JPH04286994A - Emergency cooling system for containment vessel - Google Patents

Emergency cooling system for containment vessel

Info

Publication number
JPH04286994A
JPH04286994A JP3051073A JP5107391A JPH04286994A JP H04286994 A JPH04286994 A JP H04286994A JP 3051073 A JP3051073 A JP 3051073A JP 5107391 A JP5107391 A JP 5107391A JP H04286994 A JPH04286994 A JP H04286994A
Authority
JP
Japan
Prior art keywords
pressure
vessel
containment vessel
suppression chamber
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3051073A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
鈴木 洋明
Tomoyuki Matsumoto
松本 知行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3051073A priority Critical patent/JPH04286994A/en
Publication of JPH04286994A publication Critical patent/JPH04286994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To utilize effectively the water of a pressure suppression chamber to the cooling of a containment vessel by using a static measure and cool the containment vessel, at the time of an imaginary accident. CONSTITUTION:The lower part of a pressure suppression chamber 4 and a containment vessel 3 are connected with piping 20, and the lower end of the piping 20 and a pressurized inert gas tank 21 are connected with the piping 25. The temperature of the lower part of a pressure vessel 2 is measured with a thermometer 30, and when this value is over a set value, valves 22 and 23 are opened by a signal from a controller 32. When the pressure of the containment vessel 3 is over a set value, a valve 10 is opened by a signal from a controller 42, and the gas within the pressure suppression 4 is led to a filter vent system 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は圧力抑制室をもつ原子炉
格納容器の非常時における冷却設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to emergency cooling equipment for a nuclear reactor containment vessel having a pressure suppression chamber.

【0002】0002

【従来の技術】従来の装置は、アイ・エイ・イー・エイ
、シンポジュウム、SM−296−I1(1988年)
(IAEA−SM−296−I1(1988))に記載
されているように、格納容器の圧力が所定の値を超えた
ときにフィルタベントシステムにより圧力抑制室上部の
気相を取り込み含有される放射性物質を除去し外部水源
からポンプ等により冷却水を格納容器に導いて格納容器
を冷却するようになっているものがある。
[Prior Art] A conventional device is published by I.A.I.A., Symposium, SM-296-I1 (1988).
(IAEA-SM-296-I1 (1988)), when the pressure in the containment vessel exceeds a predetermined value, the filter vent system captures the gas phase in the upper part of the suppression chamber and contains radioactive materials. Some systems are designed to remove substances and cool the containment vessel by introducing cooling water from an external water source to the containment vessel using a pump or the like.

【0003】0003

【発明が解決しようとする課題】上記従来技術には圧力
抑制室の水を有効に活用する点が考慮されておらず、外
部水源及びポンプが必要であり、また、圧力抑制室が満
水になるまでしか注水できないという問題があった。
[Problems to be Solved by the Invention] The above-mentioned prior art does not take into consideration the effective use of water in the pressure suppression chamber, requires an external water source and pump, and also causes the pressure suppression chamber to become full of water. There was a problem that water could only be injected up to that point.

【0004】本発明の目的は圧力抑制室の水を格納容器
の冷却に有効に活用して外部水源及びポンプを不要とし
、かつ、格納容器の冷却を可能とすることにある。
An object of the present invention is to effectively utilize the water in the pressure suppression chamber for cooling the containment vessel, thereby eliminating the need for an external water source and pump, and making it possible to cool the containment vessel.

【0005】本発明の他の目的は、圧力抑制室の水面と
格納容器内ペデスタル床とのレベル差が大きい場合にも
、効率良く圧力抑制室の水を格納容器の冷却に有効に活
用して外部水源及びポンプを不要とすることにある。
Another object of the present invention is to efficiently utilize the water in the pressure suppression chamber for cooling the containment vessel even when there is a large level difference between the water surface in the pressure suppression chamber and the pedestal floor in the containment vessel. The purpose is to eliminate the need for external water sources and pumps.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は圧力抑制室の水プールの下部と格納容器内
とを配管で接続し、この配管の下端と格納容器の外部に
設置した加圧された不燃性ガスタンクとを弁を介して配
管で接続し、圧力容器下端の温度が所定の値を超えたと
きにこの弁を開放するようにした。
[Means for Solving the Problems] In order to achieve the above object, the present invention connects the lower part of the water pool of the pressure suppression chamber and the inside of the containment vessel with piping, and installs the lower end of this piping and the outside of the containment vessel. The pressure vessel was connected to a pressurized nonflammable gas tank by piping via a valve, and the valve was opened when the temperature at the lower end of the pressure vessel exceeded a predetermined value.

【0007】上記他の目的を達成するために、本発明は
格納容器と上部が連通した中間容器を設け、圧力抑制室
の水プールの下部と中間容器内の上部とを配管で接続し
、さらに中間容器内の下部と格納容器内とを配管で接続
し、圧力容器下端の温度が所定の値を超えたときに各配
管の下部に一定流量の不燃性ガスを注入するとともに、
圧力抑制室の水プールの下部と中間容器内の上部とを接
続した配管の上部に重力方向の流れを妨げるじゃま板を
設置した。
[0007] In order to achieve the other objects mentioned above, the present invention provides an intermediate vessel whose upper part communicates with the containment vessel, connects the lower part of the water pool of the pressure suppression chamber and the upper part of the intermediate vessel with piping, and further includes: The lower part of the intermediate vessel and the inner part of the containment vessel are connected by piping, and when the temperature at the lower end of the pressure vessel exceeds a predetermined value, a constant flow of nonflammable gas is injected into the lower part of each piping,
A baffle plate was installed at the top of the pipe connecting the lower part of the water pool in the pressure suppression chamber and the upper part in the intermediate container to prevent the flow in the direction of gravity.

