JPH0428812A - Method for desulfurizing molten high carbon ferro chrominum - Google Patents

Method for desulfurizing molten high carbon ferro chrominum

Info

Publication number
JPH0428812A
JPH0428812A JP13421190A JP13421190A JPH0428812A JP H0428812 A JPH0428812 A JP H0428812A JP 13421190 A JP13421190 A JP 13421190A JP 13421190 A JP13421190 A JP 13421190A JP H0428812 A JPH0428812 A JP H0428812A
Authority
JP
Japan
Prior art keywords
molten metal
impeller
rotating
high carbon
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13421190A
Other languages
Japanese (ja)
Inventor
Kazusada Nakagawa
中川 一貞
Hiroichi Sugimori
博一 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP13421190A priority Critical patent/JPH0428812A/en
Publication of JPH0428812A publication Critical patent/JPH0428812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the productivity by charging molten high carbon ferro chromium into a vessel preheated at the prescribed temp., discharging while dipping an impeller having the specific rotating diameter of stirring blades to the specific depth, rotating at the specific velocity and adding desulfurizing agent. CONSTITUTION:The molten high carbon ferro chromium 1 is charged to the treating vessel (ladle) 2 preheated at 1400-1700 deg.C and the impeller 3 having the rotating diameter of stirring blades of 1/5-2/3 the vessel inner diameter R is dipped into the vessel 2 while rotating. Successively, the impeller 3 is descended to the depth, which distance (d) from lower end of the impeller 3 to molten metal surface becomes in the range of 1/2-4/5 the depth D of the molten metal 1, and rotated at 50-100rpm velocity in there. At the same time of this, the desulfurizing agent is added on the molten metal surface. By this method, lowering of the temp. is reduced and the yield of product can be made to high.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、高炭素フェロクロム溶湯の脱硫方法に関し、
とくに電気炉やシャフト炉で溶製した高炭素フェロクロ
ム溶湯を、低Sフェロクロムを製造するのに好適な溶湯
、とするための炉外精錬の新規な技術を提案する。
[Industrial Application Field] The present invention relates to a method for desulfurizing high carbon ferrochrome molten metal.
In particular, we propose a new out-of-furnace refining technique for converting high-carbon ferrochrome molten metal produced in an electric furnace or shaft furnace into a molten metal suitable for producing low-S ferrochrome.

【従来の技術】[Conventional technology]

フェロクロムの溶湯に限らず、一般に溶融金属を炉外精
錬技術の一貫として脱硫する方法としては、■先端を溶
融金属中に浸漬したノズルを通じてキャリアーガスおよ
び粉状脱硫剤をその溶湯中に吹き込む方法、■誘導加熱
炉内に溶湯と共に脱硫剤を添加して加熱することにより
撹拌脱硫する方法、および■処理容器内に収容した溶融
金属中にインペラーを浸漬してこれを回転させるインペ
ラー撹拌脱硫法なとが知られている。
Methods for desulfurizing not only ferrochrome molten metal but also molten metal in general as part of the out-of-furnace refining technology include: 1. Injecting carrier gas and powdered desulfurizing agent into the molten metal through a nozzle whose tip is immersed in the molten metal; ■ A method of stirring desulfurization by adding a desulfurizing agent together with the molten metal in an induction heating furnace and heating it, and ■ A method of stirring the impeller to desulfurize by immersing an impeller in the molten metal stored in a processing container and rotating it. It has been known.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記各従来技術について検討したところ、これらの技術
は次のような課題があった。 すなわち、■ノズルを通じて脱硫用粉体を吹き込む方法
は、高炭素フェロクロム溶湯の温度が1、500℃以上
と高温であるために、ノズルの耐用寿命が短く、操業コ
ストがかかるという問題があった。■次に、誘導加熱炉
を用いる前記従来方法は、加熱により脱硫効率の上から
最も適正な温度番こ保持しつつ脱硫する方法であるが、
脱硫に長時間を必要とするばかりか、設備コストが高(
1上、高(1電力をエネルギー源としているため操業コ
ストも高い。しかも、この方法の場合、撹拌力が弱く、
脱硫処理終了までに時間がかかり、生産性番こ乏しいと
いう問題があった。 ■次に、従来行われていたインペラー撹拌脱硫法は、操
業の好適条件が明確に決まって%sなかったことから脱
硫率が低く、また温度低下も激し0ので製品歩留りが悪
いという問題があった。 以上説明したように、前記各従来技術は、設備費やコス
トが嵩むこと、生産性が悪(為こと、および脱硫率が低
いという問題点があった。 そこで、本発明は、従来技術が抱えて0る上述の如き問
題を解決できる脱硫技術、特にインペラー撹拌脱硫処理
法の改良技術を確立することを目的とするものである。
When each of the above-mentioned conventional techniques was examined, these techniques had the following problems. That is, the method (2) of blowing desulfurization powder through a nozzle has the problem that the temperature of the high-carbon ferrochrome molten metal is as high as 1,500° C. or higher, resulting in a short service life of the nozzle and high operating costs. ■Next, the conventional method using an induction heating furnace desulfurizes while maintaining the most appropriate temperature in terms of desulfurization efficiency by heating.
Not only does it take a long time to desulfurize, but the equipment cost is high (
1, high (1) The operating cost is high because the energy source is electricity.Moreover, in the case of this method, the stirring power is weak,
There was a problem in that it took a long time to complete the desulfurization treatment, resulting in poor productivity. ■Next, in the conventional impeller stirring desulfurization method, the desulfurization rate was low because the optimal conditions for operation were not clearly determined, and the temperature drop was also severe and the product yield was poor. there were. As explained above, each of the above-mentioned conventional technologies has problems such as increased equipment costs, poor productivity, and low desulfurization rate. The purpose of this study is to establish a desulfurization technology that can solve the above-mentioned problems, particularly an improved technology for the impeller agitation desulfurization treatment method.

