. 3C, the silicon wafer 36 is cut into strips with a width slightly larger than the width of the strip-shaped polarizing beam splitter 40, and then Cut into individual elements as shown.

【0013】前記2個の受光素子24,26間の間隔は
、光磁気信号検出素子18を光路に対して設置する角度
と、第1及び第2の平行平板28,30の厚みとによっ
て任意に設定することができる。即ち、貫通孔22から
入射する光ビームの光軸が、2個の受光素子24,26
の中心に来るように、光磁気信号検出素子18を設置す
る角度と、第1及び第2の平行平板28,30の厚みと
、2個の受光素子24,26間の間隔とを設定する。 又、偏光選択膜32も、前記光磁気信号検出素子18を
光路に対して設置する角度に適した特性を有するものを
使用する。以上説明したことを最適に調節することによ
って、光磁気信号の最適な検出が可能となる。
The distance between the two light-receiving elements 24 and 26 can be determined arbitrarily depending on the angle at which the magneto-optical signal detection element 18 is installed with respect to the optical path and the thickness of the first and second parallel plates 28 and 30. Can be set. That is, the optical axis of the light beam entering from the through hole 22 is aligned with the two light receiving elements 24 and 26.
The angle at which the magneto-optical signal detection element 18 is installed, the thicknesses of the first and second parallel flat plates 28 and 30, and the spacing between the two light receiving elements 24 and 26 are set so that the magneto-optical signal detection element 18 is located at the center of the light receiving element 18. Also, the polarization selection film 32 used has characteristics suitable for the angle at which the magneto-optical signal detection element 18 is installed with respect to the optical path. Optimal detection of magneto-optical signals becomes possible by optimally adjusting the things described above.

【0014】この様にして光磁気信号検出素子18を形
成すれば、第1及び第2の平行平板28,30よりなる
偏光ビームスプリッタ40と、受光素子である受光素子
24,26との位置合わせが不要となる。又、偏光ビー
ムスプリッタ40によって分けられた2つの光ビームの
光軸のずれは、第1及び第2の平行平板28,30の平
行度による。個々の光ビームの光軸と受光素子24,2
6の光軸とのずれは、光磁気信号検出素子18の設定角
度のずれ、各平行平板28,30の平行度及びその厚み
のバラツキ、第1及び第2の平行平板28,30よりな
る偏光ビームスプリッタ40と基板である半導体基板2
0との接合時の平行度などによる。平行平板28,30
を平行度高く加工するのは極めて容易であり、接合によ
る平行度を高くすることも非常に簡単である。従って、
個々の素子又は個々の部材の平行度を高くするだけで、
光磁気信号検出素子18中の全ての光軸のずれは最小限
に食い止められる。もし平行平板28,30の厚みのバ
ラツキがあっても、光磁気信号検出素子18の設定角度
を調節するだけで光軸ずれの補正を行うことができる。 さらに、偏光ビームスプリッタ40の半導体基板20へ
の接合の精度は余り必要無いので、製作が容易になる。 特に、受光素子24,26及び貫通孔22が形成された
シリコンウエハ36上に短冊状の偏光ビームスプリッタ
40を接着するとき、個々の受光素子24,26及び貫
通孔22の中心を結んだ中心線と、前記偏光ビームスプ
リッタ40の長手方向の中心線とのずれはある程度許容
できるので、製作が容易になる。
If the magneto-optical signal detection element 18 is formed in this manner, the polarization beam splitter 40 made up of the first and second parallel flat plates 28, 30 and the light receiving elements 24, 26, which are light receiving elements, can be aligned. becomes unnecessary. Furthermore, the deviation of the optical axes of the two light beams separated by the polarizing beam splitter 40 depends on the parallelism of the first and second parallel plates 28 and 30. Optical axes of individual light beams and light receiving elements 24, 2
The deviation from the optical axis of 6 is due to the deviation in the setting angle of the magneto-optical signal detection element 18, the variation in the parallelism and thickness of each parallel plate 28, 30, and the polarization caused by the first and second parallel plates 28, 30. Beam splitter 40 and semiconductor substrate 2 as a substrate
Depends on the parallelism when joining with 0. Parallel plate 28, 30
It is extremely easy to process the material to have a high degree of parallelism, and it is also very easy to increase the degree of parallelism by joining. Therefore,
By simply increasing the parallelism of individual elements or individual members,
All optical axis deviations in the magneto-optical signal detection element 18 are kept to a minimum. Even if there is variation in the thickness of the parallel plates 28 and 30, the optical axis deviation can be corrected simply by adjusting the set angle of the magneto-optical signal detection element 18. Furthermore, since there is no need for great precision in bonding the polarizing beam splitter 40 to the semiconductor substrate 20, manufacturing becomes easier. In particular, when bonding the strip-shaped polarizing beam splitter 40 onto the silicon wafer 36 in which the light receiving elements 24, 26 and the through hole 22 are formed, the center line connecting the centers of the individual light receiving elements 24, 26 and the through hole 22 Since a certain degree of deviation from the longitudinal center line of the polarizing beam splitter 40 can be tolerated, manufacturing is facilitated.