【0008】[0008]

【作用】上記第一の手段において、圧力容器下端の温度
が所定の値を超えたときに加圧された不燃性ガスタンク
の弁を開放すると、不燃性ガスが圧力抑制室の水プール
の下部と格納容器内とを接続する配管の下端に流入して
くる。この配管の内側は気相と液相が混合した二相流状
態となり平均密度が減少するため、配管内外のレベル差
により二相水位が上昇し、最終的には気液二相混合物が
格納容器内に放出される。このように本発明ではポンプ
等を用いない静的な手段により圧力抑制室の水を有効に
格納容器冷却に活用することができ、また、圧力抑制室
の水を循環して利用するため圧力抑制室が満水になるこ
とがなく格納容器の冷却が可能である。
[Operation] In the first means, when the valve of the pressurized nonflammable gas tank is opened when the temperature at the lower end of the pressure vessel exceeds a predetermined value, the nonflammable gas flows into the lower part of the water pool in the pressure suppression chamber. It flows into the lower end of the piping that connects the inside of the containment vessel. The inside of this piping becomes a two-phase flow state where the gas phase and liquid phase are mixed, and the average density decreases, so the two-phase water level rises due to the level difference inside and outside the piping, and eventually the gas-liquid two-phase mixture flows into the containment vessel. released within. In this way, in the present invention, the water in the pressure suppression chamber can be effectively used for cooling the containment vessel by static means without using a pump, etc. Also, since the water in the pressure suppression chamber is circulated and used, the water in the pressure suppression chamber is It is possible to cool the containment vessel without filling the room with water.

【0009】上記第二の手段において、圧力容器下端の
温度が所定の値を超えたときに各配管の下部に一定流量
の不燃性ガスを注入すると、各配管の内側は気相と液相
が混合した二相流状態となり、平均密度が減少するため
、配管内外のレベル差により二相水位が上昇し、気液二
相混合物が圧力抑制室から格納容器と上部が連通した中
間容器に流入し、さらに、中間容器から格納容器に放出
される。このように中間容器を設置することにより、圧
力抑制室の水面と格納容器内ペデスタル床とのレベル差
が大きい場合にも圧力抑制室の水を格納容器の冷却に有
効に活用することができ、外部水源及びポンプが不要と
なる。このとき、圧力抑制室の水プールの下部と中間容
器内の上部とを接続した配管の上部に重力方向の流れを
妨げるじゃま板が設置されているため、配管から流出す
る気液二相混合物が効果的に分離され、中間容器内の下
部と格納容器内とを接続した配管内外のレベル差が大き
くなり、中間容器内から格納容器内へ流出する水の流量
が大きくとれるので効率が向上する。
In the second means, when a constant flow rate of nonflammable gas is injected into the lower part of each pipe when the temperature at the lower end of the pressure vessel exceeds a predetermined value, a gas phase and a liquid phase are formed inside each pipe. A mixed two-phase flow state occurs, and the average density decreases, so the two-phase water level rises due to the level difference inside and outside the piping, and the gas-liquid two-phase mixture flows from the pressure suppression chamber into the intermediate vessel whose upper part communicates with the containment vessel. , and is further discharged from the intermediate vessel to the containment vessel. By installing the intermediate vessel in this way, even if there is a large level difference between the water surface in the pressure suppression chamber and the pedestal floor inside the containment vessel, the water in the pressure suppression chamber can be effectively used to cool the containment vessel. External water source and pump are not required. At this time, a baffle plate is installed at the top of the pipe connecting the lower part of the water pool in the pressure suppression chamber and the upper part in the intermediate container to prevent the flow in the direction of gravity, so that the gas-liquid two-phase mixture flowing out from the pipe is It is effectively separated, and the level difference between the inside and outside of the pipe connecting the lower part of the intermediate vessel and the inside of the containment vessel becomes large, and the flow rate of water flowing from the inside of the intermediate vessel into the containment vessel can be increased, thereby improving efficiency.

【0010】0010

【実施例】本発明の一実施例を図1により説明する。図
1は本発明の一実施例の沸騰水型原子炉の断面図であり
、炉心1は圧力容器2で囲われ、圧力容器2は格納容器
3の内部に包含されている。圧力抑制室4はベント管5
により格納容器3と接続されており、圧力抑制室4の上
部空間は弁10を介してフィルタベントシステム11と
接続されている。本発明の特徴は、圧力抑制室4の水プ
ールの下部と格納容器3内で圧力容器2下方のペデスタ
ル部6とを接続する配管20をベント管5内部を通して
設置し、配管20の下端と格納容器3の外部に設置した
加圧された不燃性ガスタンク21とを弁22,弁23及
び流量計24を介して配管25で接続している点にある
[Embodiment] An embodiment of the present invention will be explained with reference to FIG. FIG. 1 is a sectional view of a boiling water nuclear reactor according to an embodiment of the present invention, in which a reactor core 1 is surrounded by a pressure vessel 2, and the pressure vessel 2 is contained within a containment vessel 3. The pressure suppression chamber 4 is a vent pipe 5
The upper space of the pressure suppression chamber 4 is connected to a filter vent system 11 via a valve 10. A feature of the present invention is that a pipe 20 connecting the lower part of the water pool in the pressure suppression chamber 4 and the pedestal portion 6 below the pressure vessel 2 in the containment vessel 3 is installed through the inside of the vent pipe 5, and the lower end of the pipe 20 and the containment vessel 2 are connected to each other. The container 3 is connected to a pressurized nonflammable gas tank 21 installed outside the container 3 through a pipe 25 via a valve 22, a valve 23, and a flow meter 24.