【課題を解決するための手段] そこで、本発明者らは、インペラー撹拌脱硫処理の望ま
しい操業条件について研究する中に、上記目的を実現す
るのに有効な操業条件を知見するに至り、本発明を完成
した。 すなわち、本発明は、高炭素フェロクロム溶湯をインペ
ラー撹拌脱硫法によって脱硫するに当たり、上記溶湯を
予め1.400〜1.700℃に予熱した処理容器内に
装入しそしてこの処理容器内に、回転直径が上記容器内
径の175〜2/3の大きさの撹拌羽根をもつインペラ
ーを回転させながら浸漬し、ひきつづき溶湯深さに対す
るインペラー下端から湯面までの距離が172〜4/5
の範囲内となる深さまで降下させ、そこでこのインペラ
ーを50〜1100rpノ速度で回転させると同時に溶
湯浴面には脱硫剤を添加することを特徴とする高炭素フ
ェロクロム溶湯の脱硫方法である。 【作用】 本発明の高炭素フェロクロム溶湯の脱硫処理において、
その操業条件が上述のように限定されねばならない理由
につき、具体的な脱硫処理の仕方の説明にあわせて以下
に詳述する。 さて、脱硫に当たっては、まず電気炉等にクロム鉱石と
還元剤とを装入して精錬することによって得られる高炭
素フェロクロム溶湯を処理容器(取WA)内に装入する
ことから始められる。なお、このとき重要なことは、前
記取鍋を予め1.400〜1、700℃に予熱しておく
ことである。このように取鍋を予熱する理由は溶湯の温
度低下を防止することによって反応効率を上げ、それに
よって製品歩留りを向上させることにある。その予熱の
温度が1.400℃未満ではその作用が弱く、一方1.
700℃を越える予熱は熱経済上不利であると共に、耐
火物の損傷が起こるようになる。なお、この取鍋への精
錬溶湯の装入に際しては、精錬時に生成した溶融スラグ
を除去する。 次の段階として、直ちに(この時間は特に限定しないが
取鍋予熱温度とも併せて考慮し、なるべく速く行う)取
鍋の内径(R)の115〜2/3の回転直径(r)を有
する平板状のインペラー(平板状の板幅=r)を溶湯中
に浸漬させる。この場合にインペラー保護のため徐々に
回転をさせなから溶湯中に浸漬していくことか望ましい
。そしてこの浸漬は、最終的に溶湯深さ(D)に対し、
インペラー下端から溶湯面までの距離(d)かそれの1
72〜4/5の範囲内となるまで降下させて行く。 その後、前記インペラーの回転とともに取鍋内に脱硫剤
を投入し溶湯中に巻き込ませる。投入する脱硫剤として
は、CaC2、CaO1CaF2、Na2CO3、Ba
CO3もしくはBaC1□、またはこれらの2種以上の
混合物などを使用することができる。なお。脱硫剤とし
て前記CaC2、CaOを使用する場合は、CaF、。 を1〜5重量重量%上たものを使用することか好ましい
。それはCaF2が配合されるとCaC2、CaOの融
点を下げ、溶解を容易にして、脱硫力を向上させるとい
う利点があるからである。このような脱硫剤の添加量は
、脱硫すべき溶湯の硫黄含有量及び装入量(脱硫処理量
)により決定する。 また、上記の処理に当たって、インペラーの回転数は、
50〜1100rpが好適である。この回転数は、イン
ペラーの浸漬深さを上記のように設定した場合に、脱硫
反応がより迅速に進行することから決定される。この回
転数とインペラー浸漬深さとの関係が所定の範囲に収ま
っていないと、溶湯に対する撹拌力か不足するため脱硫
効率が著しく低下することが確かめられている。 なお、脱硫剤投入からインペラーの回転停止に至る脱硫
処理時間は3〜6分である。この処理時間を長くすると
、溶湯の温度が低下して粘性が急激に上昇するため溶湯
の撹拌力が一層低下し、それに伴って脱硫反応の速度が
低下するという悪循環が生じ、結果的に溶湯の硫黄含有
量の十分な低下が果たせなくなる。
[Means for Solving the Problems] Therefore, while researching desirable operating conditions for impeller agitation desulfurization treatment, the present inventors came to know about operating conditions effective for realizing the above object, and the present invention completed. That is, in the present invention, when desulfurizing a high carbon ferrochrome molten metal by the impeller stirring desulfurization method, the molten metal is charged into a processing vessel preheated to 1.400 to 1.700°C, and a rotating An impeller having a stirring blade having a diameter of 175 to 2/3 of the inner diameter of the container is immersed while rotating, and the distance from the lower end of the impeller to the molten metal surface relative to the depth of the molten metal is 172 to 4/5.
This is a method for desulfurizing a high carbon ferrochrome molten metal, which is characterized by lowering the molten metal to a depth within the range of 1,000 rpm, rotating the impeller there at a speed of 50 to 1,100 rpm, and simultaneously adding a desulfurizing agent to the surface of the molten metal bath. [Operation] In the desulfurization treatment of high carbon ferrochrome molten metal of the present invention,
