JPH0427890B2 - - Google Patents

Info

Publication number
JPH0427890B2
JPH0427890B2 JP59203408A JP20340884A JPH0427890B2 JP H0427890 B2 JPH0427890 B2 JP H0427890B2 JP 59203408 A JP59203408 A JP 59203408A JP 20340884 A JP20340884 A JP 20340884A JP H0427890 B2 JPH0427890 B2 JP H0427890B2
Authority
JP
Japan
Prior art keywords
gas
layer
membrane
coating layer
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59203408A
Other languages
Japanese (ja)
Other versions
JPS6182823A (en
Inventor
Midori Kawahito
Yukihiro Saito
Shiro Asakawa
Takafumi Kajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59203408A priority Critical patent/JPS6182823A/en
Priority to EP84114268A priority patent/EP0144054B1/en
Priority to EP89108619A priority patent/EP0337499A3/en
Priority to DE8484114268T priority patent/DE3482378D1/en
Publication of JPS6182823A publication Critical patent/JPS6182823A/en
Publication of JPH0427890B2 publication Critical patent/JPH0427890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、混合気体から特定の気体を分離濃縮
するのに用い、而も長期間安定した特性を維持で
きる気体透過複合膜に関するものである。 従来例の構成とその問題点 高分子膜を用いて混合気体から特定の気体を分
離濃縮する方法については、近年数多くの提案が
なされており、例えば工場排気や天然ガス或いは
大気中から、水素・窒素・酸素その他の有用な気
体を分離する技術等はすでに実用化されている。 しかしながら、これらの提案は混合気体を直接
膜に接触させる方法である為に、運用に際しての
環境条件は厳しく膜の気体透過性を長期にわたつ
て維持するということが重要な課題となつてい
た。 例えば特開昭51−121485号公報にはポリジメチ
ルシロキサン−ポリカーボネートの表面をもつポ
リフエニレンオキサイド/ポリジメチルシロキサ
ン・ポリカーボネートの気体透過複合膜が記載さ
れているが、本発明者らの実験によれば、上記の
複合膜を多孔質ポリプロピレンシートの上に形成
させ、この複合膜をモジユール化して工場の排気
口近くに置き、−530mmHgの圧力で吸引運用し続
けたところ、約1000時間経過した時点で上記複合
膜の気体透過流量が20〜30%低下するものがあつ
た。また、特開昭58−14926号公報に記載されて
いるポリヒドロキシスチレン−ポリスルホン−ポ
リジメチルシロキサン共重合体を用いて同様な実
験を行なつたところ、やはり約1500時間後に上記
複合膜の気体透過流量は20〜30%低下するものも
あつた。 このように、初期状態では優れた気体等透過性
を示す複合膜も、実際の運用条件下では、時間の
経過に伴い、使用に値しない程に特性が劣化して
しまうのが従来の例であつた。 発明の目的 本発明は以上のような欠点を解消するためにな
されたもので、厳しい条件下での長期運用に際し
て高い気体透過性を維持できる真に実用に適した
気体透過複合膜を提供することを目的とする。 発明の構成 この目的を達成するために本発明は、混合気体
から特定の気体を分離濃縮するための少なくとも
一層からなる気体選択性膜層と、前記気体選択性
膜層上に形成された被覆層とを備え、前記被覆層
の臨界表面張力が30dyn.cm-1以下であり、且つ混
合気体と接する表面の水に体する接触角θが90゜
以上であることを特徴とする気体透過複合膜を提
供するものである。 気体透過膜を用いた分離法は、混合気体を膜表
面に直接触れさせ、透過させるという過程が必須
であるため、外部から様々の作用を受ける。本発
明者らの実験によれば、気体透過複合膜の経時劣
化の主たる原因は、膜表面に接触する混合気体中
の除去不可能な微粒子(直径≒1〜0.1μの油滴や
ミクロゾルなど)が膜表面に付着してしまうため
であると考えられた。一般に固体表面を汚染され
にくくする手段として、表面エネルギーの小さい
物質でコーテイングし、溌水性、溌油性表面を作
る方法があるが、概してこのような物質の気体透
過性は小さく、気体透過複合膜に応用することは
極めて困難であつた。そこで本発明者らは、鋭意
検討した結果、気体選択性膜層の上に表面エネル
ギーの小さい物質で被覆層を設け、この被覆層全
体の厚さを約50Å〜200Å程度に制御し、同時に
被覆層の混合気体と接する表面の水の接触角θが
90゜以上になるよう調整することで、気体透過流
量もあまり変化せず、汚染されにくい気体透過複
合膜を作ることができた。θが90゜より小さい表
面は親水性で、汚染その他の作用を受け易い。表
面張力の小さい被覆材料を用いても被覆層の厚さ
を50Å以下にするとその表面は下層の気体選択性
膜層の表面の性質に大きく影響されるので、下層
が親水性の場合などはθが小さくなつてしまうこ
とがある。逆に200Å以上になると先に述べたよ
うに気体透過性が小さいので、気体透過複合膜の
透過流量が減少してしまうが上記50Å〜200Åの
膜厚に調整すれば、被覆膜が緻密でなく微小のピ
ンホールが生じるため、気体中の微粒子等が付着
しにくく且つ気体透過性も良い表面が得られるも
のと考えられる。ここで重要なことは、被覆膜材
料全体の性質(例えば表面張力や柔軟性等)では
なく、気体選択性膜層の上に形成させた際の表面
が溌水性、溌油性を示すようにすることであり、
臨界表面張力が30dyn.cm-1以下の高分子をそのま
ま用いるなり、焼付あるいは触媒などの処理を施
すなりして仕上りの表面のθを90゜以上にすれば
良いということである。 よつて前記表面膜材料としては、表面の化学構
造式が −CF3+−CF2−、−CF2−、−CF2−CFH−、 −CF2−CFCl−、−CF2−CH2−、−CFH−CH2
−、
INDUSTRIAL APPLICATION FIELD The present invention relates to a gas-permeable composite membrane that is used to separate and concentrate a specific gas from a gas mixture and can maintain stable characteristics for a long period of time. Structure of conventional examples and their problems A number of proposals have been made in recent years regarding methods of separating and concentrating specific gases from mixed gases using polymer membranes. Technologies for separating nitrogen, oxygen, and other useful gases have already been put into practical use. However, since these proposals involve bringing the gas mixture into direct contact with the membrane, the environmental conditions during operation are severe, and maintaining the gas permeability of the membrane over a long period of time has become an important issue. For example, JP-A-51-121485 describes a gas permeable composite membrane of polyphenylene oxide/polydimethylsiloxane/polycarbonate with a surface of polydimethylsiloxane/polycarbonate; For example, when the above composite membrane was formed on a porous polypropylene sheet, this composite membrane was made into a module, placed near the exhaust port of a factory, and continued to be operated under suction at a pressure of -530 mmHg, after about 1000 hours had passed. In some