【0011】このような原子炉では、例えば、主蒸気管
7が破断し、かつ、炉心1の冷却にも失敗するという確
率的にはきわめて低い事象が仮に発生したと想定すると
、炉心1は崩壊熱により温度が上昇して溶融し、圧力容
器2の下端にたまる。ここでも、炉心1を冷却できなか
ったと仮定すると、溶融した炉心1は圧力容器2の下端
からペデスタル部6に落下する。圧力容器2の下端には
熱電対30が設置されており、熱電対30の電気出力は
変換器31により温度に変換され制御器32に送られて
いる。圧力容器2の下端が溶融し、熱電対30により測
定された温度が、ある設定値、例えば、圧力容器2の構
成材料の融点より大きくなると、制御器32から弁開閉
制御器33,34に弁を開放する信号が送られ、弁22
,23が開放される。不燃性ガスタンク21には、不燃
性のガス、例えば窒素が格納容器3の耐圧以上の圧力で
充填されており、圧力差により不燃性ガスが配管20の
下部に流入してくる。このため、配管20の内側は気相
と液相とが混合した二相流状態になり平均密度が減少す
るため、配管20の内外のレベル差により二相水位が上
昇し、最終的には気液二相混合物が格納容器3内に放出
される。気相流量と液相流量との関係を図2に、気相吹
き込み位置の詳細断面図を図3に示す。気相流量が図2
のa点より小さいときには二相水位が配管20の上端ま
で達せず、液相流量は零である。気相流量がa点より大
きくなると二相水位が配管20の上端に達し、圧力抑制
室4の水が格納容器3に流出するが、このときの液相流
量は気相流量の増加にともなって増大する。例えば、配
管20の内径を0.2m とした場合には、0.011
kg/s の気相流量で10kg/sの液相流量を確保
できるが、この流量は炉心1の崩壊熱を除去するのに十
分な量である。本実施例では不燃性ガスの流量をオリフ
ィス式の流量計24で測定し、その値は変換器35で差
圧から計算され制御器32に送られる。制御器32では
流量計24で測定された流量が設定値、例えば0.01
1kg/s 、より大きいときには弁22の開度を減少
させる信号を弁開閉器33に送り、流量計24で測定さ
れた流量が設定値より小さいときには、弁22の開度を
増加させる信号を弁開閉器33に送る。これにより、不
燃性ガスタンク21からの流出流量が設定値に制御され
、圧力抑制室4から格納容器3への液相流量も図2から
求まる一定値に制御される。なお、図3に示されている
ように、配管25は圧力抑制室4の水面より上部から挿
入されており、通常運転時に配管25にリークが発生し
たとしても、圧力抑制室4の内部の水が流出することは
ない。このように、圧力抑制室4の水が、圧力容器2の
下方のペデスタル部6に放出されることにより、ペデス
タル部6に落下した炉心1は冷却され、このとき発生す
る蒸気はベント管5を通って圧力抑制室4に流入して凝
縮される。また、炉心1とペデスタル部6の床材である
コンクリートとが反応して発生する可燃性のガスは、配
管20を通って冷却水とともに流入する不燃性ガスによ
って置換され、蒸気に同伴されて圧力抑制室4に流入す
る。このため、格納容器3の内部は不活性のままに維持
される。このような非常時には、圧力抑制室4の冷却水
は崩壊熱除去系(図示せず)により冷却される設計とな
っているが、この崩壊熱除去系も作動しないというきわ
めて確率的に小さい事象が仮に発生したとすると、格納
容器3の内部圧力は徐々に増加する。格納容器3の圧力
は圧力計40により測定され、変換器41で圧力の信号
に変換されて制御器42に送られている。制御器42で
は、格納容器3の圧力が設定値、例えば、格納容器耐圧
の50%より増加すると弁10を開放する信号を弁開閉
器43に送る。弁10が開放されると、圧力抑制室4の
上部空間に蓄積されている蒸気,不燃性ガス,可燃性ガ
ス、及び炉心1から放出された放射性物質の一部が、フ
ィルタベントシステム11に流入する。これらの気相の
流出により、格納容器3の圧力は耐圧より十分低く維持
される。フィルタベントシステム11では、内部に設置
した水プールで蒸気を凝縮するとともに、フィルタで可
燃性ガス及び放射性物質を除去する。本実施例では、圧
力抑制室4の冷却水を循環して利用することが可能であ
り、格納容器3の冷却を半永久的に継続することができ
る。 なお、崩壊熱による蒸発で減少する冷却水の分について
は、十分に時間的な余裕があるため、既存の配管を利用
して消防車等により供給することができる。
[0011] In such a nuclear reactor, for example, if we assume that the main steam pipe 7 ruptures and cooling of the core 1 also fails, which is an extremely low probability event, the core 1 will collapse. The temperature increases due to the heat, melts, and accumulates at the lower end of the pressure vessel 2. Again, assuming that the core 1 could not be cooled, the molten core 1 would fall from the lower end of the pressure vessel 2 to the pedestal portion 6. A thermocouple 30 is installed at the lower end of the pressure vessel 2 , and the electrical output of the thermocouple 30 is converted into temperature by a converter 31 and sent to a controller 32 . When the lower end of the pressure vessel 2 melts and the temperature measured by the thermocouple 30 exceeds a certain set value, for example, the melting point of the constituent material of the pressure vessel 2, the controller 32 sends the valve opening/closing controllers 33 and 34 to open the valve. A signal is sent to open the valve 22.
, 23 are opened. The nonflammable gas tank 21 is filled with nonflammable gas, such as nitrogen, at a pressure higher than the withstand pressure of the containment vessel 3, and the nonflammable gas flows into the lower part of the pipe 20 due to the pressure difference. Therefore, the inside of the pipe 20 becomes a two-phase flow state in which the gas phase and the liquid phase are mixed, and the average density decreases, so the two-phase water level rises due to the level difference inside and outside the pipe 20, and eventually the gas phase and the liquid phase are mixed. A liquid two-phase mixture is discharged into containment vessel 3. FIG. 2 shows the relationship between the gas phase flow rate and the liquid phase flow rate, and FIG. 3 shows a detailed cross-sectional view of the gas phase blowing position. The gas phase flow rate is shown in Figure 2.
When the water level is smaller than point a, the two-phase water level does not reach the upper end of the pipe 20, and the liquid phase flow rate is zero. When the gas phase flow rate becomes larger than point a, the two-phase water level reaches the upper end of the piping 20, and the water in the pressure suppression chamber 4 flows out into the containment vessel 3. At this time, the liquid phase flow rate increases as the gas phase flow rate increases. increase For example, if the inner diameter of the pipe 20 is 0.2 m, then 0.011
A liquid phase flow rate of 10 kg/s can be secured with a gas phase flow rate of kg/s, which is sufficient to remove the decay heat of the core 1. In this embodiment, the flow rate of nonflammable gas is measured by an orifice type flow meter 24, and the value is calculated from the differential pressure by a converter 35 and sent to a controller 32. In the controller 32, the flow rate measured by the flow meter 24 is set to a set value, for example, 0.01.
1 kg/s, a signal to decrease the opening of the valve 22 is sent to the valve switch 33, and when the flow rate measured by the flow meter 24 is smaller than the set value, a signal to increase the opening of the valve 22 is sent to the valve switch 33. It is sent to the switch 33. Thereby, the outflow flow rate from the nonflammable gas tank 21 is controlled to the set value, and the liquid phase flow rate from the pressure suppression chamber 4 to the containment vessel 3 is also controlled to a constant value determined from FIG. 2. As shown in FIG. 3, the piping 25 is inserted from above the water surface of the pressure suppression chamber 4, so even if a leak occurs in the piping 25 during normal operation, the water inside the pressure suppression chamber 4 will not leak. will not leak out. In this way, the water in the pressure suppression chamber 4 is released into the pedestal section 6 below the pressure vessel 2, thereby cooling the core 1 that has fallen into the pedestal section 6, and the steam generated at this time flows through the vent pipe 5. It flows into the pressure suppression chamber 4 and is condensed. In addition, the flammable gas generated by the reaction between the reactor core 1 and the concrete that is the floor material of the pedestal section 6 is replaced by the nonflammable gas that flows in together with the cooling water through the piping 20, and is entrained in the steam and pressurized. It flows into the suppression chamber 4. Therefore, the inside of the containment vessel 3 is maintained inactive. In such an emergency, the cooling water in the pressure suppression chamber 4 is designed to be cooled by a decay heat removal system (not shown), but there is an extremely small probability that this decay heat removal system will not operate. If this were to occur, the internal pressure of the containment vessel 3 would gradually increase. The pressure in the containment vessel 3 is measured by a pressure gauge 40, converted into a pressure signal by a converter 41, and sent to a controller 42. The controller 42 sends a signal to the valve switch 43 to open the valve 10 when the pressure in the containment vessel 3 increases beyond a set value, for example, 50% of the containment vessel withstand pressure. When the valve 10 is opened, steam, nonflammable gas, combustible gas accumulated in the upper space of the pressure suppression chamber 4, and a part of the radioactive material released from the reactor core 1 flow into the filter vent system 11. do. Due to the outflow of these gas phases, the pressure of the containment vessel 3 is maintained sufficiently lower than the withstand pressure. In the filter vent system 11, steam is condensed in a water pool installed inside, and flammable gas and radioactive substances are removed by a filter. In this embodiment, the cooling water in the pressure suppression chamber 4 can be circulated and used, and the cooling of the containment vessel 3 can be continued semi-permanently. In addition, since there is sufficient time for the amount of cooling water that decreases due to evaporation due to decay heat, it can be supplied by a fire engine or the like using existing piping.

【0012】本実施例によれば、静的な手段により圧力
抑制室の水を格納容器冷却に有効に活用できるため外部
水源及びポンプが不要となり、かつ、格納容器の冷却が
可能となる効果がある。また、不燃性ガスの流出流量を
制御できるため一定の不燃性ガス量で長時間注水できる
効果がある。更に、溶融した炉心を効果的に冷却して格
納容器内の圧力を耐圧より十分低くおさえ、格納容器内
を不活性状態に維持することができる。
According to this embodiment, the water in the pressure suppression chamber can be effectively used for cooling the containment vessel by static means, so an external water source and a pump are not required, and the containment vessel can be cooled. be. Furthermore, since the outflow flow rate of nonflammable gas can be controlled, water can be injected for a long period of time with a constant amount of nonflammable gas. Furthermore, it is possible to effectively cool the molten core and keep the pressure inside the containment vessel sufficiently lower than the withstand pressure, thereby maintaining the inside of the containment vessel in an inert state.

【0013】本発明の他の実施例を図4に示す。この実
施例は、本発明を圧力抑制室4の水面と格納容器3内の
ペデスタル部6の床面とのレベル差が大きいMARK2
型格納容器に適用したものである。図1で示した実施例
との相違点は、格納容器3内部と配管51で上部が連通
した中間容器60を設け、圧力抑制室4の水プールの下
部と中間容器60の上部とを配管20で接続し、さらに
中間容器60内の下部と格納容器3内とを配管50で接
続し、圧力容器2下端の温度が所定の値を超えたときに
、配管20及び配管50の下部に不燃性ガスタンク21
から一定流量の不燃性ガスを注入するとともに、配管2
0の上部に重力方向の流れを妨げるじゃま板61を設置
した点である。なお、中間容器60の内部にはあらかじ
め配管20の上端まで水を保有させておくことが望まし
い。
Another embodiment of the invention is shown in FIG. In this embodiment, the present invention is applied to MARK2, which has a large level difference between the water surface of the pressure suppression chamber 4 and the floor surface of the pedestal portion 6 in the containment vessel 3.
This is applied to mold containment vessels. The difference from the embodiment shown in FIG. The lower part of the intermediate vessel 60 and the inner part of the containment vessel 3 are connected by a pipe 50, and when the temperature at the lower end of the pressure vessel 2 exceeds a predetermined value, a non-flammable pipe is connected to the lower part of the pipe 20 and the pipe 50. gas tank 21
Inject a constant flow of nonflammable gas from pipe 2.
The point is that a baffle plate 61 is installed above the 0 to obstruct the flow in the direction of gravity. Note that it is desirable to store water in advance up to the upper end of the pipe 20 inside the intermediate container 60.

