JPH04280483A - Magnetic resistant effect material and manufacture thereof - Google Patents

Magnetic resistant effect material and manufacture thereof

Info

Publication number
JPH04280483A
JPH04280483A JP3043305A JP4330591A JPH04280483A JP H04280483 A JPH04280483 A JP H04280483A JP 3043305 A JP3043305 A JP 3043305A JP 4330591 A JP4330591 A JP 4330591A JP H04280483 A JPH04280483 A JP H04280483A
Authority
JP
Japan
Prior art keywords
film layer
magnetic
thin film
thickness
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3043305A
Other languages
Japanese (ja)
Other versions
JP2961914B2 (en
Inventor
Mitsuo Satomi
三男 里見
Hiroshi Sakakima
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3043305A priority Critical patent/JP2961914B2/en
Priority to US07/840,821 priority patent/US5277991A/en
Priority to DE69200169T priority patent/DE69200169T3/en
Priority to EP92103874A priority patent/EP0503499B2/en
Publication of JPH04280483A publication Critical patent/JPH04280483A/en
Application granted granted Critical
Publication of JP2961914B2 publication Critical patent/JP2961914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a magnetic resistor device which shows a large magnetic resistant effect at a room temperature and in a practically applied magnetic field by using a prior art sputtering device without a high cost ultrahigh vacuum vapor deposition device. CONSTITUTION:A 10 to 100Angstrom thick thin magnetic film layer 1 whose coercive force varies and a 10 to 100Angstrom thick thin magnetic film layer 3 are alternatively laminated, thereby constituting a magnetic resistance effect material wherein a 10 to 45Angstrom thick metal thin non-magnetic film layer is placed between each laminated thin magnetic film. However, the thin magnetic film 1 is mainly composed of Cu while the thin magnetic film layer 3 is mainly composed of CoZ (NiX-FeY). (X, Y, and Z stand for each atomic composition ratio and ranges from 0.6<=X0.9, 0<=Y<=0.3, 0.01<=Z<=0.3) This construction makes it possible to obtain a magnetic resistance material which shows a large magnetic resistance effect at a room temperature and moreover in a practically applied magnetic field.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気媒体より信号を読み
とるための磁気抵抗効果材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive material for reading signals from a magnetic medium.

【0002】0002

【従来の技術】従来より磁気抵抗素子を用いた磁気抵抗
センサ−(以下MRセンサ−という)、磁気抵抗ヘッド
(以下MRヘッドという)の開発が進められており、磁
性体には主にNi0.8Fe0.2のパ−マロイが用い
られている。ただしこの材料の場合は抵抗変化率(以下
ΔR/Rと記す)が2.5%程度であり、より高感度な
磁気抵抗素子をうるにはよりΔR/Rの大きなものが求
められて来た。
2. Description of the Related Art Conventionally, magnetoresistive sensors (hereinafter referred to as MR sensors) and magnetoresistive heads (hereinafter referred to as MR heads) using magnetoresistive elements have been developed, and the magnetic materials mainly include Ni0. Permalloy of 8Fe0.2 is used. However, in the case of this material, the rate of change in resistance (hereinafter referred to as ΔR/R) is about 2.5%, and in order to obtain a magnetoresistive element with higher sensitivity, a material with a larger ΔR/R has been required. .

【0003】近年[Fe/Cr]人工格子膜で大きな磁
気抵抗効果が起きることが発見された(Physica
l Review Letter Vol.61, p
2472, 1988)が、この材料の場合は十数kO
e以上の大きな磁界を印加しないと大きなΔR/Rが得
られず、実用性に難点があった。
In recent years, it has been discovered that a large magnetoresistive effect occurs in [Fe/Cr] superlattice films (Physica
l Review Letter Vol. 61, p.
2472, 1988), but in the case of this material, the
Unless a large magnetic field greater than e is applied, a large ΔR/R cannot be obtained, which poses a problem in practicality.

【0004】また、超高真空蒸着装置を用いNi0.8
Fe0.2(30Å)/Cu(50Å)/Co(30Å
)/Cu(50Å)×15層の人工格子膜でΔR/Rが
約10%(3kOeの磁界を印加)の抵抗変化が観測さ
れた報告がある。(1990年秋  応用物理学会  
予稿)しかしながら、膜を製作するのに高価な超高真空
蒸着装置が必要なことと、やはり3kOe程度の大きな
磁界を印加しないと大きなΔR/Rが得られない。
[0004] Also, using an ultra-high vacuum evaporation apparatus, Ni0.8
Fe0.2(30Å)/Cu(50Å)/Co(30Å
)/Cu (50 Å) x 15 layers of an artificial lattice film, there is a report that a resistance change of ΔR/R of about 10% (with a magnetic field of 3 kOe applied) was observed. (Autumn 1990 Japan Society of Applied Physics
(Preliminary draft) However, an expensive ultra-high vacuum evaporation device is required to fabricate the film, and a large ΔR/R cannot be obtained unless a large magnetic field of about 3 kOe is applied.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題点
を解決し、実用性のある低磁界でより大きなΔR/Rを
示す磁気抵抗素子を可能とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and enables a practical magnetoresistive element that exhibits a larger ΔR/R in a low magnetic field.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の磁気抵抗効果材料は以下の構成とする。す
なわち、スパッタ装置を用いてCoを主成分とし厚さが
10〜100Åの第一の磁性薄膜層と(NiXFeY)
CoZを主成分とし厚さが10〜100Åの第二の磁性
薄膜層とをCuを主成分とし厚さが10〜35Åの金属
非磁性薄膜層を介して交互に積層して磁気抵抗効果材料
を構成する。
[Means for Solving the Problems] In order to solve the above problems, the magnetoresistive material of the present invention has the following structure. That is, a first magnetic thin film layer containing Co as a main component and having a thickness of 10 to 100 Å was formed using a sputtering device (NiXFeY).
A second magnetic thin film layer mainly composed of CoZ and having a thickness of 10 to 100 Å is alternately laminated via a metal nonmagnetic thin film layer mainly composed of Cu and having a thickness of 10 to 35 Å to produce a magnetoresistive material. Configure.

【0007】ここでX、Y、Zはそれぞれ、0.6≦X
≦0.9、0≦Y≦0.3、0.01≦Z≦0.3であ
る。
[0007] Here, X, Y, and Z are each 0.6≦X
≦0.9, 0≦Y≦0.3, 0.01≦Z≦0.3.

【0008】[0008]

【作用】(図1)において、磁性薄膜層1と磁性薄膜層
3は保磁力が異なりかつ金属非磁性薄膜層2によって分
離されているため、(図1b)に示したように弱い磁界
が印加されると軟磁性の磁性薄膜層3のスピンがまずそ
の方向に回転し、半硬質磁性の磁性薄膜層1のスピンは
まだ反転しない状態が生ずる。従ってこの時磁性薄膜層
1と磁性薄膜層3のスピン配列が互いに逆方向となり伝
導電子のスピン散乱が極大となって大きな磁気抵抗を示
す。更に(図1c)に示したように印加磁界を強くする
と磁性薄膜層1のスピンも反転し磁性薄膜層3と磁性薄
膜層1のスピン配列は平行となり伝導電子のスピン散乱
が小さくなり磁気抵抗は減少する。この様にして大きな
ΔR/Rが得られる訳であるが、金属非磁性薄膜層2が
無いと磁性薄膜層1と磁性薄膜層3は磁気的にカップリ
ングしてしまい(図1b)のような状態が実現できない
ため大きな磁気抵抗効果は得られない。磁性膜層3は軟
磁性を示すこととNi−Fe膜より磁気抵抗効果の大き
なことが望ましく、これは磁性膜層3にNi−Fe−C
oを用いることにより可能となり膜全体のΔR/Rが向
上される。
[Operation] In (Fig. 1), since the magnetic thin film layer 1 and the magnetic thin film layer 3 have different coercive forces and are separated by the metal non-magnetic thin film layer 2, a weak magnetic field is applied as shown in (Fig. 1b). When this occurs, the spin of the soft magnetic thin film layer 3 first rotates in that direction, and a state arises in which the spin of the semi-hard magnetic thin film layer 1 has not yet been reversed. Therefore, at this time, the spin alignments of the magnetic thin film layer 1 and the magnetic thin film layer 3 are in opposite directions, and the spin scattering of conduction electrons becomes maximum, resulting in a large magnetoresistance. Furthermore, as shown in Figure 1c, when the applied magnetic field is strengthened, the spin of the magnetic thin film layer 1 is also reversed, and the spin alignments of the magnetic thin film layer 3 and the magnetic thin film layer 1 become parallel, and the spin scattering of conduction electrons becomes smaller, and the magnetoresistance increases. Decrease. In this way, a large ΔR/R can be obtained, but without the metal nonmagnetic thin film layer 2, the magnetic thin film layer 1 and the magnetic thin film layer 3 would be magnetically coupled (Fig. 1b). Since the state cannot be realized, a large magnetoresistive effect cannot be obtained. It is desirable that the magnetic film layer 3 exhibits soft magnetism and has a larger magnetoresistive effect than the Ni-Fe film.
This becomes possible by using o, and the ΔR/R of the entire film is improved.

【0009】[0009]

【実施例】磁性薄膜層1はCoを主成分とするもので、
半硬質磁性を示す。
[Example] The magnetic thin film layer 1 is mainly composed of Co.
Exhibits semi-hard magnetism.

【0010】磁性薄膜層3のNi−richのNi−F
e−Co系合金はその組成比は(NiXFeY)CoZ
を主成分とし、X、Y、Zはそれぞれ原子組成比で、0
.6≦X≦0.9、0≦Y≦0.3、0≦Z≦0.3を
満足する組成領域で磁歪が小さく軟磁性を示し、より好
ましくは0.6≦X≦0.9、0<Y≦0.25、0<
Z≦0.25である。又磁気抵抗効果を考慮すると、N
i−Fe系よりもNi−Fe−Co系の方が膜全体とし
てのΔR/Rが大きくなり0.01≦Zとする必要があ
る。これらの条件を満足する代表的なものはNi0.8
Fe0.15Co0.05である。又更に軟磁性を改良
したり耐摩耗性及び耐食性を改良するためにNb,Mo
,Cr,W,Ru等を添加しても良い。これら磁性薄膜
層はその厚さが10Å未満ではキュリ−温度の低下によ
る室温での磁化の低減等が問題となり、又実用上磁気抵
抗素子は全膜厚が数百Åで用いられるため、本発明のよ
うに積層効果を利用するには各磁性薄膜層を少なくとも
100Å以下にする必要がある。従ってこれら磁性薄膜
層の厚さはは10〜100Åとすることが望ましい。
Ni-rich Ni-F of the magnetic thin film layer 3
The composition ratio of e-Co alloy is (NiXFeY)CoZ
is the main component, and X, Y, and Z are each atomic composition ratios, and 0
.. Magnetostriction is small and soft magnetism is exhibited in the composition range satisfying 6≦X≦0.9, 0≦Y≦0.3, 0≦Z≦0.3, more preferably 0.6≦X≦0.9, 0<Y≦0.25, 0<
Z≦0.25. Also, considering the magnetoresistive effect, N
The ΔR/R of the entire film is larger in the Ni-Fe-Co system than in the i-Fe system, and it is necessary to satisfy 0.01≦Z. A typical material that satisfies these conditions is Ni0.8
Fe0.15Co0.05. Furthermore, Nb and Mo are added to improve soft magnetism, wear resistance and corrosion resistance.
, Cr, W, Ru, etc. may be added. If the thickness of these magnetic thin film layers is less than 10 Å, problems such as a decrease in magnetization at room temperature due to a decrease in the Curie temperature will occur, and in practice, magnetoresistive elements are used with a total film thickness of several hundred Å. In order to utilize the lamination effect as shown in FIG. Therefore, the thickness of these magnetic thin film layers is preferably 10 to 100 Å.

【0011】これらの磁性薄膜の間に介在させる金属薄
膜はNi−Fe−Co系磁性薄膜と界面での反応が少な
くかつ非磁性であることが必要で、Cuが適している。 このCu層の厚さは20Åぐらいが最適で、10Å未満
では2種類の磁性薄膜層が磁気的にカップリングをして
(図1b)のように保磁力の異なる磁性薄膜層1と3の
スピンが反平行となる状態の実現が困難となる。又理由
はさだかでないが以下に述べる(実施例1)の(図2)
のようにΔR/Rの値はCu層の厚さによって(RKK
Y的な)振動を示し、35Åを越えると極大の第2ピ−
クを越えて磁気抵抗効果が低減し、極大の第1ピ−クま
でを利用する場合はCu層の厚さは25Å以下とするこ
とがより望ましい。
The metal thin film interposed between these magnetic thin films needs to be non-magnetic and have little reaction at the interface with the Ni-Fe-Co magnetic thin film, and Cu is suitable. The optimal thickness of this Cu layer is about 20 Å, and if it is less than 10 Å, the two types of magnetic thin film layers will magnetically couple, resulting in the spin of magnetic thin film layers 1 and 3 with different coercive forces, as shown in Figure 1b. It becomes difficult to realize a state in which the values are antiparallel. Although the reason is not obvious, the following (Example 1) (Figure 2)
The value of ΔR/R depends on the thickness of the Cu layer (RKK
(Y-like) vibration, and reaches a maximum second peak above 35 Å.
When the magnetoresistive effect is reduced beyond the peak and the maximum first peak is utilized, it is more desirable that the thickness of the Cu layer is 25 Å or less.

【0012】以下具体的な実施例により本発明の効果の
説明を行う。 (実施例1)多元RFスパッタ装置を用いて、タ−ゲッ
トとして、Co、Cu、Ni0.8Fe0.15Co0
.05を用いスパッタ装置内部を2×10−7Torr
に排気した後、Arガスを導入して8×10−3Tor
rとし、スパッタ法により順次以下に示した構成の磁気
抵抗素子をガラス基板上に作製した。
The effects of the present invention will be explained below using specific examples. (Example 1) Co, Cu, Ni0.8Fe0.15Co0 were used as targets using a multi-dimensional RF sputtering device.
.. The inside of the sputtering equipment was heated to 2 x 10-7 Torr using 05
After exhausting to 8×10-3 Torr, Ar gas was introduced.
r, and magnetoresistive elements having the configurations shown below were sequentially fabricated on a glass substrate by sputtering.

【0013】 [Co(30)/Cu(0〜50)/NiFeCo(3
0)/Cu(0〜50)](( )内は厚さ(Å)を表
わす)、又各膜厚はスパッタ時間とシャッタ−により制
御し、総厚約0.2μmの膜を作製した。
[Co(30)/Cu(0-50)/NiFeCo(3
0)/Cu(0-50)] (the numbers in parentheses represent the thickness (Å)), and each film thickness was controlled by the sputtering time and shutter to produce a film with a total thickness of about 0.2 μm.

【0014】得られた磁気抵抗材料の特性を(図2)に
示した。なお、ΔR/Rは300Oeの印加磁界にて測
定した。(図2)より明らかなように、ΔR/Rの極大
値はCu層が20Å付近に存在し、次に第2の極大値は
Cu層が30Å付近に存在し、更に第3の極大値はCu
層が40Å付近に存在していることが分かった。従って
最大のΔR/Rを得ようとすると、Cu層が20Å付近
が最適となる。
The properties of the obtained magnetoresistive material are shown in FIG. 2. Note that ΔR/R was measured with an applied magnetic field of 300 Oe. (Figure 2) As is clearer, the maximum value of ΔR/R exists near 20 Å for the Cu layer, the second maximum value exists for the Cu layer near 30 Å, and the third maximum value exists for the Cu layer near 30 Å. Cu
It was found that the layer exists around 40 Å. Therefore, in order to obtain the maximum ΔR/R, it is optimal for the Cu layer to be around 20 Å.

【0015】(実施例2)RFスパッタ装置を用いて、
タ−ゲットとして、Co、Cu、Ni0.8Fe0.1
5Co0.05を用いCu層の厚さを一定とし磁性層の
厚さを変えた膜をスパッタ法により(実施例1)と同様
に作製した。
(Example 2) Using an RF sputtering device,
As targets, Co, Cu, Ni0.8Fe0.1
Films using 5Co0.05 were prepared in the same manner as in Example 1 by sputtering, in which the thickness of the Cu layer was constant and the thickness of the magnetic layer was varied.

【0016】得られた膜の特性を(表1)に示した。The properties of the obtained film are shown in Table 1.

【0017】[0017]

【表1】[Table 1]

【0018】なお、参考までにNo.Cと同じ構成で、
Ni0.8Fe0.15Co0.05の代わりに従来材
料であるNi0.8Fe0.2を使用した試料のΔR/
Rは8.8%であり、又Ni0.8Fe0.19Co0
.01を使用した試料のΔR/Rは12%であったこと
より、より大きなΔR/Rを得る観点からもCoが不可
欠である。
[0018] For reference, No. With the same configuration as C,
ΔR/ of the sample using the conventional material Ni0.8Fe0.2 instead of Ni0.8Fe0.15Co0.05
R is 8.8%, and Ni0.8Fe0.19Co0
.. Since the ΔR/R of the sample using 01 was 12%, Co is essential from the viewpoint of obtaining a larger ΔR/R.

【0019】[0019]

【発明の効果】以上説明したように本発明は高価な超高
真空蒸着装置を用いず、通常のスパッタ装置により作製
出来る事、又、ΔR/Rの極大値は従来Cu層が50Å
付近に存在していたのに対し20Å付近に存在し、室温
でかつ実用的な印加磁界で大きな磁気抵抗効果を示す磁
気抵抗素子を可能とするもので、高感度MRヘッドやM
Rセンサ−等への応用に適したものである。
[Effects of the Invention] As explained above, the present invention can be manufactured using a normal sputtering device without using an expensive ultra-high vacuum evaporation device, and the maximum value of ΔR/R is 50 Å compared to that of a conventional Cu layer.
This technology enables a magnetoresistive element that exists at around 20 Å and exhibits a large magnetoresistive effect at room temperature and in a practical applied magnetic field.
This is suitable for application to R sensors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の磁気抵抗材料の動作原理を示す図(a
)は印加磁界とΔR/Rの関係を示す図(b)はΔR/
Rがピークを示す低い印加磁界近傍における各磁性層の
スピンの配列方向を示す断面図(c)は十分大きい印加
磁界における各磁性層のスピンの配列方向を示す断面図
FIG. 1 is a diagram showing the operating principle of the magnetoresistive material of the present invention (a
) shows the relationship between the applied magnetic field and ΔR/R (b) shows the relationship between ΔR/R
(c) is a cross-sectional view showing the spin alignment direction of each magnetic layer near the low applied magnetic field where R peaks. (c) is a cross-sectional view showing the spin alignment direction of each magnetic layer in a sufficiently large applied magnetic field.

【図2】(実施例1)における磁気抵抗材料の特性を示
す図
[Figure 2] Diagram showing the characteristics of the magnetoresistive material in (Example 1)

【符号の説明】[Explanation of symbols]

1  磁性薄膜層 2  金属非磁性薄膜層 3  磁性薄膜層 1 Magnetic thin film layer 2 Metal nonmagnetic thin film layer 3 Magnetic thin film layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  Coを主成分とし厚さが10〜100
Åの第一の磁性薄膜層と(NiXFeY)CoZを主成
分とし厚さが10〜100Åの第二の磁性薄膜層とをC
uを主成分とし厚さが10〜35Åの金属非磁性薄膜層
を介して交互に積層してなる磁気抵抗効果材料。ただし
X、Y、Zはそれぞれ、0.6≦X≦0.9、0≦Y≦
0.3、0.01≦Z≦0.3
Claim 1: Mainly composed of Co and has a thickness of 10 to 100 mm.
A first magnetic thin film layer with a thickness of 10 to 100 Å and a second magnetic thin film layer mainly composed of (NiXFeY)CoZ and a thickness of 10 to 100 Å are made of C.
A magnetoresistive material composed of u as a main component and alternately laminated with metal nonmagnetic thin film layers having a thickness of 10 to 35 Å interposed therebetween. However, X, Y, and Z are 0.6≦X≦0.9, 0≦Y≦, respectively.
0.3, 0.01≦Z≦0.3
【請求項2】  Coを
主成分とし厚さが10〜100Åの第一の磁性薄膜層と
(NiXFeY)CoZを主成分とし厚さが10〜10
0Åの第二の磁性薄膜層とをCuを主成分とし厚さが1
0〜25Åの金属非磁性薄膜層を介して交互に積層して
なる磁気抵抗効果材料。ただしX、Y、Zはそれぞれ、
0.6≦X≦0.9、0<Y≦0.25、0.01<Z
≦0.25
2. A first magnetic thin film layer containing Co as a main component and having a thickness of 10 to 100 Å, and a first magnetic thin film layer containing Co as a main component and having a thickness of 10 to 10 Å.
A second magnetic thin film layer with a thickness of 0 Å and a thickness of 1 Å with Cu as the main component.
A magnetoresistive material formed by alternately laminating metal nonmagnetic thin film layers with a thickness of 0 to 25 Å. However, X, Y, and Z are each
0.6≦X≦0.9, 0<Y≦0.25, 0.01<Z
≦0.25
【請求項3】  請求項1に記載の磁気抵抗
効果材料を製造するにあたって、金属磁性薄膜層、金属
非磁性薄膜層を多元スパッタ装置を用いて逐次積層して
形成することを特徴とする磁気抵抗効果材料の製造方法
3. In manufacturing the magnetoresistive material according to claim 1, a magnetoresistive material is formed by sequentially laminating a metal magnetic thin film layer and a metal nonmagnetic thin film layer using a multi-sputtering device. Method of manufacturing effect materials.
JP3043305A 1991-03-08 1991-03-08 Magnetoresistive material and method of manufacturing the same Expired - Fee Related JP2961914B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3043305A JP2961914B2 (en) 1991-03-08 1991-03-08 Magnetoresistive material and method of manufacturing the same
US07/840,821 US5277991A (en) 1991-03-08 1992-02-25 Magnetoresistive materials
DE69200169T DE69200169T3 (en) 1991-03-08 1992-03-06 Magnetoresistive materials.
EP92103874A EP0503499B2 (en) 1991-03-08 1992-03-06 Magnetoresistive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043305A JP2961914B2 (en) 1991-03-08 1991-03-08 Magnetoresistive material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04280483A true JPH04280483A (en) 1992-10-06
JP2961914B2 JP2961914B2 (en) 1999-10-12

Family

ID=12660083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043305A Expired - Fee Related JP2961914B2 (en) 1991-03-08 1991-03-08 Magnetoresistive material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2961914B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325934A (en) * 1992-10-30 1994-11-25 Toshiba Corp Magnetoresistance effect element
US5568115A (en) * 1993-12-27 1996-10-22 Sony Corporation Artificial lattice film and magneto-resistance effect element using the same
US5661621A (en) * 1994-09-08 1997-08-26 Fujitsu Limited Magnetoresistive head
US5688605A (en) * 1992-10-30 1997-11-18 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5780176A (en) * 1992-10-30 1998-07-14 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5837068A (en) * 1993-08-03 1998-11-17 Kazuaki Fukamichi And Ykk Corporation Magnetoresistance effect material, process for producing the same, and magnetoresistive element
US6074535A (en) * 1994-09-09 2000-06-13 Fujitsu Limited Magnetoresistive head, method of fabricating the same and magnetic recording apparatus
US6395388B1 (en) 1992-10-30 2002-05-28 Kabushiki Kaisha Toshiba Magnetoresistance effect element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738946A (en) * 1992-10-30 1998-04-14 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5688605A (en) * 1992-10-30 1997-11-18 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5702832A (en) * 1992-10-30 1997-12-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5725963A (en) * 1992-10-30 1998-03-10 Kabushiki Kaisha Toshiba Magnetoresistance effect element
JPH06325934A (en) * 1992-10-30 1994-11-25 Toshiba Corp Magnetoresistance effect element
US5780176A (en) * 1992-10-30 1998-07-14 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US6159593A (en) * 1992-10-30 2000-12-12 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US6368706B1 (en) 1992-10-30 2002-04-09 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US6395388B1 (en) 1992-10-30 2002-05-28 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5837068A (en) * 1993-08-03 1998-11-17 Kazuaki Fukamichi And Ykk Corporation Magnetoresistance effect material, process for producing the same, and magnetoresistive element
US5568115A (en) * 1993-12-27 1996-10-22 Sony Corporation Artificial lattice film and magneto-resistance effect element using the same
US5661621A (en) * 1994-09-08 1997-08-26 Fujitsu Limited Magnetoresistive head
US6074535A (en) * 1994-09-09 2000-06-13 Fujitsu Limited Magnetoresistive head, method of fabricating the same and magnetic recording apparatus

Also Published As

Publication number Publication date
JP2961914B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US6992866B2 (en) Exchange-coupled magnetoresistive sensor with a coercive ferrite layer and an oxide underlayer having a spinal lattice structure
US6340520B1 (en) Giant magnetoresistive material film, method of producing the same magnetic head using the same
US5243316A (en) Magnetoresistance effect element
JP3587447B2 (en) Memory element
US6914761B2 (en) Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer
JPH04363005A (en) Magnetic lamination and magnetoresistance effect element
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
KR100321956B1 (en) Magnetoresistance effect film and method for making the same
JP2924785B2 (en) Magnetoresistive element thin film and method of manufacturing the same
US6215631B1 (en) Magnetoresistive effect film and manufacturing method therefor
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JP2000307171A (en) Pinning layer of magnetic device
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
EP0620572B1 (en) Element having magnetoresistive effect
JP3070667B2 (en) Magnetoresistive element
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JP2964690B2 (en) Magnetoresistive material and method of manufacturing the same
JP2848083B2 (en) Magnetoresistance effect element
JPH0935216A (en) Magnetoresistance effect film and magnetic recording head
JPH08316033A (en) Magnetic laminate
JP2853678B2 (en) Magnetoresistive element and method of manufacturing the same
JPH07153034A (en) Magnetoresistance effect device and its manufacture
JPH08273124A (en) Spin valve film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees