JPH04278434A - Method for compensating electric inertia of dynamo meter - Google Patents

Method for compensating electric inertia of dynamo meter

Info

Publication number
JPH04278434A
JPH04278434A JP3041587A JP4158791A JPH04278434A JP H04278434 A JPH04278434 A JP H04278434A JP 3041587 A JP3041587 A JP 3041587A JP 4158791 A JP4158791 A JP 4158791A JP H04278434 A JPH04278434 A JP H04278434A
Authority
JP
Japan
Prior art keywords
inertia
torque
dynamometer
electric
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3041587A
Other languages
Japanese (ja)
Other versions
JP3158461B2 (en
Inventor
Masahiko Suzuki
雅彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP04158791A priority Critical patent/JP3158461B2/en
Publication of JPH04278434A publication Critical patent/JPH04278434A/en
Application granted granted Critical
Publication of JP3158461B2 publication Critical patent/JP3158461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)

Abstract

PURPOSE:To stabilize an electric inertia loop by multiplying the differentiated value of the number of rotations of a dynamo meter by a mechanical inertia component to calculate the torque of the mechanical inertia component and adding the output torque of the dynamo meter to said torque to estimate the output torque of a motor and multiplying the estimated value by the gain set by a formula. CONSTITUTION:The inertial resistance of a vehicle is obtained as the sum of the mechanical inertia component of a dynamo meter system and the electric inertia component becoming the output torque of a dynamo meter. The differentiated value of the number of rotations of the dynamo meter is multiplied by a mechanical inertia component to calculate the torque of the mechanical inertia component and the output torque of the dynamo meter is added to the torque of the mechanical inertia component to calculate the output torque estimated value tee of the power source of the vehicle. The estimated value tee is multiplied by the gain G set by formula G=1-(J/Jd) (wherein J is a mechanical inertia set value and Jd is an electric inertia compensated set value) to obtain the electric inertia compensation torque command Tc of the dynamo meter. The gain change of an electric inertia loop is reduced to make frequency response constant and the system is stabilized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ダイナモメータシステ
ムにおける電気慣性補償方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for compensating electrical inertia in a dynamometer system.

【0002】0002

【従来の技術】ダイナモメータは、車両の性能試験や耐
久試験を室内で可能とし、動力伝達系の試験には例えば
図4に示すシステム構成にされる。エンジン1にクラッ
チ2及び変速機3を一体にした組立て状態で動力吸収手
段としてのダイナモメータ4が結合される。この構成に
おいて、エンジン1は速度コントローラ5によって速度
制御され、ダイナモメータ4はトルクコントローラ6に
よって走行抵抗制御が行われることで変速機3に実車と
等価な慣性を負荷し、実車走行を模擬した変速機試験が
行われる。クラッチ2はコントローラ7によって変速時
及び発進時に断から接に徐々に自動操作され、変速機3
もコントローラ8によって変速時の変速比切換操作がな
される。
2. Description of the Related Art A dynamometer makes it possible to test the performance and durability of a vehicle indoors, and the system configuration shown in FIG. 4, for example, is used to test a power transmission system. A dynamometer 4 as a power absorbing means is connected to the engine 1 in an assembled state in which the clutch 2 and the transmission 3 are integrated. In this configuration, the speed of the engine 1 is controlled by a speed controller 5, and the dynamometer 4 is subjected to running resistance control by a torque controller 6, thereby loading the transmission 3 with inertia equivalent to that of an actual vehicle, and shifting to simulate the running of an actual vehicle. A machine test will be conducted. The clutch 2 is gradually automatically operated from disengaged to engaged by the controller 7 when changing gears and starting.
Also, the controller 8 performs a gear ratio switching operation during gear shifting.

【0003】エンジン1の速度制御は、速度検出器9か
らの検出速度と設定速度NSとの比較によりスロットル
コントローラ10にスロットル開度θを指令し、コント
ローラ10とアクチェータ11によるスロットル制御を
行う。
The speed of the engine 1 is controlled by comparing the detected speed from the speed detector 9 with the set speed NS to command the throttle opening θ to the throttle controller 10, and the controller 10 and actuator 11 perform throttle control.

【0004】ここで、車両の走行抵抗は、タイヤ転り抵
抗と空気抵抗からなる平坦路定常走行抵抗に慣性抵抗さ
らには登降坂抵抗を加え合わせたものになり、この走行
抵抗(制動抵抗)はダイナモメータでは各抵抗成分の係
数変換によってトルクの単位で設定される。
[0004] The running resistance of a vehicle is the sum of the flat road steady running resistance made up of tire rolling resistance and air resistance, inertial resistance, and uphill/downhill resistance, and this running resistance (braking resistance) is In the dynamometer, the torque is set in units of torque by converting the coefficients of each resistance component.

【0005】上述の走行抵抗のうち、慣性抵抗は実車と
等価な慣性設定されるフライホイールを使用することが
あるが、フライホイールは設置スペースが大きくなるこ
とや高価になることから、ダイナモメータ4の吸収トル
ク分として制御する電気慣性補償が採用されている。
Among the above-mentioned running resistances, a flywheel whose inertia is set to be equivalent to that of an actual vehicle is sometimes used to measure the inertia resistance, but since flywheels require a large installation space and are expensive, a dynamometer 4 Electric inertia compensation is used to control the absorbed torque.

【0006】従来の電気慣性補償は、図5に示す等価ブ
ロック構成にされる。図中、要素A〜Eはエンジンの速
度制御系を示し、Aは速度コントローラ5が持つ比例積
分要素、Bはスロットル開度制御系(10,11)が持
つ開度制御遅れ要素、Cはスロットル開度θに対するエ
ンジン1出力トルク特性、Dはエンジンと変速機とダイ
ナモメータ等が持つ慣性を合わせた試験装置の慣性要素
であり、慣性Jは主にエンジン慣性JEとダイナモメー
タの機械慣性JDの和になる。Eは速度検出器9が持つ
一次遅れ要素である。これら要素における各記号は次の
通りである。
Conventional electrical inertia compensation has an equivalent block configuration shown in FIG. In the figure, elements A to E indicate the engine speed control system, A is the proportional integral element of the speed controller 5, B is the opening control delay element of the throttle opening control system (10, 11), and C is the throttle opening control system. The engine 1 output torque characteristic with respect to the opening θ, D is the inertia element of the test equipment that combines the inertia of the engine, transmission, dynamometer, etc., and the inertia J is mainly the combination of the engine inertia JE and the mechanical inertia JD of the dynamometer. Become peace. E is a first-order delay element that the speed detector 9 has. The symbols for these elements are as follows.

【0007】Ke:速度コントローラ5のゲインTe:
速度コントローラ5の時定数 Ks:開度制御系のゲイン Ts:開度制御系の時定数 J:試験装置の機械慣性 Kv:速度試験器のゲイン Tv:速度検出器の時定数 次に、要素F〜Iはダイナモメータ4のトルク制御系を
示し、Fはトルク制御系が持つ比例積分要素、Gはトル
ク制御系のマイナループになる電流制御系が持つ電流制
御遅れ要素、Hはダイナモメータの電動機の電流−トル
ク変換要素、Iはダイナモメータのトルク検出器が持つ
一次遅れ要素である。これら要素における各記号は次の
とおりである。
Ke: Gain Te of speed controller 5:
Time constant Ks of the speed controller 5: Gain Ts of the opening control system: Time constant J of the opening control system: Mechanical inertia Kv of the test device: Gain Tv of the speed tester: Time constant of the speed detector Next, element F ~I indicates the torque control system of the dynamometer 4, F is the proportional integral element of the torque control system, G is the current control delay element of the current control system that becomes the minor loop of the torque control system, and H is the electric motor of the dynamometer. The current-torque conversion element I is a first-order lag element included in the torque detector of the dynamometer. The symbols for these elements are as follows.

【0008】Kd:トルク制御系のゲインTd:トルク
制御系の時定数 Kc:電流制御系のゲイン Tc:電流制御系の遅れ時定数 Kt:電動機の電流−トルク変換係数 Kl:トルク検出器のゲイン Tl:トルク検出器の遅れ時定数 次に、要素J,K,Lは電気慣性補償演算のためのオブ
ザーバ(破線ブロック)の構成要素であり、Jは速度検
出器9又はダイナモメータ4側に設ける速度検出器が持
つ一次遅れ要素、Kは要素Jの検出速度を微分して加速
度を得る加速度演算要素、Lは電気慣性設定分Jdから
機械慣性分Jを減算して電気慣性補償分をトルクとして
求める電気慣性分演算要素である。これら要素における
各記号は次の通りである。
Kd: Torque control system gain Td: Torque control system time constant Kc: Current control system gain Tc: Current control system delay time constant Kt: Motor current-torque conversion coefficient Kl: Torque detector gain Tl: Delay time constant of torque detector Next, elements J, K, and L are components of an observer (broken line block) for electrical inertia compensation calculation, and J is provided on the speed detector 9 or dynamometer 4 side. The first-order lag element of the speed detector, K is the acceleration calculation element that obtains acceleration by differentiating the detected speed of element J, and L is the electrical inertia compensation component obtained by subtracting the mechanical inertia component J from the electrical inertia setting component Jd and using the electrical inertia compensation component as torque. This is the calculation element for the electric inertia to be found. The symbols for these elements are as follows.

【0009】Kv:速度検出器のゲインTv:速度検出
器の遅れ時定数 K:微分係数 このような等価ブロックにおいて、オブザーバは要素D
の出力になる速度nの検出値から要素Kによる微分でト
ルクに比例した値を求め、これを要素Lの演算結果にな
る電気慣性補償分に乗算することで電気慣性補償分のト
ルクTcを求める。
Kv: Gain of the speed detector Tv: Delay time constant of the speed detector K: Derivative coefficient In such an equivalent block, the observer uses the element D
Find a value proportional to the torque by differentiating it by element K from the detected value of speed n that is the output of .

【0010】 Tc=K(Jd−J)(dn/dt)……(1)このト
ルクTに対するダイナモメータ4の要素F〜Iによる出
力トルクτが要素Cのエンジン出力トルクτeから等価
的に減算されて電気慣性補償がなされる。
Tc=K(Jd-J)(dn/dt)...(1) The output torque τ from the elements F to I of the dynamometer 4 for this torque T is equivalently subtracted from the engine output torque τe of the element C. electrical inertia compensation.

【0011】[0011]

【発明が解決しようとする課題】従来の電気慣性補償制
御は、電気慣性補償分Jdの設定値によってダイナモメ
ータの周波数応答が変化してしまう問題があった。これ
を以下に詳細に説明する。
The conventional electrical inertia compensation control has a problem in that the frequency response of the dynamometer changes depending on the set value of the electrical inertia compensation Jd. This will be explained in detail below.

【0012】図5に示す従来の電気慣性ブロックにおい
て、要素F〜Iからなるダイナモメータには慣性分を除
く走行抵抗に相当するトルク指令と慣性分のトルク指令
Tcが加えられるが、このトルク指令Tcは要素F〜I
の前向きの伝達関数に対して要素Dとオブザーバ要素J
〜Lになる後向き伝達関数で制御ループ(以下、電気慣
性ループと呼ぶ)が構成される。
In the conventional electric inertia block shown in FIG. 5, a torque command corresponding to the running resistance excluding the inertia component and a torque command Tc for the inertia component are applied to the dynamometer consisting of elements F to I. Tc is element F~I
element D and observer element J for the forward transfer function of
A control loop (hereinafter referred to as an electric inertia loop) is configured with a backward transfer function of ~L.

【0013】この電気慣性ループにおいて、電気慣性補
償分Jdの変更は後向き伝達関数のゲインを変えること
になる。例えば、電気慣性補償分Jdの変更による要素
Lの演算値(Jd−J)は、その加減値Kminと上限
値Kmaxとでは機械慣性Jに較べて電気慣性補償分J
dが大きいことから (Kmax/Kmin)=5〜10倍 となる。即ち、電気慣性ループは5〜10倍のゲイン変
化を受けることになり、慣性抵抗を大きくするとJd/
Jが3倍以上では電気慣性ループのゲインが大きくなり
過ぎ、該ループを不安定にする。
In this electric inertia loop, changing the electric inertia compensation Jd changes the gain of the backward transfer function. For example, the calculated value (Jd-J) of the element L due to a change in the electric inertia compensation Jd is smaller than the mechanical inertia J at its addition/subtraction value Kmin and upper limit Kmax.
Since d is large, (Kmax/Kmin)=5 to 10 times. In other words, the electrical inertia loop will undergo a gain change of 5 to 10 times, and if the inertia resistance is increased, Jd/
If J is 3 times or more, the gain of the electric inertia loop becomes too large, making the loop unstable.

【0014】図6はJd/J=2倍の場合の加速特性を
示し、速度Nの上昇に対してダイナモメータのトルクT
は安定している。Dは速度微分波形である。
FIG. 6 shows the acceleration characteristics when Jd/J=2 times, and the torque T of the dynamometer increases as the speed N increases.
is stable. D is a velocity differential waveform.

【0015】これに対し、図7はJd/J=10倍の場
合を示し、速度Nを加速しようとするとトルクTが低く
なって速度低下になり、これによりトルクのTが再び高
くなるという不安定な状態からついには発振状態に移行
する。
On the other hand, FIG. 7 shows a case where Jd/J=10 times, and when an attempt is made to accelerate the speed N, the torque T becomes low and the speed decreases, which causes the problem that the torque T becomes high again. The stable state eventually shifts to an oscillating state.

【0016】本発明の目的は、電気慣性補償分の増減に
も電気慣性ループを安定にする方法を提供することにあ
る。
An object of the present invention is to provide a method for stabilizing the electric inertia loop even when the electric inertia compensation increases or decreases.

【0017】[0017]

【課題を解決するための手段】本発明は前記課題の解決
を図るため、車両の動力伝達系に結合され、車両の慣性
抵抗をダイナモメータシステムの機械慣性分とダイナモ
メータの出力トルクにする電気慣性分の和として得るダ
イナモメータシステムにおいて、ダイナモメータの回転
数の微分値に前記機械慣性分を乗算して機械慣性分のト
ルクを求め、前記ダイナモメータの出力トルクを前記機
械慣性分のトルクに加算して前記車両の動力源の出力ト
ルク推定値τeeを求め、次式 G=1−(J/Jd) 但し、J:機械慣性設定値 Jd:電気慣性補償設定値 で設定するゲインGを前記推定値τeeに乗算して前記
ダイナモメータの電気慣性補償トルク指令Tcを得るこ
とを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides an electric power system that is connected to the power transmission system of a vehicle and converts the inertial resistance of the vehicle into the mechanical inertia of a dynamometer system and the output torque of the dynamometer. In a dynamometer system obtained as the sum of inertia components, the differential value of the rotational speed of the dynamometer is multiplied by the mechanical inertia component to obtain the torque for the mechanical inertia component, and the output torque of the dynamometer is calculated as the torque component for the mechanical inertia component. The estimated output torque value τee of the power source of the vehicle is obtained by adding the following formula: G = 1 - (J/Jd). However, J: Mechanical inertia setting value Jd: Electrical inertia compensation setting value The electric inertia compensation torque command Tc of the dynamometer is obtained by multiplying the estimated value τee.

【0018】[0018]

【作用】上記方法になる本発明によれば、機械慣性分に
ダイナモメータの出力トルクを加算してエンジンなどの
動力源の出力トルク推定値を求め、この推定値に機械慣
性Jと電気慣性Jdから決定されるゲインGを乗算して
慣性抵抗分のトルク指令Tcを求める。これにより、電
気慣性Jdの増減にもゲインGの増減を小さく、即ち電
気慣性ループのゲイン変化を小さくして系の周波数応答
を一定にし、また系を安定化させる。
[Operation] According to the above method, the output torque of the dynamometer is added to the mechanical inertia to obtain the estimated output torque of a power source such as an engine, and this estimated value is added to the mechanical inertia J and the electrical inertia Jd. The torque command Tc for the inertial resistance is obtained by multiplying by the gain G determined from . As a result, the increase or decrease in the gain G is made small even when the electric inertia Jd is changed, that is, the change in the gain of the electric inertia loop is made small, thereby making the frequency response of the system constant and stabilizing the system.

【0019】[0019]

【実施例】図1は本発明の一実施例を示すブロック図で
ある。同図が図5と異なる部分は破線ブロックで示すオ
ブザーバである。オブザーバは要素M〜Pを具える。M
は要素Dからの速度nに対して速度検出器が持つ一次遅
れを発生させる。Nは要素Mからの速度信号を微分し、
これに機械慣性Jを乗算して機械慣性によるトルク分を
求める機械慣性・トルク変換要素である。Oは要素Hの
出力に速度検出器が持つ一次遅れを作用させる一次遅れ
要素であり、要素Mによる遅れと一致させるものである
。要素Pは要素NとOの加算値τeeに電気慣性ゲイン
を乗算して慣性分のトルクTcを得る電気慣性設定要素
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of the present invention. The difference between this figure and FIG. 5 is the observer indicated by a broken line block. The observer comprises elements M to P. M
generates a first-order lag of the speed detector with respect to the speed n from the element D. N differentiates the velocity signal from element M,
This is a mechanical inertia/torque conversion element that multiplies this by the mechanical inertia J to obtain the torque due to the mechanical inertia. O is a first-order delay element that applies a first-order delay of the speed detector to the output of element H, and is made to match the delay caused by element M. Element P is an electric inertia setting element that multiplies the sum τee of elements N and O by electric inertia gain to obtain torque Tc for inertia.

【0020】上述の構成において、電気慣性設定要素P
のゲイン設定は G=1−(J/Jd)……(2) として電気慣性分Jdが与えられる。オブザーバは、エ
ンジンが出力するトルクτeの推定値τeeを回転数か
ら要素M,Nで求める機械慣性トルク分にダイナモメー
タの電気慣性分トルクτを加算することで求める。この
とき、要素Oは要素Mの遅れに合わせるものになる。
In the above configuration, the electric inertia setting element P
The gain setting is G=1-(J/Jd) (2) where the electric inertia component Jd is given. The observer obtains the estimated value τee of the torque τe output by the engine by adding the electric inertia torque τ of the dynamometer to the mechanical inertia torque obtained from the elements M and N from the rotation speed. At this time, element O matches the delay of element M.

【0021】オブザーバは上述のエンジントルク推定値
τeeに要素PによるゲインGを乗算することで慣性抵
抗分のトルクTcを得る。このとき、ダイナモメータの
出力トルクτは τ=G×τee……(3) となり、このトルクτが要素Dの機械慣性に作用するト
ルクは(τe−τ)となる。従って、 τe−τ=τe−(G×τee) となる。ここで、τe=τeeとするとτe−τ=(1
−G)τe……(4) となる。つまり、慣性抵抗を変えた試験にはゲインGを
可変することによりダイナモメータの出力トルクを変え
ることができる。ここで、注目すべきことは、電気慣性
補償分Jdの増減にも(2)式から常にG<1になり、
電気慣性ループゲインへの影響が小さくなる。
[0021] The observer multiplies the above-mentioned estimated engine torque value τee by the gain G based on the element P to obtain the torque Tc corresponding to the inertial resistance. At this time, the output torque τ of the dynamometer is τ=G×τee (3), and the torque exerted by this torque τ on the mechanical inertia of element D is (τe−τ). Therefore, τe−τ=τe−(G×τee). Here, if τe=τee, τe−τ=(1
-G)τe...(4) That is, in a test in which the inertial resistance is changed, the output torque of the dynamometer can be changed by varying the gain G. What should be noted here is that G<1 always holds from equation (2) even when the electric inertia compensation amount Jd increases or decreases.
The effect on the electrical inertia loop gain is reduced.

【0022】それ故、周波数応答は電気慣性補償分Jd
の増減に拘わらず常に一定となる。本実施例に基づいた
実験として、Jd/J=2のときの波形図を図2に示し
、Jd/J=10のときの波形図を図3に示す。これら
図から明らかなように、電気慣性補償分Jdを大きく変
更するも回転数N,トルクT,Hに振動を起こすことな
く、系を安定させた電気慣性補償を得ることができる。
Therefore, the frequency response is the electric inertia compensation Jd
It will always remain constant regardless of the increase or decrease in . As an experiment based on this example, a waveform diagram when Jd/J=2 is shown in FIG. 2, and a waveform diagram when Jd/J=10 is shown in FIG. As is clear from these figures, even if the electrical inertia compensation amount Jd is changed significantly, the electrical inertia compensation that stabilizes the system can be obtained without causing vibrations in the rotational speed N and torques T and H.

【0023】本実施例の具体的構成は、図4の構成にお
いて、コントローラ6の走行抵抗設定に慣性抵抗分とし
てオブザーバの出力トルク信号Tcを与え、慣性抵抗値
を電気慣性補償分Jdとして電気慣性設定要素Pに設定
し、速度検出器9の検出信号を要素Nの入力とし、ダイ
ナモメータ4の出力トルクτを要素Oの入力とすること
で実現される。このとき、変速機の変速比が1でない場
合には該変速比からダイナモメータの回転数(車速)を
換算する。
The specific configuration of this embodiment is as follows: In the configuration shown in FIG. 4, the output torque signal Tc of the observer is applied as an inertial resistance component to the running resistance setting of the controller 6, and the inertial resistance value is set as an electric inertia compensation component Jd. This is achieved by setting the setting element P, making the detection signal of the speed detector 9 the input of the element N, and making the output torque τ of the dynamometer 4 the input of the element O. At this time, if the gear ratio of the transmission is not 1, the rotation speed (vehicle speed) of the dynamometer is calculated from the gear ratio.

【0024】なお、実施例ではエンジンを動力源とする
ダイナモメータシステムに適用する場合を示すが、本発
明はエンジンに代えて低慣性電動機とするダイナモメー
タシステムに適用して同等の作用効果を奏する。
[0024]Although the embodiments show a case in which the present invention is applied to a dynamometer system using an engine as a power source, the present invention can also be applied to a dynamometer system using a low inertia electric motor instead of an engine to achieve the same effect. .

【0025】[0025]

【発明の効果】以上のとおり、本発明によれば、機械慣
性分のトルクにダイナモメータの出力トルクを加算して
エンジンなどの原動機の出力トルクを推定し、この推定
値に機械慣性と電気慣性補償から求めるゲインGを乗算
して電気慣性分のトルク指令とするため、電気慣性補償
分の増減にもオブザーバのゲイン増減を小さくし、電気
慣性ループを安定化し、さらに周波数応答の変化を小さ
くすることができる。
As described above, according to the present invention, the output torque of a prime mover such as an engine is estimated by adding the output torque of a dynamometer to the torque for mechanical inertia, and this estimated value is added to the torque for mechanical inertia and electrical inertia. Since the torque command for the electric inertia is obtained by multiplying the gain G obtained from the compensation, the increase or decrease in the gain of the observer is made small even when the electric inertia compensation is increased or decreased, thereby stabilizing the electric inertia loop and reducing changes in the frequency response. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す電気慣性ブロック図、
FIG. 1 is an electric inertia block diagram showing an embodiment of the present invention;

【図2】実施例の波形図、[Fig. 2] Waveform diagram of the example,

【図3】実施例の波形図、[Fig. 3] Waveform diagram of the example,

【図4】ダイナモメータシステムの構成図、[Figure 4] Configuration diagram of the dynamometer system,

【図5】従
来の電気慣性ブロック図、
[Fig. 5] Conventional electric inertia block diagram,

【図6】従来の波形図、[Fig. 6] Conventional waveform diagram,

【図7】従来の波形図。FIG. 7 is a conventional waveform diagram.

【符号の説明】[Explanation of symbols]

1…エンジン、3…変速機、4…ダイナモメータ、5…
速度コントローラ、6…トルクコントローラ、10…ス
ロットルコントローラ。
1...engine, 3...transmission, 4...dynamometer, 5...
Speed controller, 6...torque controller, 10...throttle controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  車両の動力伝達系に結合され、車両の
慣性抵抗をダイナモメータシステムの機械慣性分とダイ
ナモメータの出力トルクにする電気慣性分の和として得
るダイナモメータシステムにおいて、ダイナモメータの
回転数の微分値に前記機械慣性分を乗算して機械慣性分
のトルクを求め、前記ダイナモメータの出力トルクを前
記機械慣性分のトルクに加算して前記車両の動力源の出
力トルク推定値τeeを求め、次式 G=1−(J/Jd) 但し、J:機械慣性設定値 Jd:電気慣性補償設定値 で設定するゲインGを前記推定値τeeに乗算して前記
ダイナモメータの電気慣性補償トルク指令Tcを得るこ
とを特徴とするダイナモメータの電気慣性補償方法。
1. A dynamometer system that is coupled to a power transmission system of a vehicle and obtains the inertia resistance of the vehicle as the sum of the mechanical inertia of the dynamometer system and the electrical inertia that makes the output torque of the dynamometer. The differential value of the number is multiplied by the mechanical inertia component to obtain the torque for the mechanical inertia, and the output torque of the dynamometer is added to the torque for the mechanical inertia to obtain the estimated output torque value τee of the power source of the vehicle. Calculate the electric inertia compensation torque of the dynamometer by multiplying the estimated value τee by the gain G set in the following formula: G=1-(J/Jd). A method for compensating electrical inertia of a dynamometer, characterized by obtaining a command Tc.
JP04158791A 1991-03-07 1991-03-07 Dynamometer electric inertia compensation method Expired - Fee Related JP3158461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04158791A JP3158461B2 (en) 1991-03-07 1991-03-07 Dynamometer electric inertia compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04158791A JP3158461B2 (en) 1991-03-07 1991-03-07 Dynamometer electric inertia compensation method

Publications (2)

Publication Number Publication Date
JPH04278434A true JPH04278434A (en) 1992-10-05
JP3158461B2 JP3158461B2 (en) 2001-04-23

Family

ID=12612561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04158791A Expired - Fee Related JP3158461B2 (en) 1991-03-07 1991-03-07 Dynamometer electric inertia compensation method

Country Status (1)

Country Link
JP (1) JP3158461B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064738A1 (en) * 1998-06-11 1999-12-16 Renault Method and device for regulating the operation of an internal combustion engine during a return to idling speed
US6577973B1 (en) 1998-08-13 2003-06-10 Schenk Pegasus Gmbh Method and device for taking into account friction losses during the simulation of masses on stationary test benches
JP2009074834A (en) * 2007-09-19 2009-04-09 Meidensha Corp Method of controlling chassis dynamometer system
JP2010014409A (en) * 2008-07-01 2010-01-21 Meidensha Corp Speed controller of chassis dynamometer
JP2010019712A (en) * 2008-07-11 2010-01-28 Meidensha Corp Electric inertia control device
CN106461506A (en) * 2014-06-02 2017-02-22 株式会社明电舍 Control device for chassis dynamometer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064738A1 (en) * 1998-06-11 1999-12-16 Renault Method and device for regulating the operation of an internal combustion engine during a return to idling speed
FR2779768A1 (en) * 1998-06-11 1999-12-17 Renault METHOD AND DEVICE FOR REGULATING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE ON RETURN TO IDLE SPEED
US6577973B1 (en) 1998-08-13 2003-06-10 Schenk Pegasus Gmbh Method and device for taking into account friction losses during the simulation of masses on stationary test benches
JP2009074834A (en) * 2007-09-19 2009-04-09 Meidensha Corp Method of controlling chassis dynamometer system
JP2010014409A (en) * 2008-07-01 2010-01-21 Meidensha Corp Speed controller of chassis dynamometer
JP2010019712A (en) * 2008-07-11 2010-01-28 Meidensha Corp Electric inertia control device
CN106461506A (en) * 2014-06-02 2017-02-22 株式会社明电舍 Control device for chassis dynamometer
CN106461506B (en) * 2014-06-02 2019-01-25 株式会社明电舍 Control device for chassis dynamometer

Also Published As

Publication number Publication date
JP3158461B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
JP4321124B2 (en) Electric inertia control system for power measurement system
US5534764A (en) Vehicle driving control system having function for suppressing vibration
US6768940B2 (en) Engine testing system using torque controller designed by μ-synthesis method
US9353806B2 (en) Method of estimating torque of transmission clutch
KR930007708A (en) Closed Loop Departure and Creep Controller for Automatic Clutch
US5375460A (en) Method and apparatus for testing motor vehicles under simulated road conditions
JPH0648230B2 (en) Dynamometer
WO2019053979A1 (en) Dynamometer control device
JP6737363B1 (en) Dynamometer controller
JP4645231B2 (en) Power transmission system test apparatus and control method thereof
JPH0439608B2 (en)
JPH04278434A (en) Method for compensating electric inertia of dynamo meter
JP3254935B2 (en) Dynamometer
JP2006242592A (en) Testing device of power transmission system, and its control method
US20190137361A1 (en) Device for controlling dynamometer of test system
JP3687305B2 (en) Dynamometer system
KR950021968A (en) Vortex Brake Device with Torque Estimation
KR20200113527A (en) Preventing method of incorrect learning of clutch torque of transmission of vehicle
JP2568008B2 (en) Electric inertia control device for power transmission system tester
JP2003344224A (en) Testing device for power transmission system, and control method therefor
Voigt A control scheme for a dynamical combustion engine test stand
JPH0567898B2 (en)
JPH10239219A (en) Engine spindle torque control device
EP0604663A4 (en) Method for estimating inertia and disturbance torque, and method for detecting abnormal load.
CN107914710B (en) System and method for vehicle propulsion system control

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees