JPH04280860A - Highly corrosion-resistant zircon porcelain and its production - Google Patents

Highly corrosion-resistant zircon porcelain and its production

Info

Publication number
JPH04280860A
JPH04280860A JP3063838A JP6383891A JPH04280860A JP H04280860 A JPH04280860 A JP H04280860A JP 3063838 A JP3063838 A JP 3063838A JP 6383891 A JP6383891 A JP 6383891A JP H04280860 A JPH04280860 A JP H04280860A
Authority
JP
Japan
Prior art keywords
zircon
porcelain
powder
content
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3063838A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mori
利之 森
Hiroshi Yamamura
山村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3063838A priority Critical patent/JPH04280860A/en
Publication of JPH04280860A publication Critical patent/JPH04280860A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a zircon porcelain having impact and corrosion resistance and especially high corrosion resistance to molten glass by sintering fine high- purity zircon powder under prescribed Conditions. CONSTITUTION:A zircon porcelain useful as a porcelain for melting glass is obtained by forming crystalline fine zircon powder having >=90% zircon content, <=1/mum average grain diameter and <=0.25wt.% total metallic impurity content as metals at substantially 1 molar ratio of zirconia to silica under about 2ton/ cm<2> pressure using a rubber press, and then sintered at 1600-1700 deg.C under 1-2000-atm pressure. The aforementioned porcelain contains 100% zircon as the zirconium component and silicon component therein and has <=0.25wt.% metallic impurity content as the metals other than the zirconium and silicon and >=4.6g/cm<3> bulk density.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐蝕性材料として有用
なジルコン磁器とその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to zircon porcelain useful as a corrosion-resistant material and a method for producing the same.

【0002】0002

【従来の技術】ジルコン磁器の製造法としては、以下の
方法が提案されている。 (1)ジルコン粉末にチタニアを添加剤として添加して
焼結し、緻密なジルコン焼結体を得るする方法(新材料
シリ−ズ「ジルコン」p.147〜217、宗宮重行編
内田老鶴圃(1989))。 (2)水ガラスの水溶液とジルコニウムの塩水溶液を混
合し、乾燥した後成形し、焼結と同時にジルコン化を進
行させる反応焼結によりジルコン焼結体を得る方法(特
開昭63−195167号公報、同昭63−24876
8号公報)。
BACKGROUND OF THE INVENTION The following methods have been proposed for manufacturing zircon porcelain. (1) A method of adding titania as an additive to zircon powder and sintering it to obtain a dense zircon sintered body (New Materials Series "Zircon" p. 147-217, edited by Shigeyuki Munemiya, Uchida Rokakuba) (1989)). (2) A method of obtaining a sintered zircon body by reaction sintering, in which an aqueous solution of water glass and an aqueous zirconium salt solution are mixed, dried, shaped, and zirconization progresses at the same time as sintering (Japanese Patent Application Laid-open No. 195167/1983) Public bulletin, 1986-24876
Publication No. 8).

【0003】しかし、(1)の方法により得られた焼結
体は、ジルコン化を行うためにTiO2など低融点のガ
ラス成分を添加しており、ジルコン焼結体の粒界にガラ
ス相が析出して不均一粒成長が生じ、焼結体内部に多く
の空孔が生じることにより耐蝕性を著しく低下させると
いう欠点を有していた。
However, in the sintered body obtained by method (1), a glass component with a low melting point such as TiO2 is added for zirconization, and a glass phase is precipitated at the grain boundaries of the zircon sintered body. As a result, non-uniform grain growth occurs and many pores are formed inside the sintered body, resulting in a significant decrease in corrosion resistance.

【0004】また、(2)の方法により得られた焼結体
は、出発原料に結晶質ジルコンを用いないため、焼結体
中に未反応のジルコニアやシリカが残存しやすいうえに
、得られた焼結体の粒径も極めて不均一になりやすく、
磁器内部に多くの空孔が生じることにより耐蝕性を著し
く低下させるという欠点を有していた。
[0004] Furthermore, since the sintered body obtained by the method (2) does not use crystalline zircon as a starting material, unreacted zirconia and silica tend to remain in the sintered body, and The grain size of the sintered body tends to be extremely non-uniform,
This has the disadvantage that many pores are formed inside the porcelain, resulting in a significant decrease in corrosion resistance.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記問
題点を解決し、高密度、緻密組織を有するジルコン焼結
体の磁器について、鋭意研究を続けた結果、高純度、微
粉末ジルコン粉末を出発原料として用い、ある焼結条件
で焼結することにより、上記問題点のないをジルコンの
磁器を得ることを見出した。
[Problems to be Solved by the Invention] The present inventors solved the above-mentioned problems and, as a result of continuing intensive research on porcelain made of sintered zircon having a high density and a dense structure, the inventors of the present invention have solved the above-mentioned problems. We have discovered that by using powder as a starting material and sintering it under certain sintering conditions, it is possible to obtain zircon porcelain that does not have the above problems.

