JPH04285003A - Production of hydrogen peroxide - Google Patents

Production of hydrogen peroxide

Info

Publication number
JPH04285003A
JPH04285003A JP7435491A JP7435491A JPH04285003A JP H04285003 A JPH04285003 A JP H04285003A JP 7435491 A JP7435491 A JP 7435491A JP 7435491 A JP7435491 A JP 7435491A JP H04285003 A JPH04285003 A JP H04285003A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen peroxide
hydrogen
catalyst
reaction medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7435491A
Other languages
Japanese (ja)
Inventor
Masao Ishiuchi
石内 征夫
Yasushi Hiramatsu
靖史 平松
Hiromitsu Nagashima
広光 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7435491A priority Critical patent/JPH04285003A/en
Publication of JPH04285003A publication Critical patent/JPH04285003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce concd. hydrogen peroxide by allowing hydrogen to react with oxygen in an aq. acidic soln. under the catalysis of a platinum- group metal deposited on a carrier in the presence of a promoter. CONSTITUTION:Hydrogen is allowed to react with oxygen in an aq. soln. acidified by phosphoric acids in the presence of a platinum-group metal catalyst deposited on a carrier of lanthanum oxide and chlorine ion as the promoter to efficiently produce concd. hydrogen peroxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は反応媒体中で酸素と水素
を触媒と接触的に反応させ、過酸化水素を製造する改良
された方法に関するものである。
FIELD OF THE INVENTION This invention relates to an improved process for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst in a reaction medium.

【0002】0002

【従来の技術】現在、工業的に行われている過酸化水素
の主な製造方法は、アルキルアンスラキノンを媒体とす
る自動酸化法である。この方法の問題点として、還元、
酸化、水抽出分離、精製、濃縮等のプロセスが複雑であ
り、装置費、運転費が大きいという事が挙げられる。更
には、アルキルアンスラキノンの劣化による損失、水素
添加触媒の劣化等の問題もある。これらの問題点を改善
するために、上記製造方法以外の製造方法が試みられて
いるが、その一つに、反応媒体中で直接酸素と水素から
接触的に過酸化水素を製造する方法がある。既に、白金
族金属を触媒として用い、酸素と水素から過酸化水素を
製造する方法が提案されており、かなりの濃度の過酸化
水素が生成する事が示されている(特公昭56−471
21、特公昭55−18646、特公平1−23401
 、特開昭63−156005 )。 これらでは、いずれも反応媒体として水溶液を用いてい
る。しかも、水溶液である反応媒体中に酸や無機塩を溶
存させている。特に反応媒体中にハロゲンイオンを含む
ことにより、反応の選択性が大幅に向上し、生成過酸化
水素の濃度を高めている。特開昭63−156005 
号公報には、白金族触媒を用い、酸性水溶液中で加圧下
酸素及び水素から過酸化水素を製造する方法に於いて、
水溶液中に臭素イオン等のハロゲンイオンを共存させる
事によって、選択的に高濃度の過酸化水素を製造できる
事が示されている。
BACKGROUND OF THE INVENTION The main method for producing hydrogen peroxide currently practiced industrially is an autoxidation method using an alkylanthraquinone as a medium. The problem with this method is that reduction,
Processes such as oxidation, water extraction separation, purification, and concentration are complicated, and equipment costs and operating costs are high. Furthermore, there are also problems such as loss due to deterioration of alkylanthraquinone and deterioration of the hydrogenation catalyst. In order to improve these problems, production methods other than those described above have been attempted, one of which is a method of producing hydrogen peroxide catalytically from oxygen and hydrogen directly in a reaction medium. . A method for producing hydrogen peroxide from oxygen and hydrogen using a platinum group metal as a catalyst has already been proposed, and it has been shown that hydrogen peroxide can be produced at a considerable concentration (Japanese Patent Publication No. 56-471).
21, Special Publication No. 55-18646, Special Publication No. 1-23401
, Japanese Patent Publication No. 63-156005). In all of these, an aqueous solution is used as the reaction medium. Furthermore, an acid or an inorganic salt is dissolved in the reaction medium which is an aqueous solution. In particular, the inclusion of halogen ions in the reaction medium greatly improves the selectivity of the reaction and increases the concentration of hydrogen peroxide produced. Japanese Patent Publication No. 63-156005
The publication describes a method for producing hydrogen peroxide from oxygen and hydrogen under pressure in an acidic aqueous solution using a platinum group catalyst.
It has been shown that high concentration hydrogen peroxide can be selectively produced by coexisting halogen ions such as bromide ions in an aqueous solution.

