JPH04285606A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPH04285606A
JPH04285606A JP4985891A JP4985891A JPH04285606A JP H04285606 A JPH04285606 A JP H04285606A JP 4985891 A JP4985891 A JP 4985891A JP 4985891 A JP4985891 A JP 4985891A JP H04285606 A JPH04285606 A JP H04285606A
Authority
JP
Japan
Prior art keywords
compound
polymerization
aryl
ethylene
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4985891A
Other languages
Japanese (ja)
Inventor
Yumito Uehara
上原 弓人
Yasuhiro Nishihara
西原 康博
Masahito Tanaka
雅人 田中
Yasuhiro Kashiwagi
泰弘 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4985891A priority Critical patent/JPH04285606A/en
Publication of JPH04285606A publication Critical patent/JPH04285606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the subject polymer having broad molecular weight distribution and good extrusion-moldability by polymerizing ethylene, etc., in the presence of a catalyst system consisting of an organic Al compound and a component containing a specific Mg compound, a Ti compound and an organic aluminum halide. CONSTITUTION:The objective polymer having broad molecular weight distribution can be produced by (co)polymerizing ethylene or a mixture of ethylene and a >=3C alpha-olefin at <=100 deg.C in the presence of a catalyst system consisting of (A) a hydrocarbon-insoluble solid catalyst component produced by treating a homogeneous hydrocarbon solution containing a magnesium compound of formula I (R<2> is alkyl, aryl or cycloalkyl; X<2> is halogen; (m) is 1 or 2) and a titanium compound of formula II (R<3> is alkyl, aryl or cycloalkyl; X<3> is halogen; (m) is 1, 2 or 3) with an organic aluminum halide of formula III (R<1> is alkyl, aryl or cycloalkyl; X<1> is halogen; 1<=1<=2) and (B) 1-10m-mol (based on 1g of the component A) of a trialkylalumimum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はオレフィンの重合方法に
関するものである。詳しくは、本発明は極めて高度の活
性を有する触媒を使用し、分子量分布が広い重合体を取
得しうるオレフィンの重合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polymerizing olefins. More specifically, the present invention relates to a method for polymerizing olefins that uses a catalyst with extremely high activity and can obtain a polymer with a wide molecular weight distribution.

【0002】0002

【従来の技術】従来、オレフィンの重合触媒として、周
期律表の第IVa 〜VIa 族遷移金属化合物と、周
期律表第Ia 〜III a 族金属の有機金属化合物
との組合せからなる触媒群が、低温、低圧でのオレフィ
ンの重合に有効であることはよく知られているところで
ある。しかしながら、これらの触媒群も、以下の点を考
慮するとなお、工業的に十分有利な触媒とは言い得ない
ものである。すなわち、オレフィン重合体を製造する場
合、使用する触媒の重合活性が極めて大きく、重合後に
、得られた重合体から触媒残渣を除去することなく製品
化し得るならば、この触媒除去工程の省略による工業的
優位性は極めて大きいものである。
BACKGROUND OF THE INVENTION Conventionally, as olefin polymerization catalysts, a group of catalysts consisting of a combination of transition metal compounds of groups IVa to VIa of the periodic table and organometallic compounds of metals of groups Ia to IIIa of the periodic table have been used. It is well known that it is effective in polymerizing olefins at low temperature and low pressure. However, these catalyst groups cannot be said to be industrially advantageous enough, considering the following points. In other words, when producing an olefin polymer, if the polymerization activity of the catalyst used is extremely high and it is possible to commercialize the resulting polymer without removing the catalyst residue from the resulting polymer after polymerization, then the omission of this catalyst removal step will result in industrial production. The competitive advantage is extremely large.

【0003】また、得られる重合体の分子量分布の広狭
は、重合後の重合体の成形性あるいは成形品の外観に影
響を与えるものであり、具体的には、分子量分布の狭い
重合体は、特に射出成形に適したものとなり、分子量分
布が広いほど、押出成形に適したものとなるので、簡単
な操作により、広い範囲で任意に制御された分子量分布
を有する重合体を製造しうる方法であれば、工業的には
極めて有利なものである。
[0003] Furthermore, the width and narrowness of the molecular weight distribution of the obtained polymer affects the moldability of the polymer after polymerization and the appearance of molded products. Specifically, a polymer with a narrow molecular weight distribution The wider the molecular weight distribution, the more suitable it is for extrusion molding, so this method can produce polymers with a molecular weight distribution that can be arbitrarily controlled over a wide range with simple operations. If so, it would be extremely advantageous industrially.

【0004】0004

【発明が解決しようとする課題】これらの点において、
上述のいわゆるチーグラー型触媒は、必ずしも満足な結
果を与えるものではなかった。また先に触媒の重合活性
の極めて大きなオレフィンの重合方法として、一般式M
g(OR2)m X22−m(式中、R2 はアルキル
、アリール又はシクロアルキル基を示し、X2 はハロ
ゲン原子を示し、mは1又は2である)で表わされるマ
グネシウム化合物及び一般式(Ti(OR3)n X3
4−n(式中、R3 はアルキル、アリール又はシクロ
アルキル基を示し、X3 はハロゲン原子を示し、nは
1,2又は3である)で表わされるチタン化合物を含む
均一な炭化水素溶液を、一般式AlR1 l X13−
l(式中、R1 はアルキル、アリール又はシクロアル
キル基を示し、X1 はハロゲン原子を示し、lは1≦
l≦2の数を示す。)で表わされる有機ハロゲン化アル
ミニウム化合物で処理して得られる炭化水素不溶性固体
と有機アルミニウム化合物とを組み合わせてなる触媒系
を用いてオレフィンを重合する方法(特公昭58−46
205公報参照)が提案されたが、該触媒系を用いて得
られる重合体は分子量分布が狭く、押出成形には必ずし
も適するものではなかった。
[Problems to be solved by the invention] In these points,
The so-called Ziegler type catalysts mentioned above did not always give satisfactory results. In addition, as a method for polymerizing olefins with extremely high catalyst polymerization activity, the general formula M
g(OR2)m OR3)n X3
A homogeneous hydrocarbon solution containing a titanium compound represented by 4-n (wherein R3 represents an alkyl, aryl or cycloalkyl group, X3 represents a halogen atom, and n is 1, 2 or 3), General formula AlR1 l X13-
l (wherein R1 represents an alkyl, aryl or cycloalkyl group, X1 represents a halogen atom, and l is 1≦
Indicates the number l≦2. ) A method of polymerizing olefins using a catalyst system consisting of a combination of a hydrocarbon-insoluble solid obtained by treatment with an organic aluminum halide compound represented by
However, the polymer obtained using this catalyst system had a narrow molecular weight distribution and was not necessarily suitable for extrusion molding.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記触媒
系の極めて大きな活性を保持しつつ、特に分子量分布を
広げ、上述のような利点を有する工業的有利なオレフィ
ンの重合方法を提供すべく種々検討した結果、特定の炭
化水素不溶性固体触媒成分と有機アルミニウム化合物と
を組み合せてなる触媒系を用いて、オレフィンを重合す
るに際して、有機アルミニウムの化合物と、固体触媒成
分との量比を、特定の範囲を用いることによって、大き
な活性を、保持しつつ分子量分布が広く、押出成形に優
れたポリオレフィンの製造方法の発明に達した。
[Means for Solving the Problems] The present inventors have provided an industrially advantageous method for polymerizing olefins that maintains the extremely high activity of the catalyst system, particularly widens the molecular weight distribution, and has the above-mentioned advantages. As a result of various studies, we found that when polymerizing olefins using a catalyst system consisting of a combination of a specific hydrocarbon-insoluble solid catalyst component and an organoaluminum compound, the quantitative ratio of the organoaluminium compound to the solid catalyst component should be adjusted. By using a specific range, we have achieved the invention of a method for producing a polyolefin that maintains high activity, has a wide molecular weight distribution, and is excellent in extrusion molding.

【0006】すなわち、本発明の要旨は、一般式Mg(
OR2)m X22−m(式中、R2 はアルキル、ア
リール又はシクロアルキル基を示し、X2 はハロゲン
原子を示し、mは1又は2である)で表わされるマグネ
シウム化合物及び一般式(Ti(OR3)n X34−
n(式中、R3 はアルキル、アリール又はシクロアル
キル基を示し、X3 はハロゲン原子を示し、nは1,
2又は3である)で表わされるチタン化合物を含む均一
な炭化水素溶液を、一般式AlR1 l X13−l(
式中、R1 はアルキル、アリール又はシクロアルキル
基を示し、X1 はハロゲン原子を示し、lは1≦l≦
2の数を示す。)で表わされる有機ハロゲン化アルミニ
ウム化合物で処理して得られる炭化水素不溶性固体触媒
成分とトリアルキルアルミニウムとを組み合せてなる触
媒系を用いてエチレン又はエチレンと炭素数3以上のα
−オレフィンとを100℃以下の温度で重合又は共重合
する方法において、トリアルキルアルミニウムの量を、
不溶性固体触媒成分1g当り、1〜10ミリモルとして
該重合又は重合を行なうことを特徴とする、ポリオレフ
ィンの製造方法、に存する。
That is, the gist of the present invention is that the general formula Mg (
OR2)m n X34-
n (wherein R3 represents an alkyl, aryl or cycloalkyl group, X3 represents a halogen atom, n is 1,
A homogeneous hydrocarbon solution containing a titanium compound represented by the general formula AlR1 l X13-l (
In the formula, R1 represents an alkyl, aryl or cycloalkyl group, X1 represents a halogen atom, and l represents 1≦l≦
Indicates the number 2. ) using a catalyst system consisting of a combination of a hydrocarbon-insoluble solid catalyst component obtained by treatment with an organic aluminum halide compound represented by
- In a method of polymerizing or copolymerizing with an olefin at a temperature of 100°C or less, the amount of trialkylaluminum is
A method for producing a polyolefin, characterized in that the polymerization is carried out in an amount of 1 to 10 mmol per 1 g of an insoluble solid catalyst component.

【0007】更に本発明を詳細に説明する。マグネシウ
ム化合物としては一般式Mg(OR2)m X22−m
(式中、R2 はアルキル、アリール又はシクロアルキ
ル基を示し、X2 はハロゲン原子を示し、mは1又は
2である)で表わされる化合物が使用される。具体的に
はR2 がメチル、エチル、プロピル、ブチル、ペンチ
ル、ヘキシル、オクチル、フェニル、トリル、キシリル
、シクロヘキシル等の炭素数15程度までのアルキル、
アリール、シクロアルキル基であり、X2 が塩素、臭
素又はヨウ素であるような化合物、例えばジメトキシマ
グネシウム、ジエトキシマグネシウム、エトキシマグネ
シウムクロライド、ジフェノキシマグネシウム等が挙げ
られる。このうち一般式中のmが2であるような化合物
が好ましい。 中でもジエトキシマグネシウムが最適である。
The present invention will be further explained in detail. As a magnesium compound, the general formula Mg(OR2)m X22-m
A compound represented by the formula (wherein R2 represents an alkyl, aryl or cycloalkyl group, X2 represents a halogen atom, and m is 1 or 2) is used. Specifically, R2 is an alkyl having up to about 15 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, phenyl, tolyl, xylyl, and cyclohexyl;
Compounds which are aryl or cycloalkyl groups and in which X2 is chlorine, bromine or iodine, such as dimethoxymagnesium, diethoxymagnesium, ethoxymagnesium chloride, diphenoxymagnesium, etc., can be mentioned. Among these, compounds in which m in the general formula is 2 are preferred. Among them, diethoxymagnesium is most suitable.

【0008】一方チタン化合物としては一般式Ti(O
R3)n X34−n(式中、R3 はアルキル、アリ
ール又はシクロアルキル基を示し、X3 はハロゲン原
子を示し、nは1,2又は3である)で表わされる化合
物が使用される。R3 ,X3 としてはそれぞれ上記
R2 ,X2 で例示したものが同様に挙げられ、具体
的にはnが2の化合物としてはジエトキシジクロルチタ
ン、ジ−n−プロポキシジクロルチタン、ジ−n−ブト
キシジクロルチタン等;nが3であるような化合物とし
てはトリエトキシモノクロルチタン、トリ−n−プロポ
キシモノクロルチタン、トリ−n−ブトキシモノクロル
チタン等;nが1であるような化合物としてはエトキシ
トリクロルチタン、n−プロポキシトリクロルチタン、
n−ブトキシトリクロルチタン等が挙げられる。このう
ちnが3又は2のもの、とくにnが3のものが好ましい
。中でもトリ−n−ブトキシモノクロルチタンが最適で
ある。
On the other hand, titanium compounds have the general formula Ti(O
A compound represented by R3)n Examples of R3, Butoxydichlorotitanium, etc.; Compounds where n is 3 include triethoxymonochlortitanium, tri-n-propoxymonochlortitanium, tri-n-butoxymonochlortitanium, etc.; compounds where n is 1 include ethoxytrichlortitanium; Titanium, n-propoxytrichlortitanium,
Examples include n-butoxytrichlorotitanium. Among these, those where n is 3 or 2, particularly those where n is 3 are preferred. Among them, tri-n-butoxymonochlorotitanium is most suitable.

【0009】本発明方法においては先ず上述のようなマ
グネシウム化合物及びチタン化合物を含む均一な炭化水
素溶液を調製する。溶媒として使用される炭化水素とし
てはヘキサン、ヘプタン等の脂肪族炭化水素、シクロヘ
キサン等の脂環式炭化水素なども使用しうるが、ベンゼ
ン、トルエン、キシレン等の芳香族炭化水素がとくに好
ましい。
In the method of the present invention, a homogeneous hydrocarbon solution containing the above-mentioned magnesium compound and titanium compound is first prepared. As the hydrocarbon used as a solvent, aliphatic hydrocarbons such as hexane and heptane, and alicyclic hydrocarbons such as cyclohexane can be used, but aromatic hydrocarbons such as benzene, toluene and xylene are particularly preferred.

【0010】炭化水素溶液を調製するには、マグネシウ
ム化合物及びチタン化合物を予め混合し、均一な液状物
を調製しておくことが好ましい。均一な液状物の調製は
用いる化合物の種類によっては上記二成分を単に混合し
、加温することによって達成しうるが、均一な液状物が
生成し難い場合にはアルコールを存在させることが好ま
しい。アルコールとしてはエチルアルコール、n−プロ
ピルアルコール、n−ブチルアルコール、n−ペンチル
アルコール、n−オクチルアルコール等が挙げられる。 二成分の混合順序には特に制限はなく任意でよい。 そして混合後、好ましくは100℃〜170℃に加温す
れば均一な液状物もしくは均一なアルコール溶液が得ら
れる。次いで炭化水素溶液を加えて炭化水素溶液とする
[0010] To prepare a hydrocarbon solution, it is preferable to mix the magnesium compound and the titanium compound in advance to prepare a homogeneous liquid. Depending on the type of compound used, preparation of a uniform liquid can be achieved by simply mixing the above two components and heating; however, if it is difficult to produce a uniform liquid, it is preferable to include alcohol. Examples of the alcohol include ethyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, and n-octyl alcohol. The mixing order of the two components is not particularly limited and may be arbitrary. After mixing, a uniform liquid or a uniform alcohol solution can be obtained by heating preferably to 100°C to 170°C. Next, a hydrocarbon solution is added to form a hydrocarbon solution.

【0011】本発明方法においては、上記のようにして
得られた炭化水素溶液を一般式AlR1 l X13−
l(式中、R1 はアルキル、アリールまたはシクロア
ルキル基を示し、X1 はハロゲン原子を示し、lは1
≦l≦2の数を示す。)で表わされる有機ハロゲン化ア
ルミニウム化合物で処理して、炭化水素不溶性の固体を
調製する。 有機ハロゲン化アルミニウム化合物の一般式R1 ,X
1 としてはそれぞれ先にR2 ,X2 で例示したも
のが同様に挙げられる。具体例としてはメチルアルミニ
ウムジクロライド、メチルアルミニウムセスキクロライ
ド、ジメチルアルミニウムモノクロライド、エチルアル
ミニウムジクロライド、エチルアルミニウムセスキクロ
ライド、ジエチルアルミニウムモノクロライド、イソブ
チルアルミニウムジクロライド、イソブチルアルミニウ
ムセスキクロライド、ジイソブチルアルミニウムモノク
ロライド等が挙げられる。特にエチルアルミニウムジク
ロライド、エチルアルミニウムセスキクロライド、ジエ
チルアルミニウムモノクロライドが好ましく、中でもエ
チルアルミニウムセスキクロライドが最も好ましい結果
を与える。有機ハロゲン化アルミニウム化合物処理は均
一な炭化水素溶液に有機ハロゲン化アルミニウム化合物
を添加し、好ましくは20〜100℃の温度で反応させ
ればよく、炭化水素不溶性固体触媒成分が得られるので
、固体を分離し、炭化水素溶媒で洗浄すればよい。しか
して、各成分の使用量は、各成分の一般式中のX1 ,
X2 ,OR2 ,OR3 ,MgおよびTiのモル比
で、次の式を満足するような割合で選ばれ、この範囲内
で高活性な触媒が得られる。1≦Mg/Ti≦4好まし
くは2≦Mg/Ti≦3
In the method of the present invention, the hydrocarbon solution obtained as described above has the general formula AlR1 l X13-
l (wherein R1 represents an alkyl, aryl or cycloalkyl group, X1 represents a halogen atom, and l represents 1
Indicates the number of ≦l≦2. ) to prepare a hydrocarbon-insoluble solid. General formula R1, X of organic aluminum halide compound
Examples of 1 include those exemplified above for R2 and X2, respectively. Specific examples include methylaluminum dichloride, methylaluminum sesquichloride, dimethylaluminum monochloride, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminium monochloride, isobutylaluminum dichloride, isobutylaluminum sesquichloride, diisobutylaluminum monochloride, and the like. Particularly preferred are ethylaluminum dichloride, ethylaluminum sesquichloride, and diethylaluminum monochloride, and among them, ethylaluminum sesquichloride gives the most preferable results. The organic aluminum halide compound treatment can be carried out by adding the organic aluminum halide compound to a homogeneous hydrocarbon solution and allowing the reaction to occur preferably at a temperature of 20 to 100°C.A hydrocarbon-insoluble solid catalyst component can be obtained. It may be separated and washed with a hydrocarbon solvent. Therefore, the amount of each component to be used is determined by the amount of X1 in the general formula of each component,
The molar ratios of X2, OR2, OR3, Mg and Ti are selected to satisfy the following formula, and within this range a highly active catalyst can be obtained. 1≦Mg/Ti≦4, preferably 2≦Mg/Ti≦3

【数2】[Math 2]

【0012】次に本発明方法で共触媒として用いられる
トリアルキルアルミニウムとしては具体的にはトリエチ
ルアルミニウム、トリ−n−プロピルアルミニウム、ト
リイソブチルアルミニウムなどのトリアルキルアルミニ
ウムを用いる。共重合に使用される炭素数3以上のα−
オレフィンとしてはプロピレン、1−ブテン、1−ペン
テン、1−ヘキセン、1−オクテン、1−デセン等が挙
げられる。またこれらを混合して共重合させることも出
来る。重合に使用される炭化水素溶媒としては、脂肪族
炭化水素溶媒、具体的にはプロパン、i−ブタン、n−
ブタン、n−ペンタン、n−ヘキサン、n−オクタン等
又はこれらの混合物、シクロペンタン、シクロヘキサン
等の脂環族炭化水素溶媒などが挙げられるが、中でも炭
素数4ないし6の脂肪族炭化水素が好ましい。
[0012] As the trialkylaluminum used as a cocatalyst in the method of the present invention, specifically, trialkylaluminum such as triethylaluminum, tri-n-propylaluminum, triisobutylaluminum, etc. is used. α- with 3 or more carbon atoms used in copolymerization
Examples of the olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and 1-decene. Moreover, these can also be mixed and copolymerized. Hydrocarbon solvents used in the polymerization include aliphatic hydrocarbon solvents, specifically propane, i-butane, n-
Examples include alicyclic hydrocarbon solvents such as butane, n-pentane, n-hexane, n-octane, etc., or mixtures thereof, and cyclopentane, cyclohexane, among which aliphatic hydrocarbons having 4 to 6 carbon atoms are preferred. .

【0013】重合反応において、不溶性固体触媒成分と
トリアルキルアルミニウムの使用割合は、不溶性固体触
媒成分1g当りトリアルキルアルミニウム化合物1〜1
0ミリモルの範囲で使用される。トリアルキルアルミニ
ウム化合物の使用割合が前記の範囲以外では、重合活性
が低下したり、分子量分布が、狭く、押出成形に適さな
い重合体が得られ好ましくない。重合反応は通常、常温
ないし100℃の範囲で、好ましくは40ないし90℃
の範囲内から、また重合圧力は常圧ないし100気圧の
範囲内から選ばれる。また本発明方法においては重合反
応帯域に水素を存在させた場合、水素による分子量調節
効果が大きく、容易に目的の分子量の重合体を得ること
ができる。尚、本願発明に用いる触媒成分は、オレフィ
ンの重合に先立ち、オレフィンで予備処理あるいは、前
重合した後、重合に用いることもできる。前重合の方法
は、特開昭57−141407に示されるような方法を
用いることができる。
In the polymerization reaction, the ratio of the insoluble solid catalyst component to the trialkylaluminum compound is 1 to 1 trialkylaluminium compound per 1 g of the insoluble solid catalyst component.
It is used in the range of 0 mmol. If the proportion of the trialkylaluminum compound used is outside the above range, the polymerization activity may decrease or the molecular weight distribution may be narrow, resulting in a polymer unsuitable for extrusion molding. The polymerization reaction is usually carried out at room temperature to 100°C, preferably 40 to 90°C.
The polymerization pressure is selected from the range of normal pressure to 100 atmospheres. Further, in the method of the present invention, when hydrogen is present in the polymerization reaction zone, the effect of controlling the molecular weight by hydrogen is large, and a polymer having a desired molecular weight can be easily obtained. Incidentally, the catalyst component used in the present invention can also be used in the polymerization after being pretreated or prepolymerized with the olefin prior to the polymerization of the olefin. As the prepolymerization method, a method as shown in JP-A-57-141407 can be used.

【0014】[0014]

【実施例】以下、本発明を実施例により更に詳述するが
、本発明はその要旨を逸脱しない限り実施例に限定され
るものではない。なお、図1は本発明に含まれる技術の
理解を助けるためのフローチャート図であり、本発明は
これに限定されるものではない。尚、実施例中、触媒の
重合活性Kは、K=(g−ポリマー)/(g−固体触媒
)(hr)(kg/cm2 −オレフィン圧)で表わし
た。 また、メルトインデックス(以下、MIと略す)はAS
TM  D  1238−57Tに基づき190℃で2
.16kg荷重で測定した。更に、分子量分布の尺度と
しての流出量比(以下、FRと略す)は溶融粘度の剪断
応力依存性を示す値で、ASTM  D  1238−
57Tに準じ、剪断応力106 dyne/cm2 及
び105 dyne/cm2 において測定したメルト
インデックスの比をもって表わされ、FRが大であれば
分子量分布は広く、小であれば狭いとされている。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the Examples unless it departs from the gist thereof. Note that FIG. 1 is a flowchart diagram to help understand the technology included in the present invention, and the present invention is not limited thereto. In the examples, the polymerization activity K of the catalyst was expressed as K=(g-polymer)/(g-solid catalyst) (hr) (kg/cm2-olefin pressure). In addition, the melt index (hereinafter abbreviated as MI) is AS
2 at 190°C based on TM D 1238-57T
.. Measurement was performed with a load of 16 kg. Furthermore, the flow rate ratio (hereinafter abbreviated as FR), which is a measure of molecular weight distribution, is a value that indicates the dependence of melt viscosity on shear stress, and is based on ASTM D 1238-
According to 57T, it is expressed as a ratio of melt indexes measured at shear stresses of 106 dyne/cm2 and 105 dyne/cm2, and it is said that the larger the FR, the broader the molecular weight distribution, and the smaller the FR, the narrower the molecular weight distribution.

【0015】実施例1 マグネシウムジエチラート40ミリモル、トリ−n−ブ
トキシモノクロルチタン20ミリモル及び精製n−フタ
ノール20ミリモルを混合し、140℃にて4時間撹拌
し均一なアルコール溶液としたのち、60℃まで冷却後
精製ベンゼン150ミリリットルを加え均一溶液とした
。次いで60℃にてエチルアルミニウムセスキクロライ
ド306ミリモルを滴下した後65℃で1時間撹拌した
。生成した沈澱を精製n−ヘキサンで洗浄後乾燥し固体
粉末を得た。予め精製窒素で置換した2リットルオート
クレーブに精製n−ヘキサン1000ミリリットルを採
取し上記炭化水素不溶性固体成分10mg仕込んだ。8
0℃に昇温後、水素を7kg/cm2 まで導入し、ト
リエチルアルミニウム0.08ミリモルをエチレンと共
に導入し全圧12kg/cm2 にした。エチレンの導
入と共にエチレンの吸収が見られるが、全圧を12kg
/cm2 に保つようエチレンを追加導入し1.5時間
後にエタノールを圧入し重合停止した。得られた結果を
表2に示した。
Example 1 40 mmol of magnesium diethylate, 20 mmol of tri-n-butoxymonochlorotitanium and 20 mmol of purified n-phthanol were mixed and stirred at 140°C for 4 hours to form a homogeneous alcohol solution. After cooling to ℃, 150 ml of purified benzene was added to make a homogeneous solution. Next, 306 mmol of ethylaluminum sesquichloride was added dropwise at 60°C, followed by stirring at 65°C for 1 hour. The generated precipitate was washed with purified n-hexane and dried to obtain a solid powder. 1000 ml of purified n-hexane was collected into a 2-liter autoclave which had been purged with purified nitrogen in advance, and 10 mg of the above hydrocarbon-insoluble solid component was charged therein. 8
After raising the temperature to 0°C, hydrogen was introduced to 7 kg/cm2, and 0.08 mmol of triethylaluminum was introduced together with ethylene to make the total pressure 12 kg/cm2. Ethylene absorption is seen as ethylene is introduced, but the total pressure is 12 kg.
Ethylene was additionally introduced to maintain the temperature at /cm2, and after 1.5 hours, ethanol was pressurized to stop the polymerization. The results obtained are shown in Table 2.

【0016】実施例2〜3 実施例1において、トリエチルアルミニウムの量を0.
05,0.02ミリモルとし水素とエチレンの圧力比お
よび全圧を表1のように変えた他は実施例1と同様に行
なった。結果は表2に示す。 比較例1〜2 実施例1において、トリエチルアルミニウムを0.16
,0.005ミリモルとし水素とエチレンの圧力比、全
圧を表1のようにかえた他は、実施例1と同様に行なっ
た。得られた結果を表2に示す。
Examples 2 to 3 In Example 1, the amount of triethylaluminum was changed to 0.
The same procedure as in Example 1 was conducted except that the pressure ratio of hydrogen and ethylene and the total pressure were changed as shown in Table 1. The results are shown in Table 2. Comparative Examples 1-2 In Example 1, triethylaluminum was added to 0.16
, 0.005 mmol, and the pressure ratio of hydrogen and ethylene and the total pressure were changed as shown in Table 1. The results obtained are shown in Table 2.

【0017】実施例4 実施例2において、重合時に、少量のプロピレンを供給
し、水素/エチレンの圧力比および全圧を表1のように
変えた他は、実施例2と同様に行なった。メルトインデ
ックスは1.11(グラム/10分)でFRは32であ
った。結果を表2に示す。 実施例5 実施例1において、マグネシウム、チタニウム、成分を
含む均一溶液に滴下するエチルアルミニウムセスキクロ
ライドの量を148ミリモルとした他は実施例1と同様
にして、不溶性固体触媒成分を得重合時に使用するトリ
エチルアルミニウムの量を、0.02ミリモル水素/エ
チレンの圧力比を0.09、全圧を8kg/cm2 と
して、1.5時間重合した。結果を表2に示す。 比較例3 実施例5の不溶性固体触媒成分を用い、トリエチルアル
ミニウムの量を0.16ミリモル、水素/エチレンの圧
力比を0.6とした他は、実施例5と同様にして、重合
した。結果を表2に示す。
Example 4 Example 2 was carried out in the same manner as in Example 2, except that a small amount of propylene was supplied during polymerization, and the hydrogen/ethylene pressure ratio and total pressure were changed as shown in Table 1. The melt index was 1.11 (grams/10 minutes) and the FR was 32. The results are shown in Table 2. Example 5 An insoluble solid catalyst component was obtained and used in polymerization in the same manner as in Example 1, except that the amount of ethylaluminum sesquichloride dropped into the homogeneous solution containing magnesium, titanium, and other components was changed to 148 mmol. The amount of triethylaluminum was polymerized for 1.5 hours at a pressure ratio of 0.02 mmol hydrogen/ethylene of 0.09 and a total pressure of 8 kg/cm2. The results are shown in Table 2. Comparative Example 3 Polymerization was carried out in the same manner as in Example 5, except that the insoluble solid catalyst component of Example 5 was used, the amount of triethylaluminum was 0.16 mmol, and the hydrogen/ethylene pressure ratio was 0.6. The results are shown in Table 2.

【0018】実施例6 実施例1で得た不溶性固体触媒成分5g、ジエチルアル
ミニウムモノクロライド8ミリモル、n−ヘキサン1リ
ットルをオートクレーブに仕込み、80℃に昇温後、気
相の水素/エチレンの圧力比が1.0になる様にしなが
ら、エチレンを供給し、30分間前重合を行なった。前
重合後、精製n−ヘキサンで洗浄し、炭化水素不溶性固
体触媒成分10mgに相当する、前重合触媒と、トリエ
チルアルミニウム0.05ミリモル、n−ヘキサン1リ
ットルを、オートクレーブに仕込み、気相の水素/エチ
レンの圧力比を2.1、全圧を10kg/cm2 とし
て、80℃で1.5時間重合を行なった。メルトインデ
ックスは1.01、FRは42であった。結果を表2に
示す。 比較例4 実施例6において、トリエチルアルミニウムの量を、0
.16ミリモルとし水素/エチレンの圧力比、全圧を表
1のようにかえた他は実施例6と同様にして重合した。 メルトインデックスは0.98、FRは28であった。 結果を表2に示す。
Example 6 5 g of the insoluble solid catalyst component obtained in Example 1, 8 mmol of diethylaluminum monochloride, and 1 liter of n-hexane were charged into an autoclave, and after raising the temperature to 80°C, the pressure of hydrogen/ethylene in the gas phase was increased. Ethylene was supplied while maintaining the ratio to be 1.0, and prepolymerization was carried out for 30 minutes. After the prepolymerization, the prepolymerization catalyst, which is equivalent to 10 mg of the hydrocarbon-insoluble solid catalyst component, 0.05 mmol of triethylaluminum, and 1 liter of n-hexane are washed with purified n-hexane and charged into an autoclave, and hydrogen in the gas phase is charged. Polymerization was carried out at 80° C. for 1.5 hours at a pressure ratio of /ethylene of 2.1 and a total pressure of 10 kg/cm 2 . The melt index was 1.01 and the FR was 42. The results are shown in Table 2. Comparative Example 4 In Example 6, the amount of triethylaluminum was changed to 0.
.. Polymerization was carried out in the same manner as in Example 6, except that the hydrogen/ethylene pressure ratio and total pressure were changed to 16 mmol as shown in Table 1. The melt index was 0.98 and the FR was 28. The results are shown in Table 2.

【0019】実施例7 実施例6において、少量のプロピレンを供給した他は、
実施例6と同様にして重合した。メルトインデックスは
1.05、FRは31であった。結果を表2に示す。 実施例8 実施例7において、共触媒を、トリエチルアルミニウム
からトリイソブチルアルミニウムにかえた他は、実施例
7と同様にして重合した。メルトインデックスは、0.
99、FRは31であった。結果を表2に示す。 比較例5 比較例4において共触媒を、トリエチルアルミニウムか
らジエチルアルミニウムクロライドにかえ、水素/エチ
レンの圧力比を5.5、全圧を20kg/cm2 とし
た他は比較例4と同様にして重合した。メルトインデッ
クスは1.15、FRは42であったが、活性は、低く
かった。結果を表2に示す。
Example 7 In Example 6, except that a small amount of propylene was supplied,
Polymerization was carried out in the same manner as in Example 6. The melt index was 1.05 and the FR was 31. The results are shown in Table 2. Example 8 Polymerization was carried out in the same manner as in Example 7, except that the cocatalyst was changed from triethylaluminum to triisobutylaluminum. Melt index is 0.
99, FR was 31. The results are shown in Table 2. Comparative Example 5 Polymerization was carried out in the same manner as in Comparative Example 4, except that the cocatalyst in Comparative Example 4 was changed from triethylaluminum to diethylaluminum chloride, the hydrogen/ethylene pressure ratio was 5.5, and the total pressure was 20 kg/cm2. . The melt index was 1.15 and the FR was 42, but the activity was low. The results are shown in Table 2.

【0020】[0020]

【表1】[Table 1]

【0021】[0021]

【表2】[Table 2]

【0022】[0022]

【発明の効果】本発明の製造方法により、大きな活性を
保持しつつ分子量分布が広く、押出成形に優れたポリオ
レフィンを製造することができる。
According to the production method of the present invention, it is possible to produce a polyolefin that maintains high activity, has a wide molecular weight distribution, and is excellent in extrusion molding.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一態様を示すフローチャート図である
FIG. 1 is a flowchart diagram illustrating one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一般式Mg(OR2)m X22−m
(式中、R2 はアルキル、アリール又はシクロアルキ
ル基を示し、X2 はハロゲン原子を示し、mは1又は
2である)で表わされるマグネシウム化合物及び一般式
(Ti(OR3)n X34−n(式中、R3 はアル
キル、アリール又はシクロアルキル基を示し、X3 は
ハロゲン原子を示し、nは1,2又は3である)で表わ
されるチタン化合物を含む均一な炭化水素溶液を、一般
式AlR1 l X13−l(式中、R1 はアルキル
、アリール又はシクロアルキル基を示し、X1 はハロ
ゲン原子を示し、lは1≦l≦2の数を示す。)で表わ
される有機ハロゲン化アルミニウム化合物で処理して得
られる炭化水素不溶性固体触媒成分とトリアルキルアル
ミニウムとを組み合せてなる触媒系を用いてエチレン又
はエチレンと炭素数3以上のα−オレフィンとを100
℃以下の温度で重合又は共重合する方法において、トリ
アルキルアルミニウムの量を、不溶性固体触媒成分1g
当り1〜10ミリモルとして該重合又は共重合を行なう
ことを特徴とする、分子量分布の広いポリオレフィンの
製造方法。
[Claim 1] General formula Mg(OR2)m X22-m
(wherein, R2 represents an alkyl, aryl, or cycloalkyl group, X2 represents a halogen atom, and m is 1 or 2) and a magnesium compound represented by the general formula (Ti(OR3)n A homogeneous hydrocarbon solution containing a titanium compound represented by the general formula AlR1 l -l (wherein R1 represents an alkyl, aryl or cycloalkyl group, X1 represents a halogen atom, and l represents a number of 1≦l≦2). Using a catalyst system consisting of a combination of the obtained hydrocarbon-insoluble solid catalyst component and trialkylaluminium, ethylene or ethylene and an α-olefin having 3 or more carbon atoms are mixed at 100%
In the method of polymerization or copolymerization at a temperature below
A method for producing a polyolefin with a wide molecular weight distribution, characterized in that the polymerization or copolymerization is carried out at 1 to 10 mmol per polymer.
【請求項2】  マグネシウム化合物、チタン化合物及
び有機ハロゲン化アルミニウム化合物の使用量が、モル
比で 【数1】 を満たすような量である請求項1に記載のポリオレフィ
ンの製造方法。
2. The method for producing a polyolefin according to claim 1, wherein the amounts of the magnesium compound, titanium compound, and organic aluminum halide compound used are such that the molar ratio satisfies the following formula:
JP4985891A 1991-03-14 1991-03-14 Production of polyolefin Pending JPH04285606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4985891A JPH04285606A (en) 1991-03-14 1991-03-14 Production of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4985891A JPH04285606A (en) 1991-03-14 1991-03-14 Production of polyolefin

Publications (1)

Publication Number Publication Date
JPH04285606A true JPH04285606A (en) 1992-10-09

Family

ID=12842752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4985891A Pending JPH04285606A (en) 1991-03-14 1991-03-14 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPH04285606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034650A1 (en) * 2008-03-14 2011-02-10 Saudi Basic Industries Corporation Catalyst System and a Process for the Production of a Polyethylene in the Presence of this Catalyst System
US8841392B2 (en) 2009-08-14 2014-09-23 Saudi Basic Industries Corporation Catalyst system and a process for the production of polyethylene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034650A1 (en) * 2008-03-14 2011-02-10 Saudi Basic Industries Corporation Catalyst System and a Process for the Production of a Polyethylene in the Presence of this Catalyst System
US9637571B2 (en) * 2008-03-14 2017-05-02 Saudi Basic Industries Corporation Catalyst system and a process for the production of a polyethylene in the presence of this catalyst system
US8841392B2 (en) 2009-08-14 2014-09-23 Saudi Basic Industries Corporation Catalyst system and a process for the production of polyethylene

Similar Documents

Publication Publication Date Title
JP2678688B2 (en) Group IVB, VB and VIB metal hydrocarbyl oxides and alumoxanes for olefin polymerization
US5013701A (en) Catalyst system for high-temperature (co) polymerization of ethylene
ES2318786T3 (en) OLEFIN POLYMERIZATION CATALYTIC SYSTEM.
EP0447722B1 (en) Zirconium-based catalyst composition for polymerizing olefins
JPH0632830A (en) Preparation of catalyst system, homopolymerization and copolymerization of olefin and polymer and copolymer of at least one olefin
JP7238135B2 (en) Olefin polymerization catalyst and olefin polymer prepared using the same
US4226964A (en) Process for polymerizing olefin
JP3310346B2 (en) Catalyst for producing olefin polymer, method for producing olefin polymer, olefin polymer and amorphous copolymer of ethylene
US4199476A (en) Olefin polymerization catalyst
US4525554A (en) Process for polymerizing olefin
JP2005535771A5 (en)
JPH04285606A (en) Production of polyolefin
JPH0125768B2 (en)
JPS63168407A (en) Preparation of polyolefin
JP2835369B2 (en) Method for producing olefin polymer
JPH1160624A (en) Olefin polymerization catalyst and prepapation of polyolefin
JPS5846205B2 (en) Olefin polymerization method
JPH0132245B2 (en)
US7094726B2 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
JPS5814443B2 (en) Olefin polymerization method
JPS594607A (en) Manufacture of ethylene polymer
JPH05117321A (en) Production of polyethylene
JPS6042404A (en) Polymerization of olefin
JPH0725932A (en) Polymerization of ethylene and catalytic component therefor
JPH05117320A (en) Method for controlling molecular weight distribution in producing polyethylene