【0015】又、図2の(C),図2の(D)に示すよ
うな変形例も可能である。この変形例においては、偏光
ビームスプリッタ40の受光素子が設けられた面、即ち
、半導体基板20の下面に、2分の1波長板32を接合
したものである。この場合光磁気信号検出素子18の入
射面を、第1実施例のようにカー回転が生じていない状
態の光ビームの偏光面に対して45度傾けず、前記偏光
面に対し平行、又は図3の(D)に示すように垂直に設
置する。この2分の1波長板は、製作工程においては、
第3工程で貫通孔22を形成した後に、シリコンウエハ
36に接着される。他の工程は第1実施例と同様である
Modifications as shown in FIGS. 2(C) and 2(D) are also possible. In this modification, a half-wave plate 32 is bonded to the surface of the polarizing beam splitter 40 on which the light receiving element is provided, that is, the lower surface of the semiconductor substrate 20. In this case, the incidence plane of the magneto-optical signal detection element 18 is not tilted by 45 degrees with respect to the polarization plane of the light beam in a state where Kerr rotation has not occurred as in the first embodiment, but is parallel to the polarization plane or Install it vertically as shown in 3 (D). In the manufacturing process of this half-wave plate,
After forming the through hole 22 in the third step, it is bonded to the silicon wafer 36. Other steps are the same as in the first embodiment.

【0016】本発明は上記2つの実施例に限定されるも
のではなく、幾多の変形例が可能である。例えば、第1
実施例において第1の平行平板28に2分の1波長板を
用いることも可能である。又、この光磁気ピックアップ
装置は、検出系をパッケージ化することもでき、このパ
ッケージ化により、光磁気検出素子18がさらに回転し
易くなり、調節が容易となる。
The present invention is not limited to the above two embodiments, and many modifications are possible. For example, the first
In the embodiment, it is also possible to use a half wavelength plate as the first parallel plate 28. Further, in this magneto-optical pickup device, the detection system can be packaged, and this packaging makes it easier to rotate the magneto-optical detection element 18 and facilitate adjustment.

【0017】[0017]

【発明の効果】本発明によれば、偏光ビームスプリッタ
と受光素子との正確な位置合わせを行わなくても受光素
子への光ビームの正確な入射が可能であり、加工性を向
上させることができ、製作コストの低減が容易な光磁気
ピックアップ装置を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to accurately input a light beam to a light receiving element without performing accurate alignment between the polarizing beam splitter and the light receiving element, and it is possible to improve workability. Therefore, it is possible to provide a magneto-optical pickup device that can easily reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の光磁気ピックアップ装置を
示す概略図である。
FIG. 1 is a schematic diagram showing a magneto-optical pickup device according to an embodiment of the present invention.

【図2】図2は本発明の一実施例の装置の光磁気信号検
出素子を示す図であって、(A),(B),(C),(
D)を含み、(A)は第1実施例の光磁気信号検出素子
を示す側面図、(B)は第1実施例の光磁気信号検出素
子を光ビームの方向から見た斜視図、(C)は第2実施
例の光磁気信号検出素子を示す側面図、(D)は第1実
施例の光磁気信号検出素子を光ビームの方向から見た斜
視図である。
FIG. 2 is a diagram showing a magneto-optical signal detection element of an apparatus according to an embodiment of the present invention, (A), (B), (C), (
D), (A) is a side view showing the magneto-optical signal detection element of the first embodiment, (B) is a perspective view of the magneto-optical signal detection element of the first embodiment seen from the direction of the light beam, ( C) is a side view showing the magneto-optical signal detection element of the second embodiment, and (D) is a perspective view of the magneto-optical signal detection element of the first embodiment as viewed from the direction of the light beam.

【図3】図3は本発明の光磁気信号検出素子の製作工程
を示す図であって、(A),(B),(C),(D)を
含み、(A)はその第2工程を示す図、(B)は第3工
程を示す図、(C)は第4工程を示す図、(D)は第5
工程を示す図である。
FIG. 3 is a diagram showing the manufacturing process of the magneto-optical signal detection element of the present invention, including (A), (B), (C), and (D), and (A) is the second Diagrams showing the steps, (B) is a diagram showing the third step, (C) is a diagram showing the fourth step, (D) is a diagram showing the fifth step.
It is a figure showing a process.