【0014】このような原子炉では、例えば、主蒸気管
7が破断し、かつ、炉心1の冷却にも失敗するという確
率的にはきわめて低い事象が仮に発生したと想定すると
、炉心1は崩壊熱により温度が上昇して溶融し、圧力容
器2の下端にたまる。ここでも、炉心1を冷却できなか
ったと仮定すると、溶融した炉心1は圧力容器2の下端
からペデスタル部6に落下する。圧力容器2の下端には
熱電対30が設置されており、熱電対30の電気出力は
変換器31により温度に変換され制御器32に送られて
いる。圧力容器2の下端が溶融し、熱電対30により測
定された温度が、ある設定値、例えば、圧力容器2の構
成材料の融点、より大きくなると、制御器32から弁開
閉制御器33,34,56、及び57に弁を開放する信
号が送られ、弁22,23,53、及び54が開放され
る。不燃性ガスタンク21には、不燃性のガス、例えば
、窒素が格納容器3の耐圧以上の圧力で充填されており
、圧力差により不燃性ガスが配管20及び50の下部に
流入してくる。このため、配管20及び50の内側は気
相と液相とが混合した二相流状態になり平均密度が減少
するため、配管20及び50内外のレベル差により二相
水位が上昇し、最終的には気液二相混合物が中間容器6
0を経由して格納容器3内に放出される。本実施例では
不燃性ガスの流量をオリフィス式の流量計24及び55
で測定し、その値は変換器35及び58で差圧から計算
され制御器32に送られる。制御器32では流量計24
で測定された流量が設定値、例えば、0.011kg/
s 、より大きいときには弁22の開度を減少させる信
号を弁開閉器33に送り、流量計24で測定された流量
が設定値より小さいときには、弁22の開度を増加させ
る信号を弁開閉器33に送る。さらに、流量計55で測
定された流量が設定値、例えば0.011kg/s、よ
り大きいときには弁54の開度を減少させる信号を弁開
閉器57に送り、流量計55で測定された流量が設定値
より小さいときには、弁54の開度を増加させる信号を
弁開閉器57に送る。これにより、配管25及び配管5
2を通って流出する不燃性ガスの流量が設定値に制御さ
れ、圧力抑制室4から格納容器3への液相流量も一定値
に制御される。なお、図5に示されているように、配管
20の上部に重力方向の流れを妨げるじゃま板61が設
置されているため、配管20から流出する気液二相混合
物が効果的に分離され、配管50内外のレベル差が大き
くなり、中間容器60から格納容器3内に流出する水流
量が増大している。このように、圧力抑制室4の水が、
圧力容器2の下方のペデスタル部6に放出されることに
より、ペデスタル部6に落下した炉心1は冷却され、こ
のとき発生する蒸気はベント管5を通って圧力抑制室4
に流入して凝縮される。また、炉心1とペデスタル部6
の床材であるコンクリートとが反応して発生する可燃性
のガスは、配管20及び50を通って冷却水とともに流
入する不燃性ガスによって置換され、蒸気に同伴されて
圧力抑制室4に流入する。このため、格納容器3の内部
は不活性のままに維持される。このような非常時には、
圧力抑制室4の冷却水は崩壊熱除去系(図示せず)によ
り冷却される設計となっているが、この崩壊熱除去系も
作動しないというきわめて確率的に小さい事象が仮に発
生したとすると、格納容器3の内部圧力は徐々に増加す
る。格納容器3の圧力は圧力計40により測定され、変
換器41で圧力の信号に変換されて制御器42に送られ
ている。制御器42では、格納容器3の圧力が設定値、
例えば、格納容器耐圧の50%、より増加すると弁10
を開放する信号を弁開閉器43に送る。弁10が開放さ
れると、圧力抑制室4の上部空間に蓄積されている蒸気
,不燃性ガス,可燃性ガス、及び炉心1から放出された
放射性物質の一部が、フィルタベントシステム11に流
入する。これらの気相の流出により、格納容器3の圧力
は耐圧より十分低く維持される。フィルタベントシステ
ム11では、内部に設置した水プールで蒸気を凝縮し、
フィルタで可燃性ガス及び放射性物質を除去する。 本実施例では、圧力抑制室4の冷却水を循環して利用す
ることができ、格納容器3の冷却を半永久的に継続する
ことができる。なお、本実施例のような中間容器を更に
設置すれば、圧力抑制室4の水を圧力容器2に注水でき
る。
In such a nuclear reactor, for example, if we assume that the main steam pipe 7 ruptures and cooling of the core 1 also fails, which is an extremely low probability event, the core 1 will collapse. The temperature increases due to the heat, melts, and accumulates at the lower end of the pressure vessel 2. Again, assuming that the core 1 could not be cooled, the molten core 1 would fall from the lower end of the pressure vessel 2 to the pedestal portion 6. A thermocouple 30 is installed at the lower end of the pressure vessel 2 , and the electrical output of the thermocouple 30 is converted into temperature by a converter 31 and sent to a controller 32 . When the lower end of the pressure vessel 2 melts and the temperature measured by the thermocouple 30 becomes higher than a certain set value, for example, the melting point of the constituent material of the pressure vessel 2, the controller 32 sends the valve opening/closing controllers 33, 34, A signal to open the valves is sent to 56 and 57, and valves 22, 23, 53 and 54 are opened. The nonflammable gas tank 21 is filled with nonflammable gas, such as nitrogen, at a pressure higher than the withstand pressure of the containment vessel 3, and the nonflammable gas flows into the lower portions of the pipes 20 and 50 due to the pressure difference. Therefore, the inside of the pipes 20 and 50 becomes a two-phase flow state where the gas phase and liquid phase are mixed, and the average density decreases, so the two-phase water level rises due to the level difference inside and outside the pipes 20 and 50, and the final The gas-liquid two-phase mixture is placed in the intermediate container 6.
0 into the containment vessel 3. In this embodiment, the flow rate of nonflammable gas is measured by orifice type flowmeters 24 and 55.
The value is calculated from the differential pressure by the converters 35 and 58 and sent to the controller 32. In the controller 32, the flow meter 24
The flow rate measured at is the set value, for example, 0.011 kg/
s, when the flow rate measured by the flowmeter 24 is smaller than the set value, a signal is sent to the valve switch 33 to decrease the opening degree of the valve 22, and when the flow rate measured by the flowmeter 24 is smaller than the set value, the valve switch 33 sends a signal to increase the opening degree of the valve 22. Send to 33rd. Further, when the flow rate measured by the flow meter 55 is larger than a set value, for example, 0.011 kg/s, a signal is sent to the valve switch 57 to reduce the opening degree of the valve 54, so that the flow rate measured by the flow meter 55 is increased. When it is smaller than the set value, a signal is sent to the valve switch 57 to increase the opening degree of the valve 54. As a result, the pipe 25 and the pipe 5
The flow rate of the nonflammable gas flowing out through the pressure suppression chamber 4 is controlled to a set value, and the liquid phase flow rate from the pressure suppression chamber 4 to the containment vessel 3 is also controlled to a constant value. Note that, as shown in FIG. 5, since a baffle plate 61 is installed above the pipe 20 to prevent the flow in the direction of gravity, the gas-liquid two-phase mixture flowing out from the pipe 20 is effectively separated. The level difference between the inside and outside of the pipe 50 has become larger, and the flow rate of water flowing out from the intermediate container 60 into the containment container 3 has increased. In this way, the water in the pressure suppression chamber 4
By being discharged into the pedestal section 6 below the pressure vessel 2, the core 1 that has fallen into the pedestal section 6 is cooled, and the steam generated at this time passes through the vent pipe 5 into the suppression chamber 4.
and is condensed. In addition, the reactor core 1 and the pedestal part 6
The flammable gas generated by the reaction with the concrete that is the flooring material is replaced by the nonflammable gas that flows in together with the cooling water through the pipes 20 and 50, and flows into the pressure suppression chamber 4 along with the steam. . Therefore, the inside of the containment vessel 3 is maintained inactive. In such an emergency,
The cooling water in the pressure suppression chamber 4 is designed to be cooled by a decay heat removal system (not shown), but if an extremely small event occurs in which this decay heat removal system does not operate, then The internal pressure of the containment vessel 3 gradually increases. The pressure in the containment vessel 3 is measured by a pressure gauge 40, converted into a pressure signal by a converter 41, and sent to a controller 42. In the controller 42, the pressure in the containment vessel 3 is set to a set value,
For example, if 50% of the containment vessel pressure resistance increases, the valve 10
A signal to open the valve is sent to the valve switch 43. When the valve 10 is opened, steam, nonflammable gas, combustible gas accumulated in the upper space of the pressure suppression chamber 4, and a part of the radioactive material released from the reactor core 1 flow into the filter vent system 11. do. Due to the outflow of these gas phases, the pressure of the containment vessel 3 is maintained sufficiently lower than the withstand pressure. The filter vent system 11 condenses steam in a water pool installed inside.
Filters remove flammable gases and radioactive materials. In this embodiment, the cooling water in the pressure suppression chamber 4 can be circulated and used, and the cooling of the containment vessel 3 can be continued semi-permanently. Note that if an intermediate container like the one in this embodiment is further installed, water in the pressure suppression chamber 4 can be injected into the pressure container 2.