【0003】0003

【発明が解決しようとする課題】反応媒体中で酸素と水
素を触媒の存在下で直接反応させて過酸化水素を製造す
る方法に於いて、高濃度の過酸化水素を選択性高く得る
ためには、反応媒体を酸性に保ち、しかも一定量以上の
ハロゲンイオンを存在させる必要がある。この場合、反
応媒体中に存在するハロゲンイオンは、一般に反応の選
択性を高める効果を示すが、同時に白金族触媒の触媒活
性を低下させるという問題が知られている。触媒活性の
低下は、取得される過酸化水素の濃度を低下させると共
に、より高い圧力での反応が必要となり、経済上大きな
問題となる。
[Problem to be solved by the invention] In a method for producing hydrogen peroxide by directly reacting oxygen and hydrogen in the presence of a catalyst in a reaction medium, in order to obtain highly concentrated hydrogen peroxide with high selectivity. It is necessary to keep the reaction medium acidic and to have a certain amount or more of halogen ions present. In this case, the halogen ions present in the reaction medium generally have the effect of increasing the selectivity of the reaction, but are known to have the problem of simultaneously reducing the catalytic activity of the platinum group catalyst. A decrease in catalytic activity reduces the concentration of hydrogen peroxide obtained and requires a reaction at a higher pressure, which poses a major economic problem.

【0004】0004

【課題を解決するための手段】本発明者らは、酸性の水
性反応媒体中で、酸素及び水素から接触的に過酸化水素
を製造する方法に於いて、白金族触媒の活性を低下させ
ることなく、ハロゲンイオンの助触媒効果を有効に利用
し、高濃度の過酸化水素を得る製造方法の検討を続けた
結果、ハロゲンイオンとして塩素イオンを用い、かつ触
媒として酸化ランタン担持白金族触媒を用いることによ
り、この目的を達成できることを見いだした。この場合
、反応媒体を酸性に保つために、塩酸、硝酸、硫酸のご
とき一般の酸を用いた場合でも高濃度の過酸化水素が得
られるが、これら一般の酸は酸化ランタンを溶かすもの
が多く、反応後に酸化ランタンは反応媒体中に完全に溶
解消失する。そこで本発明者らは、さらに工業的に有利
な製造方法を検討した結果、酸として、オルト燐酸、亜
燐酸またはピロ燐酸のごとき燐酸類を用いることにより
、酸化ランタンの反応媒体への溶解消失を防ぎ得る事を
見いだした。即ち、本発明は、反応媒体中で酸素及び水
素を触媒の存在下で直接反応させて過酸化水素を製造す
る方法に於いて、燐酸類で酸性に保った水性反応媒体を
使用し、かつ酸化ランタン担持白金族触媒と塩素イオン
助触媒を組み合わせて用いることにより高活性・高選択
性を同時に達成せしめ、高濃度の過酸化水素を取得する
事を特徴とする過酸化水素の製造方法である。
Means for Solving the Problems The present inventors have proposed a method for catalytically producing hydrogen peroxide from oxygen and hydrogen in an acidic aqueous reaction medium by reducing the activity of a platinum group catalyst. As a result of continuing to study a production method that effectively utilizes the cocatalytic effect of halogen ions to obtain high-concentration hydrogen peroxide, we found that we used chlorine ions as the halogen ions and a platinum group catalyst supported on lanthanum oxide as the catalyst. We found that this purpose could be achieved by doing so. In this case, high concentrations of hydrogen peroxide can be obtained even if common acids such as hydrochloric acid, nitric acid, or sulfuric acid are used to keep the reaction medium acidic, but these common acids often dissolve lanthanum oxide. After the reaction, the lanthanum oxide completely dissolves and disappears in the reaction medium. Therefore, the present inventors further investigated an industrially advantageous production method, and found that by using phosphoric acids such as orthophosphoric acid, phosphorous acid, or pyrophosphoric acid as the acid, dissolution and disappearance of lanthanum oxide in the reaction medium can be reduced. I found something that could be prevented. That is, the present invention uses an aqueous reaction medium kept acidic with phosphoric acids in a method for producing hydrogen peroxide by directly reacting oxygen and hydrogen in the presence of a catalyst in a reaction medium, and This method of producing hydrogen peroxide is characterized by simultaneously achieving high activity and high selectivity by using a combination of a lanthanum-supported platinum group catalyst and a chloride ion co-catalyst, and obtaining high-concentration hydrogen peroxide.

【0005】本発明に於いて触媒として用いられる白金
族金属は具体的にはルテニウム、オスミウム、ロジウム
、イリジウム、パラジウム、白金などであり、これらを
単独またはそれらの2種以上の混合物もしくは合金とし
て用いることができる。通常、パラジウムまたは白金が
用いられることが多いが、特にパラジウムが好ましい。 これらの白金族金属は通常酸化ランタン担体上に1〜5
重量%の割合で担持されて触媒として使用されるが、触
媒の使用量としては反応媒体1リットル当たり1g〜1
00g、好ましくは5g〜50g が使用される。本発
明に於いて、酸化ランタンを担体として用いることによ
り、塩化パラジウムや硝酸パラジウム等の白金族金属塩
の吸着が極めて容易に起こり、触媒調製が効率的に行わ
れると共に高活性の触媒の調製を容易にするメリットが
ある。担体として用いられる酸化ランタンの形状は微粉
、粒、ペレット等任意に選択される。
[0005] Platinum group metals used as catalysts in the present invention are specifically ruthenium, osmium, rhodium, iridium, palladium, platinum, etc., and these may be used alone or as a mixture or alloy of two or more thereof. be able to. Usually, palladium or platinum is often used, and palladium is particularly preferred. These platinum group metals are usually 1-5 on a lanthanum oxide support.
It is used as a catalyst supported in a proportion of 1% by weight, but the amount of catalyst used is 1g to 1% per liter of reaction medium.
00g, preferably 5g to 50g. In the present invention, by using lanthanum oxide as a carrier, adsorption of platinum group metal salts such as palladium chloride and palladium nitrate occurs extremely easily, making it possible to efficiently prepare a catalyst and to prepare a highly active catalyst. It has the advantage of making it easier. The shape of the lanthanum oxide used as a carrier is arbitrarily selected such as fine powder, grains, pellets, etc.

【0006】本発明に於いて、塩素イオンを助触媒とし
て用いた場合には触媒活性の低下は認められず、しかも
高選択性を示し高濃度の過酸化水素が生成する。しかし
臭素イオンを助触媒として用いた場合には、高い選択性
は得られるが、著しい触媒活性の低下が認められ、本発
明と同等の好結果を得ることは出来ない。つまり本発明
が示すごとく、塩素イオンと酸化ランタン担持白金族触
媒の組合せが極めて有利であることが理解される。本発
明に於いて、必要な塩素イオンの量は使用する触媒の量
にもよるが、一般的には反応媒体1リットル当たり0.
001ミリモル以上、好ましくは0.1ミリモル以上で
ある。塩素イオンの上限量は特に規定されるものではな
いが、使用する触媒に担持された金属の反応媒体中での
濃度が1ミリグラム/リットルに対し0.02モル/リ
ットル以上の塩素イオンを加えても添加量増加に見合う
効果は得られない。また塩酸のごとき酸の形態で塩素イ
オンを添加する場合には、塩酸の添加量を大幅に増やす
と酸化ランタンの溶出が起こるため好ましくない。しか
し本発明者らは、酸化ランタンが塩基性であり、一定量
以上の塩酸を添加しない限り反応媒体は酸性を示すに至
らず、その結果酸化ランタンの溶出は全く起こらず、し
かもこの範囲の塩素イオン濃度の存在で充分な助触媒効
果が発揮されることを見いだした。
In the present invention, when chlorine ions are used as a cocatalyst, no decrease in catalytic activity is observed, and moreover, high selectivity is exhibited and hydrogen peroxide is produced at a high concentration. However, when bromide ions are used as a co-catalyst, although high selectivity can be obtained, a significant decrease in catalytic activity is observed, and good results equivalent to those of the present invention cannot be obtained. In other words, as shown in the present invention, it is understood that the combination of chloride ions and platinum group catalyst supported on lanthanum oxide is extremely advantageous. In the present invention, the amount of chlorine ions required depends on the amount of catalyst used, but is generally 0.000 chloride per liter of reaction medium.
0.001 mmol or more, preferably 0.1 mmol or more. The upper limit of the amount of chlorine ions is not particularly specified, but if the concentration of chlorine ions in the reaction medium of the metal supported on the catalyst used is 1 milligram/liter, 0.02 mol/liter or more of chlorine ions should be added. However, the effect commensurate with the increase in the amount added cannot be obtained. Further, when adding chlorine ions in the form of an acid such as hydrochloric acid, it is not preferable because lanthanum oxide will elute if the amount of added hydrochloric acid is significantly increased. However, the present inventors discovered that lanthanum oxide is basic and that the reaction medium does not become acidic unless a certain amount of hydrochloric acid is added. It has been found that the presence of ion concentration provides a sufficient cocatalytic effect.

【0007】更に、本発明では反応媒体として水溶液(
水性反応媒体)が使用されるが、水性反応媒体を酸性に
保つための酸としてオルト燐酸、亜燐酸またはピロ燐酸
のごとき燐酸類を用いることにより酸化ランタンの溶出
が完全に抑制され、本発明が極めて有利に実施されるこ
とが見いだされた。本発明ではオルト燐酸やピロ燐酸な
どが好適に使用されるが、これらの燐酸類の使用量は反
応媒体1リットル当たり0.01モル〜1モルが使用さ
れる。本発明を実施する場合に用いられる反応槽は固定
床でも撹拌槽でも使用できる。また、本発明の過酸化水
素の製造反応は通常、反応圧力3kg/cm2 ・G〜
150kg/cm2 ・G、反応温度0〜50℃、反応
時間30分〜6時間の条件で実施される。
Furthermore, in the present invention, an aqueous solution (
However, by using phosphoric acids such as orthophosphoric acid, phosphorous acid, or pyrophosphoric acid as an acid to keep the aqueous reaction medium acidic, the elution of lanthanum oxide is completely suppressed, and the present invention It has been found that this can be carried out with great advantage. In the present invention, orthophosphoric acid, pyrophosphoric acid, etc. are preferably used, and the amount of these phosphoric acids used is 0.01 mol to 1 mol per liter of reaction medium. The reaction vessel used in carrying out the present invention can be either a fixed bed or a stirred vessel. In addition, the hydrogen peroxide production reaction of the present invention is usually carried out at a reaction pressure of 3 kg/cm2 ・G~
The reaction is carried out under the following conditions: 150 kg/cm 2 ·G, reaction temperature 0 to 50°C, and reaction time 30 minutes to 6 hours.

【0008】[0008]

【実施例】次に、実施例及び比較例で本発明を更に具体
的に説明する。実施例中で用いられているガス組成の分
析値は、ガスクロマトグラフによる値である。溶液中の
過酸化水素濃度の測定は、硫酸酸性ー過マンガン酸カリ
ウムによる滴定法により行った。また、溶液中の金属イ
オン濃度の測定は、誘導結合型プラズマ発光分析法〔セ
イコー電子工業株式会社製の1200VR型分析計使用
。〕により行った。
[Examples] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. The analytical values of gas composition used in the examples are values determined by gas chromatography. The concentration of hydrogen peroxide in the solution was measured by titration using sulfuric acid and potassium permanganate. In addition, the metal ion concentration in the solution was measured by inductively coupled plasma emission spectrometry [using a 1200VR model analyzer manufactured by Seiko Electronics Industries, Ltd.]. ].

【0009】実施例1 塩化パラジウム(小宗化学社製)を、市販の酸化ランタ
ン(関東化学社製)に含浸法により担持させた。活性成
分であるパラジウムの重量が、酸化ランタンの重量に対
して1%となるように塩化パラジウムの水溶液の添加量
を調整した。含浸操作後、ホットプレート上で蒸発乾固
し、さらに乾燥器中で110℃にて一昼夜乾燥した。乾
燥後400℃にて空気気流中で2時間焼成し、その後2
00℃にて水素気流中で1時間還元することにより触媒
を調製した。内容積65mlのガラス容器に、反応媒体
として塩酸0.01mol/l、オルト燐酸0.1mo
l/lとなるように調製した水溶液10gを入れた。こ
の水溶液に、上記の方法で調製した触媒を50mg加え
、このガラス容器を100mlの容積のオートクレーブ
に入れた。水素ガス4容量%、酸素ガス40容量%、窒
素ガス56容量%からなる混合ガスにてオートクレーブ
内を置換後、この混合ガスにて50kg/cm2 ・G
まで加圧した後、全体を10℃に保ち、撹拌回転数20
00rpmにて1時間反応させた。反応中ガスの補給は
行わなかった。反応後の水溶液中の過酸化水素濃度は0
.89重量%であり、この時の水素選択率は82%、転
化率は42%であった。反応後の反応液中のランタンイ
オンの濃度は、1ppm以下であった。尚、水素選択率
及び水素転化率は次式によって計算した。
Example 1 Palladium chloride (manufactured by Koso Kagaku Co., Ltd.) was supported on commercially available lanthanum oxide (manufactured by Kanto Kagaku Co., Ltd.) by an impregnation method. The amount of the palladium chloride aqueous solution added was adjusted so that the weight of palladium, which is an active ingredient, was 1% based on the weight of lanthanum oxide. After the impregnation operation, it was evaporated to dryness on a hot plate, and further dried in a dryer at 110° C. all day and night. After drying, it was baked at 400℃ for 2 hours in an air stream, and then 2 hours.
The catalyst was prepared by reduction in a hydrogen stream at 00°C for 1 hour. In a glass container with an internal volume of 65 ml, 0.01 mol/l of hydrochloric acid and 0.1 mol of orthophosphoric acid were added as reaction media.
10 g of an aqueous solution prepared at a ratio of 1/1 was added. 50 mg of the catalyst prepared by the above method was added to this aqueous solution, and the glass container was placed in a 100 ml autoclave. After replacing the inside of the autoclave with a mixed gas consisting of 4% by volume of hydrogen gas, 40% by volume of oxygen gas, and 56% by volume of nitrogen gas, this mixed gas produced 50kg/cm2・G
After pressurizing to
The reaction was carried out at 00 rpm for 1 hour. Gas was not replenished during the reaction. The hydrogen peroxide concentration in the aqueous solution after the reaction is 0.
.. The hydrogen selectivity at this time was 82% and the conversion rate was 42%. The concentration of lanthanum ions in the reaction solution after the reaction was 1 ppm or less. Note that the hydrogen selectivity and hydrogen conversion rate were calculated using the following formula.

【0010】水素選択率(%)=〔(反応により生成し
た過酸化水素の量  mol)÷(消費された水素量か
ら算出した過酸化水素の理論生成量  mol)〕×1
00
Hydrogen selectivity (%) = [(amount of hydrogen peroxide produced by reaction, mol) ÷ (theoretical production amount of hydrogen peroxide, mol calculated from the amount of hydrogen consumed)]×1
00

【0011】水素転化率(%)={〔(反応前の容
器内の水素ガス量  mol)−(反応後の容器内の水
素ガス量  mol)〕÷(反応前の容器内の水素ガス
量mol)}×100
Hydrogen conversion rate (%) = {[(amount of hydrogen gas in the container before reaction, mol) - (amount of hydrogen gas in the container after reaction, mol)] ÷ (amount of hydrogen gas in the container before reaction, mol) )}×100

【0012】比較例1 反応媒体として臭素酸ナトリウム0.5mmol/l、
オルト燐酸0.1mol/lとなるように調製した水溶
液を用いたことを除き、実施例1と同様の反応方法によ
る操作を行った。反応後の水溶液中の過酸化水素濃度は
0.20重量%であり、この時の水素選択率は80%、
水素転化率は8%であった。また、反応後の反応液中の
ランタンイオンの濃度は、1ppm以下であった。
Comparative Example 1 Sodium bromate 0.5 mmol/l as reaction medium;
The same reaction method as in Example 1 was carried out except that an aqueous solution prepared to have an orthophosphoric acid concentration of 0.1 mol/l was used. The hydrogen peroxide concentration in the aqueous solution after the reaction was 0.20% by weight, and the hydrogen selectivity at this time was 80%.
The hydrogen conversion rate was 8%. Further, the concentration of lanthanum ions in the reaction solution after the reaction was 1 ppm or less.

【0013】比較例2 反応媒体として、塩酸0.01mol/l、硫酸0.1
mol/lとなるように調製した水溶液を用いたことを
除き、実施例1と同様の反応方法による操作を行った。 反応後の水溶液中の過酸化水素濃度は0.41重量%で
あり、この時の水素選択率は80%、水素転化率は23
%であった。反応後、酸化ランタンは完全に溶解消失し
、金属パラジウムが微粉となって残った。
Comparative Example 2 Hydrochloric acid 0.01 mol/l and sulfuric acid 0.1 mol/l were used as the reaction medium.
The same reaction method as in Example 1 was performed except that an aqueous solution prepared to have a mol/l ratio was used. The hydrogen peroxide concentration in the aqueous solution after the reaction was 0.41% by weight, the hydrogen selectivity at this time was 80%, and the hydrogen conversion rate was 23%.
%Met. After the reaction, the lanthanum oxide completely dissolved and disappeared, leaving metallic palladium as a fine powder.

【0014】比較例3 反応媒体として、塩酸0.1mol/lとなるように調
製した水溶液を用いたことを除き、実施例1と同様の反
応方法による操作を行った。反応後の水溶液中の過酸化
水素濃度は0.52重量%であり、この時の水素選択率
は83%、水素転化率は28%であった。反応後、酸化
ランタンは完全に溶解消失し、金属パラジウムが微粉と
なって残った。
Comparative Example 3 The same reaction method as in Example 1 was carried out except that an aqueous solution of hydrochloric acid prepared to have a concentration of 0.1 mol/l was used as the reaction medium. The hydrogen peroxide concentration in the aqueous solution after the reaction was 0.52% by weight, the hydrogen selectivity at this time was 83%, and the hydrogen conversion rate was 28%. After the reaction, the lanthanum oxide completely dissolved and disappeared, leaving metallic palladium as a fine powder.

【0015】実施例2 反応媒体として、塩酸0.01mol/l、ピロ燐酸0
.1mol/lとなるように調製した水溶液を用いたこ
とを除き、実施例1と同様の反応方法による操作を行っ
た。反応後の水溶液中の過酸化水素濃度は0.77重量
%であり、この時の水素選択率は71%、水素転化率は
42%であった。反応後の反応液中のランタンイオン濃
度は1ppm以下であった。
Example 2 As reaction medium, hydrochloric acid 0.01 mol/l, pyrophosphoric acid 0
.. The same reaction method as in Example 1 was performed except that an aqueous solution prepared to have a concentration of 1 mol/l was used. The hydrogen peroxide concentration in the aqueous solution after the reaction was 0.77% by weight, the hydrogen selectivity at this time was 71%, and the hydrogen conversion rate was 42%. The lanthanum ion concentration in the reaction solution after the reaction was 1 ppm or less.

【0016】実施例3 反応媒体として塩化カリウム0.05mol/l、オル
ト燐酸0.1mol/lとなるように調製した水溶液を
用いたことを除き、実施例1と同様の反応方法による操
作を行った。反応後の水溶液中の過酸化水素濃度は0.
76重量%であり、この時の水素選択率は81%、水素
転化率は36%であった。また、反応後の反応液中のラ
ンタンイオンの濃度は1ppm以下であった。
Example 3 The same reaction method as in Example 1 was carried out, except that an aqueous solution prepared to contain potassium chloride 0.05 mol/l and orthophosphoric acid 0.1 mol/l was used as the reaction medium. Ta. The hydrogen peroxide concentration in the aqueous solution after the reaction is 0.
The hydrogen selectivity at this time was 81% and the hydrogen conversion rate was 36%. Further, the concentration of lanthanum ions in the reaction solution after the reaction was 1 ppm or less.

【0017】[0017]

【発明の効果】比較例に対して本発明の実施例では、高
い水素選択率が得られており、同時に水素転化率が高く
取得過酸化水素の濃度が高くなっている。さらに、酸化
ランタンの溶出は完全に抑制されている。このように本
発明の製造方法によれば、効率よく高濃度の過酸化水素
を製造することができる。
Effects of the Invention: Compared to the comparative example, in the example of the present invention, a high hydrogen selectivity was obtained, and at the same time, the hydrogen conversion rate was high and the concentration of obtained hydrogen peroxide was high. Furthermore, the elution of lanthanum oxide is completely suppressed. As described above, according to the production method of the present invention, highly concentrated hydrogen peroxide can be produced efficiently.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸素と水素を反応媒体中で白金族触媒
と接触的に反応させ、過酸化水素を製造する方法に於い
て、(1)酸化ランタンを担体とする担持白金族触媒を
使用し、(2)燐酸類の添加により、酸性に保った水性
反応媒体を使用し、(3)塩素イオンを助触媒として共
存させることを特徴とする過酸化水素の製造方法。
Claim 1: A method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a platinum group catalyst in a reaction medium, comprising: (1) using a supported platinum group catalyst using lanthanum oxide as a carrier; , (2) using an aqueous reaction medium kept acidic by adding phosphoric acids, and (3) allowing chlorine ions to coexist as a co-catalyst.
JP7435491A 1991-03-15 1991-03-15 Production of hydrogen peroxide Pending JPH04285003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7435491A JPH04285003A (en) 1991-03-15 1991-03-15 Production of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7435491A JPH04285003A (en) 1991-03-15 1991-03-15 Production of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPH04285003A true JPH04285003A (en) 1992-10-09

Family

ID=13544707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7435491A Pending JPH04285003A (en) 1991-03-15 1991-03-15 Production of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH04285003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378450A (en) * 1993-04-19 1995-01-03 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen peroxide
US5496532A (en) * 1992-11-20 1996-03-05 Showa Denko K. K. Process for producing hydrogen peroxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496532A (en) * 1992-11-20 1996-03-05 Showa Denko K. K. Process for producing hydrogen peroxide
US5378450A (en) * 1993-04-19 1995-01-03 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen peroxide

Similar Documents

Publication Publication Date Title
US5055282A (en) Method of decomposing ammonia using a ruthenium catalyst
EP0504741B1 (en) A method for producing hydrogen peroxide
US6630118B2 (en) Process for the direct synthesis of hydrogen peroxide
JPH05270806A (en) Production of hydrogen peroxide
JPH02198639A (en) Catalyst for decomposing ammonia
JP2002052341A (en) Catalytic ammonia production method and production and recovery method for ammonia synthesis catalyst
CN101238063A (en) Improvements in catalysts
JPH05330802A (en) Production of ammonia-cracked gas and production of hydrogen
US5292496A (en) Process for the preparation of hydrogen peroxide
Samanta et al. Direct oxidation of H2 to H2O2 over Pd/Ga2O3 catalyst under ambient conditions: Influence of halide ions added to the catalyst or reaction medium
JPH0123401B2 (en)
JPH04285003A (en) Production of hydrogen peroxide
CN109705069B (en) Preparation method of 2, 5-furandicarboxylic acid
Mochida et al. A kinetic study on reduction of nitric oxide over cobalt tetraphenylporphyrin supported on titanium dioxide
JP2841410B2 (en) Ammonia decomposition catalyst
JP3302402B2 (en) Ammonia decomposition catalyst
JPH0570107A (en) Production of hydrogen peroxide
JPH0769605A (en) Production of hydrogen peroxide
JPH05329370A (en) Ammonia decomposition catalyst
JP3780555B2 (en) Method for producing hydrogen peroxide
CA1046045A (en) Activation of copper salt phenol oxidation catalysts
JPH0733410A (en) Production of hydrogen peroxide
JPH04238802A (en) Production of hydrogen peroxide
JP3876682B2 (en) Nitric oxide production method
JPH0769604A (en) Production of hydrogen peroxide