The reason why the operating conditions must be limited as described above will be explained in detail below along with a description of a specific method of desulfurization treatment. Now, desulfurization begins by charging a high carbon ferrochrome molten metal obtained by charging chromium ore and a reducing agent into an electric furnace or the like and refining the metal into a processing vessel (take WA). Note that what is important at this time is to preheat the ladle to 1,400 to 1,700°C. The reason for preheating the ladle in this way is to increase reaction efficiency by preventing the temperature of the molten metal from decreasing, thereby improving product yield. If the preheating temperature is less than 1.400°C, its effect will be weak; on the other hand, 1.
Preheating above 700° C. is disadvantageous in terms of thermoeconomics and may cause damage to the refractory. In addition, when charging the refined molten metal into this ladle, the molten slag produced during refining is removed. As the next step, immediately (this time is not particularly limited, but take into account the ladle preheating temperature and do it as quickly as possible) a flat plate having a rotating diameter (r) of 115 to 2/3 of the inner diameter (R) of the ladle. A shaped impeller (flat plate width = r) is immersed in the molten metal. In this case, to protect the impeller, it is preferable to immerse it in the molten metal instead of rotating it gradually. And this immersion finally has the following value for the molten metal depth (D):
Distance (d) from the lower end of the impeller to the molten metal surface or 1 of it
Continue to lower it until it is within the range of 72 to 4/5. Thereafter, as the impeller rotates, the desulfurizing agent is introduced into the ladle and rolled into the molten metal. Desulfurization agents to be added include CaC2, CaO1CaF2, Na2CO3, Ba
CO3 or BaC1□, or a mixture of two or more thereof can be used. In addition. When using the above-mentioned CaC2 and CaO as a desulfurization agent, CaF. It is preferable to use one containing 1 to 5% by weight. This is because when CaF2 is blended, it has the advantage of lowering the melting point of CaC2 and CaO, facilitating dissolution, and improving desulfurization power. The amount of desulfurization agent added is determined by the sulfur content of the molten metal to be desulfurized and the amount charged (desulfurization treatment amount). In addition, in the above process, the rotation speed of the impeller is
50-1100 rpm is suitable. This rotational speed is determined because the desulfurization reaction proceeds more quickly when the immersion depth of the impeller is set as described above. It has been confirmed that if the relationship between the rotation speed and the impeller immersion depth does not fall within a predetermined range, the desulfurization efficiency will drop significantly due to insufficient stirring power for the molten metal. Note that the desulfurization treatment time from the addition of the desulfurization agent to the stop of rotation of the impeller is 3 to 6 minutes. If this treatment time is prolonged, the temperature of the molten metal decreases and the viscosity increases rapidly, which further reduces the stirring power of the molten metal, which in turn slows down the desulfurization reaction, creating a vicious cycle. The sulfur content cannot be reduced sufficiently.

【実施例】【Example】

この実施例に供した高炭素フェロクロム溶湯の組成(と
くにSは脱硫前後の数値を示す)を第1表に示す。また
、この第1表には、本発明法に従う処理条件を従来法と
対比して示す。すなわち、本発明法でのインペラー浸漬
深さCD)は1/2と475とした。また撹拌速度は、
50rpmと100rpI112通りとし、処理時間は
3分と6分の2通り行った。なお、比較のために従来法
として掲げた誘導炉を用いる脱硫法を実施した結果も併
せて示す。 この表に示す結果から明らかなように、実施例でのS含
有量は、0015重量%以下と極めて低い値を示し、脱
硫効率は60〜70%と極めて高値を示している。しか
も、この処理に要した時間は、従来の誘導炉よりもはる
かに短時間で脱硫できることか確かめられた。
The composition of the high carbon ferrochrome molten metal used in this example (in particular, S indicates the value before and after desulfurization) is shown in Table 1. Table 1 also shows the processing conditions according to the method of the present invention in comparison with the conventional method. That is, the impeller immersion depth CD) in the method of the present invention was set to 1/2 and 475. In addition, the stirring speed is
The processing speed was 50 rpm and 100 rpm in 112 ways, and the treatment time was 3 minutes and 6 minutes. For comparison, the results of a desulfurization method using an induction furnace, which was listed as a conventional method, are also shown. As is clear from the results shown in this table, the S content in Examples was extremely low at 0.015% by weight or less, and the desulfurization efficiency was extremely high at 60-70%. Moreover, it was confirmed that the time required for this process was much shorter than that in a conventional induction furnace.

【発明の効果】【Effect of the invention】

以上説明したように本発明によれば、高炭素フェロクロ
ム溶湯を、60〜70%という高い脱硫効率で、短時間
に脱硫をすることができる。しがも、低S含有の高炭素
フェロクロムを高価な設備を使うことなく容易にかつ安
定的に製造することができる。 また、処理容器を予め予熱しておくため、温度低下が少
なく、製品歩留りが高いので、生産性の向上か図れると
共に製造コストの低下が達成される。
As explained above, according to the present invention, high carbon ferrochrome molten metal can be desulfurized in a short time with high desulfurization efficiency of 60 to 70%. However, high carbon ferrochrome with low S content can be easily and stably produced without using expensive equipment. Furthermore, since the processing container is preheated in advance, there is little temperature drop and the product yield is high, so productivity can be improved and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明脱硫処理装置の路線図である。 特許出願人 日本重化学工業株式会社 代理人 弁理士   小 川 順 同  弁理士   中 村 盛 夫 FIG. 1 is a route map of the desulfurization treatment apparatus of the present invention. Patent applicant: Japan Heavy and Chemical Industry Co., Ltd. Agent Patent Attorney Jun Kogawa Patent attorney Morio Nakamura

Claims (1)

【特許請求の範囲】[Claims] 1、高炭素フェロクロム溶湯をインペラー撹拌法によっ
て脱硫するに当たり、上記溶湯を、予め1,400〜1
,700℃に予熱した処理容器内に装入し、そしてこの
処理容器内に回転直径が上記容器内径の1/5〜2/3
の大きさの撹拌羽根をもつインペラーを回転させながら
浸漬し、ひきつづき溶湯深さに対するインペラー下端か
ら湯面までの距離が1/2〜4/5の範囲内となる深さ
まで降下させ、そこでこのインペラーを50〜100r
pmの速度で回転させると同時に溶湯浴面には脱硫剤を
添加することを特徴とする高炭素フェロクロム溶湯の脱
硫方法。
1. When desulfurizing high-carbon ferrochrome molten metal by the impeller stirring method, the molten metal is preliminarily heated to a concentration of 1,400 to 1
, into a processing container preheated to 700°C, and the rotating diameter is 1/5 to 2/3 of the inner diameter of the container.
An impeller with stirring blades of the size of 50~100r
A method for desulfurizing a high carbon ferrochrome molten metal, which is characterized by rotating the molten metal at a speed of 100 pm and simultaneously adding a desulfurizing agent to the surface of the molten metal bath.
JP13421190A 1990-05-25 1990-05-25 Method for desulfurizing molten high carbon ferro chrominum Pending JPH0428812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13421190A JPH0428812A (en) 1990-05-25 1990-05-25 Method for desulfurizing molten high carbon ferro chrominum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13421190A JPH0428812A (en) 1990-05-25 1990-05-25 Method for desulfurizing molten high carbon ferro chrominum

Publications (1)

Publication Number Publication Date
JPH0428812A true JPH0428812A (en) 1992-01-31

Family

ID=15123023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13421190A Pending JPH0428812A (en) 1990-05-25 1990-05-25 Method for desulfurizing molten high carbon ferro chrominum

Country Status (1)

Country Link
JP (1) JPH0428812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845577A1 (en) 2002-10-10 2004-04-16 Oreal APPLICATOR FOR APPLYING A PRODUCT ON NAILS
US7458126B2 (en) 2002-10-10 2008-12-02 L'oreal Applicator for applying a substance to nails
WO2014013448A1 (en) 2012-07-20 2014-01-23 L'oreal Applicator brush
DE102016219753A1 (en) 2016-10-11 2018-04-12 Jürgen Schmidt Brush device for applying liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845577A1 (en) 2002-10-10 2004-04-16 Oreal APPLICATOR FOR APPLYING A PRODUCT ON NAILS
US7458126B2 (en) 2002-10-10 2008-12-02 L'oreal Applicator for applying a substance to nails
WO2014013448A1 (en) 2012-07-20 2014-01-23 L'oreal Applicator brush
DE102016219753A1 (en) 2016-10-11 2018-04-12 Jürgen Schmidt Brush device for applying liquid

Similar Documents

Publication Publication Date Title
WO2009110627A1 (en) Process for removal of copper contained in steel scraps
JP5195737B2 (en) Hot metal desulfurization method
JPH0428812A (en) Method for desulfurizing molten high carbon ferro chrominum
JP5493335B2 (en) Hot copper decoppering method
JPH0245686B2 (en)
JP5458499B2 (en) Hot metal desulfurization treatment method
JP5970863B2 (en) Hot metal detinning method
JP2000345224A (en) Method for desulfurizing molten iron
JPH10280023A (en) Method for desulfurizing molten iron and apparatus therefor
JP3835358B2 (en) Method for refining molten metal
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP2003166009A (en) Desulfurization method for molten pig iron
JP5617195B2 (en) Hot metal desulfurization method
JPH08157940A (en) Blowing of refining power into molten metal
JP5668641B2 (en) Hot metal desulfurization method
JP5418248B2 (en) Hot metal desulfurization method
US2244385A (en) Method for the production of steel
JP4759832B2 (en) Hot phosphorus dephosphorization method
JPH01100216A (en) Ladle refining method for molten steel
JPS6013016A (en) Desulfurizing method of high-carbon ferrochromium
JP2684113B2 (en) Dephosphorization method of chromium-containing hot metal
JPS61221317A (en) Slag discharging method for molten iron subjected to out-of-furnace siliconization
JPH04318112A (en) Method for desulfurizing molten iron in desulfurizing reactor at casting floor in blast furnace
JPH11193411A (en) Refining method of molten low carbon iron