【0015】本実施例によれば、圧力抑制室の水面と格
納容器内ペデスタル床とのレベル差が大きい場合にも、
圧力抑制室の水を格納容器冷却に有効に活用できるため
外部水源及びポンプが不要となり、かつ、格納容器の冷
却が可能となる。更に、中間容器の下部と格納容器とを
接続した配管内外のレベル差が大きくなり、一定ガス流
量で多量の水を注入することができる。
According to this embodiment, even when there is a large level difference between the water surface in the pressure suppression chamber and the pedestal floor in the containment vessel,
Since the water in the pressure suppression chamber can be effectively used for cooling the containment vessel, an external water source and pump are not required, and the containment vessel can be cooled. Furthermore, the level difference between the inside and outside of the pipe connecting the lower part of the intermediate vessel and the containment vessel becomes large, and a large amount of water can be injected with a constant gas flow rate.

【0016】[0016]

【発明の効果】本発明は、以上説明したように構成され
ているので以下に記載されたような効果を奏する。
[Effects of the Invention] Since the present invention is constructed as described above, it produces the effects as described below.

【0017】圧力抑制室の水を格納容器冷却に有効に活
用できるため、外部水源及びポンプが不要となる。また
、圧力抑制室の水を循環して利用できるため、格納容器
の冷却が可能となる。
[0017] Since the water in the pressure suppression chamber can be effectively used for cooling the containment vessel, an external water source and pump are not required. In addition, since the water in the pressure suppression chamber can be circulated and used, it becomes possible to cool the containment vessel.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の沸騰水型原子炉の断面図。FIG. 1 is a sectional view of a boiling water reactor according to an embodiment of the present invention.

【図2】気相流量と液相流量との関係を示す特性図。FIG. 2 is a characteristic diagram showing the relationship between gas phase flow rate and liquid phase flow rate.

【図3】気相吹き込み位置の詳細断面図。FIG. 3 is a detailed sectional view of the gas phase blowing position.

【図4】本発明の他の実施例の沸騰水型原子炉の断面図
FIG. 4 is a sectional view of a boiling water reactor according to another embodiment of the present invention.

【図5】中間容器の断面図。FIG. 5 is a cross-sectional view of the intermediate container.

【符号の説明】[Explanation of symbols]

2…圧力容器、3…格納容器、4…圧力抑制室、5…ベ
ント管、11…フィルタベントシステム、20…配管、
21…不燃性ガスタンク、22,23…弁、24…流量
計、25…配管、30…温度計、32…制御器、42…
制御器。
2... Pressure vessel, 3... Containment vessel, 4... Pressure suppression chamber, 5... Vent pipe, 11... Filter vent system, 20... Piping,
21... Nonflammable gas tank, 22, 23... Valve, 24... Flow meter, 25... Piping, 30... Thermometer, 32... Controller, 42...
controller.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内部に炉心をもつ圧力容器と、前記圧力容
器を包含する格納容器と、前記格納容器に放出された蒸
気を導いて凝縮する圧力抑制室と、前記格納容器の圧力
が所定の値を超えたときに前記圧力抑制室の上部の気相
を取り込み含有する放射性物質を除去するフィルタベン
トシステムとからなる非常時格納容器冷却設備において
、前記圧力抑制室の水プールの下部と前記格納容器内と
を配管で接続し、前記配管の下端と前記格納容器の外部
に設置した加圧された不燃性ガスタンクとを弁を介して
配管で接続し、前記圧力容器の下端の温度が所定の値を
超えたときに前記弁を開放することを特徴とする非常時
格納容器冷却設備。
Claims: 1. A pressure vessel having a reactor core therein; a containment vessel containing the pressure vessel; a pressure suppression chamber for guiding and condensing steam released into the containment vessel; and a filter vent system that takes in the gas phase in the upper part of the pressure suppression chamber and removes the radioactive materials contained therein when the pressure exceeds the pressure suppression chamber. The inside of the pressure vessel is connected by piping, and the lower end of the piping is connected via a valve to a pressurized nonflammable gas tank installed outside the containment vessel, and the lower end of the pressure vessel is maintained at a predetermined temperature. An emergency containment vessel cooling system characterized in that the valve is opened when a value exceeds a certain value.
【請求項2】請求項1において、前記不燃性ガスタンク
からの流出流量を設定値に制御する手段を設けた非常時
格納容器冷却設備。
2. The emergency containment vessel cooling equipment according to claim 1, further comprising means for controlling an outflow flow rate from said nonflammable gas tank to a set value.
【請求項3】請求項1において、前記圧力抑制室の前記
水プールの下部と配管で接続した前記格納容器内の位置
は前記圧力容器の下方のペデスタル部である非常時格納
容器冷却設備。
3. The emergency containment cooling equipment according to claim 1, wherein a position within the containment vessel connected to a lower part of the water pool of the pressure suppression chamber by piping is a pedestal portion below the pressure vessel.
【請求項4】内部に炉心をもつ圧力容器と、前記圧力容
器を包含する格納容器と、前記格納容器に放出された蒸
気を導いて凝縮する圧力抑制室と、前記格納容器の圧力
が所定の値を超えたときに前記圧力抑制室の上部の気相
を取り込み含有される放射性物質を除去するフィルタベ
ントシステムとから成る非常時格納容器冷却設備におい
て、前記格納容器と上部が連通した中間容器を設け、前
記圧力抑制室の水プールの下部と中間容器内の上部とを
配管で接続し、さらに前記中間容器内の下部と前記格納
容器内とを配管で接続し、前記圧力容器の下端の温度が
所定の値を超えたときに各配管の下部に一定流量の不燃
性ガスを注入することを特徴とする非常時格納容器冷却
設備。
4. A pressure vessel having a reactor core therein, a containment vessel containing the pressure vessel, a pressure suppression chamber that guides and condenses steam released into the containment vessel, and a pressure vessel in which the pressure of the containment vessel is maintained at a predetermined level. In an emergency containment vessel cooling system comprising a filter vent system that takes in the gas phase in the upper part of the pressure suppression chamber and removes the contained radioactive materials when the pressure exceeds the pressure limit, an intermediate vessel whose upper part communicates with the containment vessel is provided. The lower part of the water pool in the pressure suppression chamber and the upper part in the intermediate vessel are connected by piping, and the lower part in the intermediate vessel and the inside of the containment vessel are connected by piping, and the temperature at the lower end of the pressure vessel is An emergency containment vessel cooling system characterized by injecting a constant flow rate of nonflammable gas into the bottom of each pipe when the temperature exceeds a predetermined value.
【請求項5】請求項4において、前記圧力抑制室の前記
水プールの下部と前記中間容器内の上部とを接続した配
管の上部に、重力方向の流れを妨げるじゃま板を設置し
た非常時格納容器冷却設備。
5. The emergency storage according to claim 4, wherein a baffle plate is installed at the top of the pipe connecting the lower part of the water pool in the pressure suppression chamber and the upper part in the intermediate container to prevent flow in the direction of gravity. Container cooling equipment.
JP3051073A 1991-03-15 1991-03-15 Emergency cooling system for containment vessel Pending JPH04286994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051073A JPH04286994A (en) 1991-03-15 1991-03-15 Emergency cooling system for containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051073A JPH04286994A (en) 1991-03-15 1991-03-15 Emergency cooling system for containment vessel

Publications (1)

Publication Number Publication Date
JPH04286994A true JPH04286994A (en) 1992-10-12

Family

ID=12876638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051073A Pending JPH04286994A (en) 1991-03-15 1991-03-15 Emergency cooling system for containment vessel

Country Status (1)

Country Link
JP (1) JPH04286994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009722A1 (en) * 1995-09-01 1997-03-13 Siemens Aktiengesellschaft Device and method for inerting and venting the atmosphere in the containment vessel of a nuclear-power station
WO2005076285A1 (en) * 2004-02-10 2005-08-18 Korea Atomic Energy Research Institute Passive cooling and arresting device for the molten core material
JP2012242375A (en) * 2011-05-23 2012-12-10 Motohiro Okada Nuclear power plant system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009722A1 (en) * 1995-09-01 1997-03-13 Siemens Aktiengesellschaft Device and method for inerting and venting the atmosphere in the containment vessel of a nuclear-power station
WO2005076285A1 (en) * 2004-02-10 2005-08-18 Korea Atomic Energy Research Institute Passive cooling and arresting device for the molten core material
US7949084B2 (en) 2004-02-10 2011-05-24 Korea Atomic Energy Research Institute Passive cooling and arresting device for molten core material
JP2012242375A (en) * 2011-05-23 2012-12-10 Motohiro Okada Nuclear power plant system

Similar Documents

Publication Publication Date Title
US10290379B2 (en) Passive containment cooling and filtered venting system, and nuclear power plant
US5096659A (en) Reactor containment vessel
JPH06109885A (en) Nuclear reactor having device for recovering reactor core after accidental melt-down of nuclear reactor
US3158546A (en) Nuclear reactor containment method and apparatus
JP2008249348A (en) Boiling water reactor and its emergency core cooling system
US3649451A (en) Nuclear reactor containment system
JPH05249273A (en) Method and apparatus for protecting base of reactor container
KR20200104213A (en) Nuclear reactor core melting heat removal and reactor core melting heat removal management system
JPS61209389A (en) Device for removing fission product for reactor containment housing
JPH085772A (en) Reactor containment
JPH024877B2 (en)
JPH04286994A (en) Emergency cooling system for containment vessel
US4816210A (en) Passive filtered containment vent
US4310385A (en) Emergency deployable core catcher
US5802128A (en) Device for recovery of fluid contained in the coolant circuit of a nuclear reactor
JP2016109503A (en) Fuel coolant interaction influence mitigation system and nuclear power generation plant provided with same
JP2010038571A (en) Furnace-core melted product cooling device and furnace-core melted product cooling method
JP7399405B2 (en) nuclear power plant
JPH0334835B2 (en)
ITMI951567A1 (en) DEPRESSURIZATION SYSTEM FOR PLANTS OPERATING WITH PRESSURE STEAM
JP2823984B2 (en) Containment vessel cooling system
US20130126195A1 (en) Device for limiting the consequences of a widespread fire in premises
Choi et al. Transient analysis of a condensation experiment in the noncondensable gas-filled closed loop using an inverted U-tube
CN103426485B (en) It is a kind of to prevent the method for fused mass melting loss pressure vessel and the system for implementing this method in reactor
JPH05323084A (en) Reactor containment