【0006】本発明は、上記問題の解決、すなわち高純
度、微粒子ジルコン粉末を用いて、高密度でかつ微細構
造を有する高耐蝕性ジルコン磁器、特に溶融ガラスに対
して高い耐蝕性を持つジルコン磁器及びその製造方法を
提供することを目的とするものである。
The present invention aims to solve the above problem, that is, to produce highly corrosion-resistant zircon porcelain having high density and fine structure, especially zircon porcelain having high corrosion resistance against molten glass, by using high-purity, fine-grained zircon powder. The object of the present invention is to provide a method for producing the same.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、磁器中の
ジルコニウム(Zr)成分及びシリコン(Si)成分と
してジルコンが100%、ZrとSi以外の金属不純物
含有量(金属として)が0.25wt%以下でありかつ
、磁器のかさ密度4.6g/cm3以上の耐蝕性ジルコ
ン磁器に関するものであり、ジルコニアとシリカとして
のモル比が実質的に1であり、かつ生成ジルコン粉末中
のジルコン含有量90%以上、平均粒子径が1μm以下
、金属不純物総量(金属として)0.25wt%以下の
結晶質ジルコン粉末を1600〜1700℃、1 〜2
000気圧の圧力で焼結することによりこれを得る方法
を要旨とするものである。
[Means for Solving the Problems] That is, in the present invention, zircon is 100% as the zirconium (Zr) component and silicon (Si) component in the porcelain, and the content of metal impurities other than Zr and Si (as metal) is 0. This relates to corrosion-resistant zircon porcelain having a bulk density of 25 wt% or less and a bulk density of 4.6 g/cm3 or more, in which the molar ratio of zirconia and silica is substantially 1, and the zircon content in the produced zircon powder. Crystalline zircon powder with an amount of 90% or more, an average particle size of 1 μm or less, and a total amount of metal impurities (as metal) of 0.25 wt% or less is heated at 1600 to 1700°C for 1 to 2 hours.
The gist is a method of obtaining this by sintering at a pressure of 0,000 atmospheres.

【0008】以下に本発明を詳細に説明する。The present invention will be explained in detail below.

【0009】本発明の製造方法は高純度ジルコン粉末を
出発原料として用いこれを焼結することが特徴である。 原料として用いるジルコン粉末は、ジルコニア(ZrO
2)とシリカ(SiO2)から得られるが、この際用い
るこれらの比率はモル比で実質的に1である。本発明で
は、このようにして得られたジルコン粉末中の、Zrと
Si以外の金属不純物含有量が、金属元素として0.2
5wt%以下であり、かつジルコン含有量が90wt%
以上で、平均粒子径1μm以下のジルコン粉末を用いる
ことが必須である。
The manufacturing method of the present invention is characterized by using high-purity zircon powder as a starting material and sintering it. The zircon powder used as a raw material is zirconia (ZrO
2) and silica (SiO2), and the molar ratio of these used here is substantially 1. In the present invention, the content of metal impurities other than Zr and Si in the zircon powder thus obtained is 0.2 as a metal element.
5 wt% or less, and the zircon content is 90 wt%
In the above, it is essential to use zircon powder with an average particle diameter of 1 μm or less.

【0010】本発明において、上記したこのような条件
に満たないジルコン粉末を用いると、これを用いて焼結
し磁器とした場合、遊離のZrO2やSiO2が磁器の
粒界に析出することになる。ZrO2が磁器粒界に析出
すると、これを高温下に置いた場合ZrO2粒子中にガ
ラス成分が急速に拡散し、結果としてジルコン磁器の粒
界を通してガラスの侵蝕が進み、磁器の耐蝕性が低下す
る。また、磁器粒界にSiO2が析出すると、1000
℃以上の高温においてこのSiO2相が軟化し、ガラス
化した粒界を通してガラス成分が磁器内部に拡散し、そ
の結果、ジルコン磁器の粒界を通してガラスの侵蝕が進
みジルコン磁器の耐蝕性が低下する。
[0010] In the present invention, if zircon powder that does not meet the above-mentioned conditions is used and sintered to make porcelain, free ZrO2 and SiO2 will precipitate at the grain boundaries of the porcelain. . When ZrO2 precipitates at the grain boundaries of porcelain, if it is placed under high temperature, the glass component will rapidly diffuse into the ZrO2 particles, and as a result, corrosion of the glass will progress through the grain boundaries of zircon porcelain, reducing the corrosion resistance of the porcelain. . In addition, when SiO2 precipitates at the porcelain grain boundaries, 1000
At a high temperature of .degree. C. or higher, this SiO2 phase softens, and the glass component diffuses into the porcelain through the vitrified grain boundaries.As a result, erosion of the glass progresses through the grain boundaries of the zircon porcelain, reducing the corrosion resistance of the zircon porcelain.

【0011】本発明では、上記したジルコン粉末を、通
常は予備成型して焼結するが、この際の焼結温度は16
00〜1700℃で、この範囲を下回ると磁器内部に取
り残された空孔を通してガラス成分が侵入し充分な耐蝕
性はが得られない。また上記温度範囲を上回るとジルコ
ンの熱解離が進行し、高純度、微粉末の高ジルコン含有
粉末を用いた効果は失われ、ジルコンの分解により生じ
たZrO2やSiO2が粒界に析出し、高温における耐
蝕性は低下する。焼結時間は0.5時間以上が好ましく
、それ以下では、ジルコン磁器の充分な緻密化が達成さ
れない。しかし、焼結時間が必要以上に長くても充分な
効果は得られず、長時間焼結を続けると、不均一な粒成
長がすすみ、磁器内部に分散していた空孔が集中し、ガ
ラス成分の侵入を生じる危険性があるので10時間以下
が好ましい。
In the present invention, the above-mentioned zircon powder is usually preformed and sintered, but the sintering temperature at this time is 16
If the temperature is below this range, glass components will enter through the pores left inside the porcelain, and sufficient corrosion resistance will not be obtained. Furthermore, when the temperature exceeds the above range, thermal dissociation of zircon progresses, and the effect of using high-purity, fine powder with high zircon content is lost, and ZrO2 and SiO2 produced by the decomposition of zircon precipitate at grain boundaries, resulting in high temperature Corrosion resistance is reduced. The sintering time is preferably 0.5 hours or more; if it is shorter than that, sufficient densification of the zircon porcelain will not be achieved. However, even if the sintering time is longer than necessary, sufficient effects cannot be obtained; continued sintering for a long time will result in uneven grain growth, and the pores that were dispersed inside the porcelain will become concentrated. Since there is a risk of intrusion of components, the time is preferably 10 hours or less.

【0012】また、焼結は、大気中又は不活性ガス雰囲
気中で、常圧焼結において十分な効果が期待できるが、
ホットプレスやHIP焼結を行なうことにより、緻密で
耐蝕性に優れたジルコン磁器を得ることができる。この
際の圧力は常圧から2000気圧である。
[0012] Further, sintering can be expected to be sufficiently effective in normal pressure sintering in the air or in an inert gas atmosphere, but
By performing hot pressing or HIP sintering, zircon porcelain that is dense and has excellent corrosion resistance can be obtained. The pressure at this time is from normal pressure to 2000 atmospheres.

【0013】本発明のジルコン磁器は、ZrとSi以外
の金属不純物含有量が、金属元素として0.25wt%
以下で、かつ、Zr成分及びSi成分としてジルコン含
有量が100%、即ち、磁器の構成成分としてのZr成
分及びSi成分はすべてジルコン成分であり、さらに磁
器のかさ密度は4.6g/cm3以上で緻密な構造を有
しており、高純度ジルコン粉末を出発粉末として用いて
いるため、粒界及び粒内に不純物が極めて少なく焼結時
においても均一な焼結体組織を持つ高密度磁器である。
The zircon porcelain of the present invention has a metal impurity content other than Zr and Si of 0.25 wt% as metal elements.
and the zircon content as the Zr component and Si component is 100%, that is, the Zr component and Si component as the constituent components of the porcelain are all zircon components, and the bulk density of the porcelain is 4.6 g/cm3 or more Since high-purity zircon powder is used as the starting powder, it is a high-density porcelain that has a uniform sintered body structure even during sintering with very few impurities at the grain boundaries and inside the grains. be.

【0014】[0014]

【作用】本発明の効果発現の機構については未だ十分に
は解明していないが、高純度、微粉末ジルコンを出発原
料とし、ジルコン磁器を作ることにより粒界に不純物を
析出させることなく緻密化させることが可能となり、ま
た出発原料が高純度であるがためにジルコンの熱解離温
度も通常の1600〜1700℃を越える高温まで引き
上げられたことにより、緻密なジルコン単相からなる焼
結体を得ることが可能となったことに起因するものと思
われる。
[Operation] Although the mechanism of the effects of the present invention has not yet been fully elucidated, by making zircon porcelain using high-purity, finely powdered zircon as a starting material, it can be densified without precipitating impurities at grain boundaries. Furthermore, because the starting raw material is of high purity, the thermal dissociation temperature of zircon has been raised to a high temperature exceeding the usual 1600-1700°C, making it possible to produce a sintered body consisting of a dense single phase of zircon. This seems to be due to the fact that it is now possible to obtain

【0015】[0015]

【発明の効果】以上説明したように、本発明は、均一な
組織を有し、磁器内部にガラスの侵入を許す空孔の極め
て少ない、高耐熱衝撃性を有する高耐蝕性ジルコン磁器
である。又、このようなジルコン磁器を容易に作製する
ことができる。本発明のジルコン磁器は特にガラス溶融
用磁器として有用である。
As explained above, the present invention provides a highly corrosion-resistant zircon porcelain having a uniform structure, extremely few pores that allow glass to penetrate into the porcelain, and having high thermal shock resistance. Moreover, such zircon porcelain can be easily produced. The zircon porcelain of the present invention is particularly useful as porcelain for glass melting.

【0016】[0016]

【実施例】実施例1 高純度ジルコン微粉末は、オキシ塩化ジルコニウムとシ
リカゾル(日産化学社製濃度20wt%)とを秤量誤差
範囲内においてSi/Zr原子比が1となるように調整
し、全還流下100℃において加水分解を行った。加水
分解生成物はブタノ−ルを添加したのち乾燥処理を行っ
た。得られた乾燥粉末は、1400℃、8時間大気中で
焼成することにより平均粒子径1μm以下の高純度ジル
コン微粉末を得た。このジルコン微粉末は、ジルコニア
とシリカのモル比1、ジルコン含有量95%、平均粒子
径0.5μm、金属不純物含有量(金属として…以下同
じ)0.22wt%であつた。
[Example] Example 1 High-purity zircon fine powder was prepared by adjusting zirconium oxychloride and silica sol (concentration 20 wt%, manufactured by Nissan Chemical Co., Ltd.) so that the Si/Zr atomic ratio was 1 within the weighing error range. Hydrolysis was carried out at 100° C. under reflux. The hydrolysis product was dried after adding butanol. The obtained dry powder was calcined in the air at 1400° C. for 8 hours to obtain high purity zircon fine powder with an average particle size of 1 μm or less. This fine zircon powder had a molar ratio of zirconia to silica of 1, a zircon content of 95%, an average particle diameter of 0.5 μm, and a metal impurity content (in terms of metal...the same hereinafter) of 0.22 wt%.

【0017】この粉末を2ton/cm2の圧力でラバ
ープレスを用いて成型し、1650℃、4時間、大気中
で焼結した。焼結により得られた磁器のかさ密度は4.
64g/cm3、ジルコン磁器中のZr、Si成分とし
てジルコン含有量100%、ジルコン磁器中の金属不純
物含有量0.22wt%であった。この磁器を用いて腐
蝕試験を行った結果を図1に示す。
[0017] This powder was molded using a rubber press at a pressure of 2 tons/cm2, and sintered at 1650°C for 4 hours in the air. The bulk density of the porcelain obtained by sintering is 4.
The zircon content was 100% as Zr and Si components in the zircon porcelain, and the metal impurity content in the zircon porcelain was 0.22 wt%. Figure 1 shows the results of a corrosion test conducted using this porcelain.

【0018】尚、得られた磁器をダイアモンド砥石を用
いて研削し磁器表面粗さをRmax=1μm 以下に仕
上げた。該粉末のジルコン生成率は、X線回折試験によ
る、2θ=26〜32°におけるジルコンの(200)
、単斜晶ジルコニアの(111)および(11−1)な
らびに正方晶ジルコニアの(101)の4本のピ−クの
面積比より次式により算出した。
The obtained porcelain was ground using a diamond grindstone to achieve a surface roughness of Rmax=1 μm or less. The zircon production rate of the powder is determined by the (200) of zircon at 2θ=26 to 32° by
, calculated by the following formula from the area ratio of the four peaks (111) and (11-1) of monoclinic zirconia and (101) of tetragonal zirconia.

【0019】I=I(200)/I(200)+I(1
11)+I(11−1)+I(101)    (Iは
X線強度を表し、()内の数字は面指数を表す)ジルコ
ニア含有率の分析は化学分析により行った。磁器の耐蝕
性評価は、ガラスの中でも腐蝕性物質として知られるア
ルカリ成分であるNa2Oを過剰に含む2Na2O・S
iO2を用いて、各種の磁器をアルミナルツボに入れ、
2Na2O・SiO2ガラスで覆って950〜1100
℃において腐蝕試験を行った。腐蝕試験終了後、試験に
用いた各種の磁器をルツボから取り出し、磁器の腐蝕深
さを測定した。磁器の腐蝕深さは、ガラス中に磁器が溶
出することにより生じる寸法の減少分をマイクロメ−タ
−を用いて測定し、磁器内部に侵入したガラス成分をX
線マイクロアナライザーを用いて測定し、ジルコニア磁
器においてはSi元素、その他の磁器においてはNa元
素の磁器内部への侵入深さを調査し、両者の値を合計し
て腐蝕深さとした。
I=I(200)/I(200)+I(1
11)+I(11-1)+I(101) (I represents the X-ray intensity, and the number in parentheses represents the surface index) Analysis of the zirconia content was performed by chemical analysis. Corrosion resistance evaluation of porcelain is based on 2Na2O・S, which contains an excessive amount of Na2O, an alkaline component known as a corrosive substance in glass.
Using iO2, put various types of porcelain into an aluminum pot,
950-1100 covered with 2Na2O/SiO2 glass
Corrosion tests were conducted at °C. After the corrosion test was completed, the various types of porcelain used in the test were removed from the crucible, and the depth of corrosion of the porcelain was measured. The corrosion depth of porcelain is determined by measuring the reduction in size caused by leaching of porcelain into glass using a micrometer, and measuring the glass components that have penetrated into the porcelain by
The depth of penetration of Si element into the interior of the porcelain for zirconia porcelain and Na element for other porcelains was measured using a line microanalyzer, and the corrosion depth was determined by adding up the values of both.

【0020】実施例2 実施例1と同様にして得たジルコン粉末を1650℃、
大気中で焼結した後、1600℃、アルゴン雰囲気中に
おいて1500気圧の圧力で焼結した。得られた磁器の
かさ密度は4.7g/cm3、ジルコン磁器中のZr、
Si成分としてジルコン含有量100%、ジルコン磁器
中の金属不純物含有量0.22wt%であった。この磁
器を用いて腐蝕試験を行った結果を図2に示す。
Example 2 Zircon powder obtained in the same manner as in Example 1 was heated at 1650°C.
After sintering in the air, it was sintered at 1600° C. and under a pressure of 1500 atm in an argon atmosphere. The bulk density of the obtained porcelain was 4.7 g/cm3, Zr in the zircon porcelain,
The zircon content as the Si component was 100%, and the metal impurity content in the zircon porcelain was 0.22 wt%. Figure 2 shows the results of a corrosion test conducted using this porcelain.

【0021】比較例1 ジルコン粉末に代えて、ジルコニアとシリカのモル比1
、ジルコン含有量94%、平均粒子径1.8μm、金属
不純物含有量0.86wt%のジルコンサンド粉末用い
、これをボ−ルミルを用いてエタノ−ル中、3日間粉砕
した後であり、1650℃において4時間大気中で焼結
した。得られた磁器のかさ密度は4.3g/cm3、ジ
ルコン磁器中のZr、Si成分としてジルコン含有量9
0%、ジルコン磁器中の金属不純物含有量0.86wt
%であった。この磁器を用いて腐蝕試験を行った結果を
図3に示す。
Comparative Example 1 Instead of zircon powder, the molar ratio of zirconia and silica was 1
, a zircon sand powder with a zircon content of 94%, an average particle diameter of 1.8 μm, and a metal impurity content of 0.86 wt% was used, and this was ground in ethanol using a ball mill for 3 days. Sintering was carried out in air for 4 hours at °C. The bulk density of the obtained porcelain was 4.3 g/cm3, and the zircon content was 9 as Zr and Si components in the zircon porcelain.
0%, metal impurity content in zircon porcelain 0.86wt
%Met. Figure 3 shows the results of a corrosion test conducted using this porcelain.

【0022】比較例2 ジルコン粉末に代えて、イットリアを3モル%添加した
平均粒子径0.3μm、イットリア以外の金属不純物含
有量0.05wt%のジルコニア粉末(東ソ−株式会社
製)を用い、2時間大気中で焼結した。得られた磁器の
かさ密度は6.10g/cm3、ジルコニア磁器中のイ
ットリア以外の金属不純物含有量0.05wt%であっ
た。この磁器を用いて腐蝕試験を行った結果を図4に示
す。 比較例3 ジルコン粉末に代えて、平均粒子径0.5μm、ムライ
ト以外の金属不純物含有量0.1wt%の高純度ムライ
ト粉末(アルミナ74wt%、シリカ26wt%)を用
いて1650℃、4時間大気中で焼結した。得られた磁
器のかさ密度は3.2g/cm3、ムライト磁器中のム
ライト以外の金属不純物含有量0.1wt%であった。 この磁器を用いて腐蝕試験を行った結果を図5に示す。
Comparative Example 2 Instead of zircon powder, zirconia powder (manufactured by Tosoh Corporation) with an average particle diameter of 0.3 μm and a metal impurity content other than yttria of 0.05 wt%, to which 3 mol% of yttria was added, was used. , sintered in air for 2 hours. The bulk density of the obtained porcelain was 6.10 g/cm3, and the content of metal impurities other than yttria in the zirconia porcelain was 0.05 wt%. Figure 4 shows the results of a corrosion test conducted using this porcelain. Comparative Example 3 High purity mullite powder (alumina 74 wt%, silica 26 wt%) with an average particle diameter of 0.5 μm and a metal impurity content other than mullite of 0.1 wt% was used in place of zircon powder at 1650°C for 4 hours in the atmosphere. sintered inside. The bulk density of the obtained porcelain was 3.2 g/cm3, and the content of metal impurities other than mullite in the mullite porcelain was 0.1 wt%. FIG. 5 shows the results of a corrosion test conducted using this porcelain.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で得たジルコン磁器の腐蝕試験結果を
示す図
[Figure 1] Diagram showing the corrosion test results of zircon porcelain obtained in Example 1

【図2】実施例2で得たジルコン磁器の腐蝕試験結果を
示す図
[Figure 2] Diagram showing the corrosion test results of the zircon porcelain obtained in Example 2

【図3】比較例1で得たジルコン磁器の腐蝕試験結果を
示す図
[Figure 3] Diagram showing the corrosion test results of zircon porcelain obtained in Comparative Example 1

【図4】比較例2で得たジルコン磁器の腐蝕試験結果を
示す図
[Figure 4] Diagram showing the corrosion test results of zircon porcelain obtained in Comparative Example 2

【図5】比較例3で得たジルコン磁器の腐蝕試験結果を
示す図
[Figure 5] Diagram showing the corrosion test results of zircon porcelain obtained in Comparative Example 3

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁器中のジルコニウム成分及びシリコン成
分としてジルコンが100%、ジルコニウムとシリコン
以外の金属不純物含有量(金属として)が0.25wt
%以下、かさ密度4.6g/cm3以上の耐蝕性ジルコ
ン磁器。
Claim 1: Zircon is 100% as the zirconium component and silicon component in the porcelain, and the content of metal impurities other than zirconium and silicon (as metal) is 0.25wt.
% or less, and a bulk density of 4.6 g/cm3 or more.
【請求項2】ジルコニアとシリカとしてのモル比が実質
的に1 であり、ジルコン含有量90%以上、平均粒子
径が1μm以下、金属不純物総量(金属として)0.2
5wt%以下の結晶質ジルコン粉末を1600〜170
0℃、1 〜2000気圧の圧力で焼結し、磁器中のジ
ルコニウム成分及びシリコン成分としてジルコンが10
0%、ジルコニウムとシリコン以外の金属不純物含有量
(金属として)が0.25wt%以下、かさ密度4.6
g/cm3以上の耐蝕性ジルコン磁器を製造する方法。
Claim 2: The molar ratio of zirconia and silica is substantially 1, the zircon content is 90% or more, the average particle diameter is 1 μm or less, and the total amount of metal impurities (as metal) is 0.2.
5wt% or less crystalline zircon powder from 1600 to 170
It is sintered at 0°C and a pressure of 1 to 2000 atm, and zircon is 10% as the zirconium component and silicon component in the porcelain.
0%, metal impurity content other than zirconium and silicon (as metal) is 0.25wt% or less, bulk density 4.6
A method for producing corrosion-resistant zircon porcelain with a resistance of g/cm3 or more.
JP3063838A 1991-03-06 1991-03-06 Highly corrosion-resistant zircon porcelain and its production Pending JPH04280860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063838A JPH04280860A (en) 1991-03-06 1991-03-06 Highly corrosion-resistant zircon porcelain and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063838A JPH04280860A (en) 1991-03-06 1991-03-06 Highly corrosion-resistant zircon porcelain and its production

Publications (1)

Publication Number Publication Date
JPH04280860A true JPH04280860A (en) 1992-10-06

Family

ID=13240890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063838A Pending JPH04280860A (en) 1991-03-06 1991-03-06 Highly corrosion-resistant zircon porcelain and its production

Country Status (1)

Country Link
JP (1) JPH04280860A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347829A (en) * 2005-06-17 2006-12-28 Toshiba Corp Zirconium silicate sintered compact, and method for producing the same
US7238635B2 (en) 2003-12-16 2007-07-03 Corning Incorporated Creep resistant zircon refractory material used in a glass manufacturing system
JP2010510958A (en) * 2006-11-27 2010-04-08 コーニング インコーポレイテッド Refractory ceramic composite and manufacturing method thereof
JP2015205813A (en) * 2010-12-02 2015-11-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238635B2 (en) 2003-12-16 2007-07-03 Corning Incorporated Creep resistant zircon refractory material used in a glass manufacturing system
JP2006347829A (en) * 2005-06-17 2006-12-28 Toshiba Corp Zirconium silicate sintered compact, and method for producing the same
JP2010510958A (en) * 2006-11-27 2010-04-08 コーニング インコーポレイテッド Refractory ceramic composite and manufacturing method thereof
JP2015205813A (en) * 2010-12-02 2015-11-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory product

Similar Documents

Publication Publication Date Title
EP2674408B1 (en) Translucent zirconia sintered body and use of the same
CA2071522C (en) Dense sic ceramic products
JP2009269812A (en) Light-transmitting sintered zirconia compact, method for producing the same, and use thereof
EP0232094B1 (en) Chemical preparation of zirconium-aluminum-magnesium oxide composites
JPH0336783B2 (en)
JP2010150063A (en) Light-transmitting zirconia sintered compact, method for producing the same and use thereof
RU2067968C1 (en) A binder for manufacturing complex-configuration ceramics and a method for their preparation
JPH08117248A (en) Orthodontics bracket and its manufacture
JPH04280860A (en) Highly corrosion-resistant zircon porcelain and its production
JPH04231374A (en) Composition for preparation of ceramic
JPH0553751B2 (en)
JP3013372B2 (en) Zircon sintered body and method for producing the same
JPS5939367B2 (en) Manufacturing method of zirconium oxide fine powder
JP2006347829A (en) Zirconium silicate sintered compact, and method for producing the same
US4148663A (en) Refractory concretes
KR101442634B1 (en) Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same
JP2791441B2 (en) Zirconia fine powder and zirconia sintered body
JPS647030B2 (en)
KR960006247B1 (en) Process for the preparation of aluminium titanate ceramics
JP3176143B2 (en) Partially stabilized zirconia sintered body
JPH05147924A (en) Production of alumina-silica powder
JPS59107968A (en) Manufacture of zirconia ceramics
JP2846930B2 (en) Ceramic material firing method
JPS6172681A (en) Zro2 sintered body
JPH0455367A (en) Production of light rare earth oxide sintered body