【符号の説明】[Explanation of symbols]

2…レーザ素子、6…ビームスプリッタ、8…集光レン
ズ、10…光磁気ディスク、18…光磁気信号検出素子
、24,26…受光素子、28…第1の平行平板、30
…第2の平行平板、32…偏光選択膜、34…反射膜、
40…偏光ビームスプリッタ。
2... Laser element, 6... Beam splitter, 8... Condensing lens, 10... Magneto-optical disk, 18... Magneto-optical signal detection element, 24, 26... Light receiving element, 28... First parallel plate, 30
...Second parallel flat plate, 32...Polarization selective film, 34...Reflection film,
40...Polarizing beam splitter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  光源から発射された光ビームを集光レ
ンズによって光磁気記録媒体上に集光させ、前記光磁気
記録媒体からの反射光の一部をビームスプリッタで受光
素子へ導く光磁気ピックアップ装置において、入射する
光ビームを透過する第1の平行平板及び第2の平行平板
と、これら第1の平行平板と第2の平行平板との間に設
けられ偏光方向によって透過率が異なる偏光選択膜と、
第2の平行平板に設けられた反射膜とを有する偏光ビー
ムスプリッタと、この偏光ビームスプリッタの前記反射
膜の反対側の面に設けられた2個以上の受光素子とを備
える光磁気信号検出素子を具備することを特徴とする光
磁気ピックアップ装置。
1. A magneto-optical pickup that focuses a light beam emitted from a light source onto a magneto-optical recording medium using a condenser lens, and guides a part of the reflected light from the magneto-optical recording medium to a light receiving element using a beam splitter. In the device, a first parallel plate and a second parallel plate that transmit an incident light beam, and a polarization selection device that is provided between the first parallel plate and the second parallel plate and whose transmittance varies depending on the polarization direction. a membrane;
A magneto-optical signal detection element comprising a polarizing beam splitter having a reflective film provided on a second parallel flat plate, and two or more light receiving elements provided on the opposite surface of the polarizing beam splitter to the reflective film. A magneto-optical pickup device comprising:
【請求項2】  前記第1の平行平板は、2分の1波長
板であることを特徴とする、請求項1に記載の光磁気ピ
ックアップ装置。
2. The magneto-optical pickup device according to claim 1, wherein the first parallel plate is a half wavelength plate.
【請求項3】  前記偏光ビームスプリッタの前記受光
素子が設けられた面には、2分の1波長板が接合されて
いることを特徴とする、請求項1に記載の光磁気ピック
アップ装置。
3. The magneto-optical pickup device according to claim 1, wherein a half wavelength plate is bonded to a surface of the polarizing beam splitter on which the light receiving element is provided.
JP150191A 1991-01-10 1991-01-10 Magneto-optical pickup device Withdrawn JPH04289541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP150191A JPH04289541A (en) 1991-01-10 1991-01-10 Magneto-optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP150191A JPH04289541A (en) 1991-01-10 1991-01-10 Magneto-optical pickup device

Publications (1)

Publication Number Publication Date
JPH04289541A true JPH04289541A (en) 1992-10-14

Family

ID=11503214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP150191A Withdrawn JPH04289541A (en) 1991-01-10 1991-01-10 Magneto-optical pickup device

Country Status (1)

Country Link
JP (1) JPH04289541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840305A2 (en) * 1991-12-27 1998-05-06 Sony Corporation Optical apparatus
US5796701A (en) * 1995-06-23 1998-08-18 Sony Corporation Optical pickup and opto-magnetic signal reproducing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840305A2 (en) * 1991-12-27 1998-05-06 Sony Corporation Optical apparatus
EP0840305A3 (en) * 1991-12-27 1999-01-27 Sony Corporation Optical apparatus
US5796701A (en) * 1995-06-23 1998-08-18 Sony Corporation Optical pickup and opto-magnetic signal reproducing apparatus

Similar Documents

Publication Publication Date Title
US5309422A (en) Light separation element and light receiving optical device using same
JPH01317250A (en) Apparatus for optically scanning magneto- optic recording carrier
JP3029541B2 (en) Optical pickup device
JPH04274717A (en) Polarized-light detecting apparatus
JPH0266733A (en) Optical system for optical information recording and reproducing device
JPH04289541A (en) Magneto-optical pickup device
JP3167171B2 (en) Light head
JP2869318B2 (en) Optical pickup device
JP3366017B2 (en) Light head
JP2704684B2 (en) Light separation element and light receiving optical device using the same
JPH02193347A (en) Optical head structure for magneto-optical recorder
JPH03252928A (en) Optical pickup device
JP2707361B2 (en) Optical device for optical pickup
JP3477214B2 (en) Optical unit for magneto-optical
JP2709090B2 (en) Waveguide type optical head
JP2748052B2 (en) Light separation element and light receiving optical device using the same
JPH04167236A (en) Optical disk apparatus
JPS63140426A (en) Optical pick-up device
JP2578589B2 (en) Optical head device
JPH02148428A (en) Optical pickup device
JPS63187440A (en) Optical head
JPH07182712A (en) Optical pickup device
JPH07169128A (en) Optical pickup device
JPH08102106A (en) Optical pickup device
JPS63229639A (en) Optical information recording and reproducing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514