cases, the gas permeation flow rate of the above composite membrane decreased by 20 to 30%. In addition, when similar experiments were conducted using the polyhydroxystyrene-polysulfone-polydimethylsiloxane copolymer described in JP-A-58-14926, gas permeation through the composite membrane was confirmed after about 1500 hours. In some cases, the flow rate decreased by 20-30%. In this way, even if a composite membrane exhibits excellent gas permeability in its initial state, under actual operating conditions, its properties deteriorate over time to the point that it is no longer worth using. It was hot. Purpose of the Invention The present invention was made in order to eliminate the above-mentioned drawbacks, and an object thereof is to provide a gas-permeable composite membrane that is truly suitable for practical use and can maintain high gas permeability during long-term operation under severe conditions. With the goal. Structure of the Invention In order to achieve this object, the present invention includes a gas-selective membrane layer consisting of at least one layer for separating and concentrating a specific gas from a gas mixture, and a coating layer formed on the gas-selective membrane layer. A gas permeable composite membrane, characterized in that the critical surface tension of the coating layer is 30 dyn.cm -1 or less, and the contact angle θ with water on the surface in contact with the mixed gas is 90° or more. It provides: Separation methods using gas permeable membranes require a process in which a mixed gas is brought into direct contact with the membrane surface and permeated therethrough, and is therefore subject to various external influences. According to experiments conducted by the present inventors, the main cause of aging deterioration of gas permeable composite membranes is non-removable fine particles (such as oil droplets and microsols with a diameter of approximately 1 to 0.1μ) in the mixed gas that comes into contact with the membrane surface. This was thought to be due to adhesion to the membrane surface. Generally speaking, one way to make a solid surface less susceptible to contamination is to coat it with a substance with low surface energy to create a water-repellent and oil-repellent surface. It was extremely difficult to apply it. As a result of extensive research, the present inventors established a coating layer made of a substance with low surface energy on the gas-selective membrane layer, controlled the overall thickness of this coating layer to approximately 50 Å to 200 Å, and simultaneously coated The contact angle θ of water on the surface in contact with the gas mixture in the layer is
By adjusting the angle to 90° or more, the gas permeation flow rate did not change much and we were able to create a gas permeable composite membrane that was less susceptible to contamination. Surfaces with θ less than 90° are hydrophilic and susceptible to contamination and other effects. Even if a coating material with low surface tension is used, if the thickness of the coating layer is less than 50 Å, the surface will be greatly affected by the surface properties of the underlying gas-selective membrane layer. may become smaller. On the other hand, if the thickness is 200 Å or more, the gas permeability is low as mentioned earlier, so the permeation flow rate of the gas permeable composite membrane decreases, but if the film thickness is adjusted to the above 50 Å to 200 Å, the coating film becomes dense. It is thought that since microscopic pinholes are generated without any problems, a surface that is difficult for fine particles in the gas to adhere to and has good gas permeability can be obtained. What is important here is not the properties of the coating membrane material as a whole (such as surface tension and flexibility), but whether the surface exhibits water repellency and oil repellency when formed on the gas-selective membrane layer. is to do,
This means that it is sufficient to use a polymer with a critical surface tension of 30 dyn.cm -1 or less as it is, or to make the θ of the finished surface 90° or more by baking or treating with a catalyst. Therefore, the surface film material has a chemical structural formula of -CF 3 + -CF 2 -, -CF 2 -, -CF 2 -CFH-, -CF 2 -CFCl- , -CF 2 -CH 2 - , −CFH− CH2
-,

【式】【formula】

【式】 (但しRFは、−CF3、−CH2−CF3、−CH2
CH2−CF3の中から選ばれる。)などで表わされ
るフツ素系の高分子またはポリブテン、ポリイソ
ブテン、ポリペンテン、ポリメチルペンテン、ポ
リヘキセン、ポリメチルヘキセン、ポリヘブテ
ン、ポリシクロヘキシルヘンテン、ポリスチレ
ン、ポリα−メチルスチレン、ポリブタジエン、
ポリイソブレン、ポリシクロオクタジエンなどの
ポリオレフインまたはジエンポリマーまたはポリ
オルガノシロキサン等から、θが90゜以上の表面
を形成できるものを選べば良い。 例えば、フツ化アルキルメタアクリレート、ポ
ーリー4−メチルペンテン−1、及びポリメチル
フツ化アルキルシロキサンは希薄溶液を調整し、
水面に展開させ脱溶媒の後に表面エネルギーの小
さい平膜を得ることができ、これらの防護効果は
極めて高い。また被覆材料が液体の場合、気体選
択性膜に直接スプレーして被覆層を形成すること
ができる。またハイドロジエンシラン等、触媒を
用いたり熱処理を施したりして表面を溌水性、溌
油性に変えることもできる。 また気体選択性膜層としては、少なくとも1層
からなつていれば良く、被覆層と接着する層がポ
リヒドロキシスチレン−ポリスルホン−ポリジメ
チルシロキサン共重合体を少なくとも含むものに
ついては良好な結果が得られている。 実施例の説明 以下本発明の一実施例について図面に基づいて
説明する。第1図は本発明の各実施例における気
体透過複合膜の構成を示す断面図である。1は被
覆層、2は気体選択性膜層、3は多孔質支持体で
ある。第2図は各実施例と従来例の気体透過流量
変化を示すグラフである。 実施例 1 被覆層1の材料としてγCが11dyn.cm-1のメチル
ハイドロジエンポリシロキサンを用い、これに触
媒として3wt%のテトラブチルすずを加えて被覆
材とする。気体選択性膜層2を構成する高分子と
してポリヒドロキシスチレン−ポリスルホン−ポ
リジメチルシロキサン共重合体を用い、2〜4wt
%のベンゼン溶液を調整して水面に展開させた。
脱溶媒の後に得られる薄膜を支持体3ジユラガー
ト2400(ポリプラスチツク社製)の上に接着し、
さらにその上から上記被覆材をスプレーし被覆層
を形成させた。風乾させてから70℃で8〜9分焼
き付け、表面の水の接触角θが100〜110゜になる
第1図の気体透過複合膜を構成した。 次に上記の複合膜で30cm×30cmのモジユールを
作り、工場の排気口近くに設置し、真空ポンプで
−535mmHgまで減圧連続運転し、複合膜の気体透
過流量の経時変化を調べた。本実施例では第2図
イに示したように、5000時間経ても約7%しか減
少していないのに対し、従来の被覆層の無い膜モ
ジユールでは、第2図ロに示したように1000時間
経過したところで既に30%も減少してしまつた。
また、被覆層の比較例としてγCが20.8dyn.cm-1
ジメチルポリシロキサンを用いて2〜4wt%のベ
ンゼン溶液を調整し、支持体の上に載せた気体選
択性膜の上に塗布して風乾させ、仕上がり表面の
θが79〜83゜になる第1図の気体透過複合膜を構
成し同様の寿命試験を行つた。結果は第2図ハに
示すように被覆層の無いものに比べ寿命は3倍に
延びたが、3000時間経過した時点で30%流量が減
少してしまい、本実施例に比べると、透過特性を
安定させる効果は極めて小さかつた。以上のよう
に本実施例は、仕上がり表面のθが大きい被覆層
1で、気体選択性膜層2の表面を覆つたことによ
り、長時間の連続運用に耐え、特性を維持するの
に大いに有効であることがよくわかる。 なお本実施例ではメチルハイドロジエンポリシ
ロキサンに触媒を用いたが、この触媒の量を増せ
ば、焼付時間を短くしたり、焼付温度を低くした
りでき、耐熱性の弱い気体選択性膜や支持体を用
いる場合にも被覆材料として用いることができ
る。 実施例 2 実施例1において被覆層1を構成する材料とし
てフツ化アルキルメタアクリレートを用い、2〜
4wt%トリフルオロトリクロロエタン溶液を調整
して水面に展開させた。脱溶媒の後に得られた薄
膜を支持体の上に載せた気体選択性膜の上に重ね
て第1図の気体透過複合膜を構成した。本実施例
の構成の仕上がり表面のθが99〜106゜で、第2図
ニに示したように気体透過流量の変化は小さく、
6000時間経過した時点で6%程度であつた。 実施例 3 実施例1において気体選択性膜層を構成する材
料として、ポリフエニレンオキサイド/ポリジメ
チルシロキサン−ポリカーボネート共重合体を用
脂て複合膜を構成した。本実施例の構成は仕上が
り表面のθが100〜110゜で、第2図ホに示した被
覆しない膜モジユールの気体透過流量が、1000時
間で40%近く低下するのに比べ、第2図イに示し
たように5000時間で7%程度しか減少しなかつ
た。 実施例 4 実施例1において被覆層1を構成する材料とし
てγCが21dyn.cm-1のポリメチルフルオシロキサン
を用い、大きめの容器に広げてこの液面に支持体
上の気体選択性膜を接触させ、複合膜を構成し
た。本実施例の構成仕上がり表面のθが96〜98゜
で、第2図ヘに示したように透過流量の経時変化
は小さく、8000時間後でも約8%程度の減少であ
つた。 実施例 5 実施例2において被覆層1を構成する材料とし
てポリ−1−メチルペンテン−1を用いて、仕上
がり表面のθが110〜113゜の複合膜を構成した。
本実施例の構成は第2図トに示したように6000時
間連続運用した後も、気体の透過流量は5%した
低下しなかつた。 これら実施例においては被覆層1として四例、
気体選択性膜層として二例のみ示したが、先に述
べたこの他の高分子についても同様に、6000時間
経過後も気体透過流量変化が5〜10%程度という
良い結果が得られている。また気体選択性膜層
は、実施例1のように一種類で良いし、二種類以
上の高分子の膜積層体でも良い。 発明の効果 以上のように本発明は、混合気体から特定の気
体を分離濃縮するための少なくとも一層からなる
気体選択性膜層と、前記気体選択性膜層上に形成
された被覆層とを備え、前記被覆層の臨界表面張
力(γC)が30dyn.cm-1以下であり、且つ混合気体
と接する表面の水に対する接触角θが90゜以上で
あることを特徴とする気体透過複合膜であるた
め、従来の気体透過膜に比べ、劣悪な運用環境で
も、長期間安定な気体透過特性を維持できる実用
性の高いものである。実施例でも述べたように従
来の気体透過膜の運用寿命は短く、1000〜1500時
間も経過すると、小さくても20%、大きいものは
60%も透過流量が減少してしまうのに対し、第2
図イ、ニ、ヘ、トに示したように5000〜8000時間
経過してもほとんど透過流量に変化がない。従つ
てい実際に運用する場合、膜モジユールに関する
メンテナンスが大巾に省け、長時間運用が中止で
きない条件でも十分使用可能である。
[Formula] (However, RF is −CF 3 , −CH 2 −CF 3 , −CH 2
Selected from CH 2 − CF 3 . ) or fluorine-based polymers represented by polybutene, polyisobutene, polypentene, polymethylpentene, polyhexene, polymethylhexene, polyhebutene, polycyclohexylhentene, polystyrene, polyα-methylstyrene, polybutadiene,
A material capable of forming a surface with θ of 90° or more may be selected from polyolefins such as polyisobrene, polycyclooctadiene, diene polymers, or polyorganosiloxanes. For example, fluorinated alkyl methacrylate, poly-4-methylpentene-1, and polymethyl fluorinated alkyl siloxane are prepared in dilute solutions;
After spreading on the water surface and removing the solvent, a flat film with low surface energy can be obtained, and the protective effect of these films is extremely high. Furthermore, when the coating material is a liquid, the coating layer can be formed by spraying directly onto the gas-selective membrane. The surface can also be made water repellent or oil repellent by using a catalyst such as hydrogen silane or by heat treatment. The gas-selective membrane layer only needs to consist of at least one layer, and good results can be obtained if the layer that adheres to the coating layer contains at least a polyhydroxystyrene-polysulfone-polydimethylsiloxane copolymer. ing. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below based on the drawings. FIG. 1 is a sectional view showing the structure of a gas permeable composite membrane in each embodiment of the present invention. 1 is a coating layer, 2 is a gas-selective membrane layer, and 3 is a porous support. FIG. 2 is a graph showing changes in gas permeation flow rate in each example and the conventional example. Example 1 Methylhydrodiene polysiloxane having a γ C of 11 dyn.cm −1 is used as the material for the coating layer 1, and 3 wt % of tetrabutyltin is added as a catalyst to form a coating material. Polyhydroxystyrene-polysulfone-polydimethylsiloxane copolymer is used as the polymer constituting the gas-selective membrane layer 2, and 2 to 4 wt.
% benzene solution was prepared and spread on the water surface.
The thin film obtained after the solvent removal was adhered onto a support 3, Jyuragart 2400 (manufactured by Polyplastics Co., Ltd.),
Furthermore, the above-mentioned coating material was sprayed on top of it to form a coating layer. After air drying, the film was baked at 70°C for 8 to 9 minutes to form the gas permeable composite membrane shown in Figure 1, in which the surface water contact angle θ was 100 to 110°. Next, we made a 30 cm x 30 cm module using the above composite membrane, installed it near the exhaust port of the factory, and continuously operated the module at a reduced pressure of -535 mmHg using a vacuum pump to examine the change in gas permeation flow rate of the composite membrane over time. In this example, as shown in Figure 2A, the decrease was only about 7% even after 5000 hours, whereas in the conventional membrane module without a coating layer, as shown in Figure 2B, the decrease was only about 7%. After some time, it has already decreased by 30%.
In addition, as a comparative example of the coating layer, a 2 to 4 wt% benzene solution was prepared using dimethylpolysiloxane with a γ C of 20.8 dyn.cm -1 and coated on the gas selective membrane placed on the support. A similar life test was conducted using a gas-permeable composite membrane as shown in Fig. 1 having a finished surface with an angle of 79 to 83 degrees. As shown in Figure 2 (c), the life was three times longer than that without the coating layer, but the flow rate decreased by 30% after 3000 hours, and the permeation characteristics were poorer than in this example. The stabilizing effect was extremely small. As described above, in this example, by covering the surface of the gas-selective membrane layer 2 with the coating layer 1 having a large finished surface θ, it is highly effective in enduring long-term continuous operation and maintaining the characteristics. It is clear that this is the case. In this example, a catalyst was used in the methylhydrodiene polysiloxane, but by increasing the amount of this catalyst, it is possible to shorten the baking time and lower the baking temperature. It can also be used as a covering material when a body is used. Example 2 In Example 1, fluorinated alkyl methacrylate was used as the material constituting the coating layer 1, and 2-
A 4wt% trifluorotrichloroethane solution was prepared and spread on the water surface. The thin film obtained after solvent removal was stacked on a gas-selective membrane placed on a support to construct the gas-permeable composite membrane shown in FIG. When the θ of the finished surface of the configuration of this example is 99 to 106 degrees, the change in gas permeation flow rate is small as shown in FIG.
After 6000 hours, it was about 6%. Example 3 In Example 1, a composite membrane was constructed using polyphenylene oxide/polydimethylsiloxane-polycarbonate copolymer as the material constituting the gas-selective membrane layer. In the configuration of this example, the θ of the finished surface is 100 to 110 degrees, and the gas permeation flow rate of the uncoated membrane module shown in Figure 2 E decreases by nearly 40% in 1000 hours. As shown in Figure 2, it decreased by only about 7% after 5000 hours. Example 4 In Example 1, polymethylfluorosiloxane with a γ C of 21 dyn.cm -1 was used as the material constituting the coating layer 1, spread in a large container, and a gas-selective membrane on a support was placed on the liquid surface. were brought into contact to form a composite membrane. The θ of the finished surface of this example was 96 to 98 degrees, and as shown in FIG. 2, the change in the permeation flow rate over time was small, with a decrease of about 8% even after 8000 hours. Example 5 In Example 2, poly-1-methylpentene-1 was used as the material constituting the coating layer 1, and a composite film having a finished surface θ of 110 to 113 degrees was constructed.
As shown in FIG. 2, the configuration of this example did not show a 5% decrease in the gas permeation flow rate even after 6000 hours of continuous operation. In these examples, the coating layer 1 includes four examples:
Although only two examples were shown as gas-selective membrane layers, similar good results were obtained with the other polymers mentioned above, with the gas permeation flow rate changing by about 5 to 10% even after 6000 hours. . Further, the gas-selective membrane layer may be of one type as in Example 1, or may be a membrane laminate of two or more types of polymers. Effects of the Invention As described above, the present invention includes a gas-selective membrane layer consisting of at least one layer for separating and concentrating a specific gas from a mixed gas, and a coating layer formed on the gas-selective membrane layer. A gas permeable composite membrane, characterized in that the critical surface tension (γ C ) of the coating layer is 30 dyn.cm -1 or less, and the contact angle θ of the surface in contact with the mixed gas with respect to water is 90° or more. Therefore, compared to conventional gas permeable membranes, it is highly practical as it can maintain stable gas permeation characteristics for a long period of time even in poor operating environments. As mentioned in the example, the operational life of conventional gas permeable membranes is short, and after 1000 to 1500 hours, a small one loses 20%, and a large one loses 20%.
While the permeation flow rate decreased by 60%, the second
As shown in Figures A, D, F, and G, there is almost no change in the permeation flow rate even after 5,000 to 8,000 hours have passed. Therefore, in actual operation, maintenance regarding the membrane module can be greatly reduced, and it can be used even under conditions where operation cannot be stopped for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における気体透過複
合膜の断面図、第2図は本発明の各実施例及び比
較例の気体透過流量の減少率と経過時間との関係
を示した図である。 1……被覆層、2……気体選択性膜層、3……
多孔質支持体。
Figure 1 is a cross-sectional view of a gas permeable composite membrane according to an example of the present invention, and Figure 2 is a diagram showing the relationship between the rate of decrease in gas permeation flow rate and elapsed time for each example of the present invention and a comparative example. be. 1... Coating layer, 2... Gas selective membrane layer, 3...
Porous support.

Claims (1)

【特許請求の範囲】[Claims] 1 混合気体から特定の気体を分離濃縮するため
の少なくとも一層からなる気体選択性膜層と、前
記気体選択性膜層上に形成された被覆層とを備
え、前記被覆層が、臨界表面張力、(γC)が
30dyn.cm-1以下で、且つ混合気体と接する表面の
水に対する接触角θが90゜以上の高分子よりなる
ことを特徴とする気体透過複合膜。
1. A gas-selective membrane layer consisting of at least one layer for separating and concentrating a specific gas from a mixed gas, and a coating layer formed on the gas-selective membrane layer, wherein the coating layer has a critical surface tension, (γ C ) is
A gas permeable composite membrane comprising a polymer having a contact angle θ of 30 dyn.cm -1 or less with respect to water on the surface in contact with a mixed gas of 90° or more.
JP59203408A 1983-11-26 1984-09-28 Gas-permeable composite membrane Granted JPS6182823A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59203408A JPS6182823A (en) 1984-09-28 1984-09-28 Gas-permeable composite membrane
EP84114268A EP0144054B1 (en) 1983-11-26 1984-11-26 Composite films adapted for selective gas separation
EP89108619A EP0337499A3 (en) 1983-11-26 1984-11-26 Method for regenerating used gas-permeable films
DE8484114268T DE3482378D1 (en) 1983-11-26 1984-11-26 COMPOSED FILMS SUITABLE FOR SELECTIVE GAS SEPARATION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203408A JPS6182823A (en) 1984-09-28 1984-09-28 Gas-permeable composite membrane

Publications (2)

Publication Number Publication Date
JPS6182823A JPS6182823A (en) 1986-04-26
JPH0427890B2 true JPH0427890B2 (en) 1992-05-13

Family

ID=16473567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203408A Granted JPS6182823A (en) 1983-11-26 1984-09-28 Gas-permeable composite membrane

Country Status (1)

Country Link
JP (1) JPS6182823A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163751A (en) * 1991-12-16 1993-06-29 Inax Corp Automatic faucet
JP4605920B2 (en) * 2001-02-27 2011-01-05 京セラ株式会社 Gas separation filter
JP4703464B2 (en) * 2006-03-29 2011-06-15 中国電力株式会社 Hydrogen separation unit, hydrogen production apparatus and spare membrane
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane
JPWO2016117360A1 (en) * 2015-01-22 2017-10-19 富士フイルム株式会社 Acid gas separation module
WO2018159563A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Composite separation membrane, separation membrane module, separation device, composition for forming separation membrane, and method for producing composite separation membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS5791708A (en) * 1980-11-28 1982-06-08 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and method for producing the same
JPS5962303A (en) * 1982-09-30 1984-04-09 Kobunshi Oyo Gijutsu Kenkyu Kumiai Oxygen separating and enriching membrane
JPS59109205A (en) * 1982-11-30 1984-06-23 Ube Ind Ltd Multiple-unit membrane for oxygen separation
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS5791708A (en) * 1980-11-28 1982-06-08 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and method for producing the same
JPS5962303A (en) * 1982-09-30 1984-04-09 Kobunshi Oyo Gijutsu Kenkyu Kumiai Oxygen separating and enriching membrane
JPS59109205A (en) * 1982-11-30 1984-06-23 Ube Ind Ltd Multiple-unit membrane for oxygen separation
JPS60114324A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Gas permeable compound membrane

Also Published As

Publication number Publication date
JPS6182823A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
US5733663A (en) Composite membrane and process for its production
US8211592B2 (en) Hydrophilic layer on flowfield for water management in PEM fuel cell
US6432510B1 (en) Fluorinated resins having a surface with high wettability
EP1018182B1 (en) Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JPS60161703A (en) Gas permselective composite membrane
US4631075A (en) Composite membrane for gas separation
JPS6154222A (en) Composite separation membrane
JPH0427890B2 (en)
KR880007581A (en) Polytrialkyl Germanyl Propine Polymer and Membrane
EP0144054B1 (en) Composite films adapted for selective gas separation
JPH0224574B2 (en)
JPH0413011B2 (en)
JPH0413012B2 (en)
JPS60260019A (en) Liquid crystal display element
EP0630682A2 (en) Layered plasma polymer composite membranes
US20080095928A1 (en) Coating including silica based material with pendent functional groups
EP0337499A2 (en) Method for regenerating used gas-permeable films
Zuri et al. Film formation and crack development in plasma polymerized hexamethyldisiloxane
JPS56147604A (en) Manufacture of composite gas permeable membrane
JPS59112802A (en) Gas permselective composite membrane
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPH09155169A (en) Gas permeable film
JP3278953B2 (en) Method for producing gas separation composite membrane
JPS62227409A (en) Method for repairing permselective composite membrane
JP2006179273A (en) Composite steam-permeable film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term