JPH0427705A - Diesel engine exhaust gas purifying method - Google Patents

Diesel engine exhaust gas purifying method

Info

Publication number
JPH0427705A
JPH0427705A JP2042480A JP4248090A JPH0427705A JP H0427705 A JPH0427705 A JP H0427705A JP 2042480 A JP2042480 A JP 2042480A JP 4248090 A JP4248090 A JP 4248090A JP H0427705 A JPH0427705 A JP H0427705A
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb
diesel engine
structure body
engine exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2042480A
Other languages
Japanese (ja)
Other versions
JP3096466B2 (en
Inventor
Makoto Horiuchi
真 堀内
Koichi Saito
斉藤 皓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP4248090A priority Critical patent/JP3096466B2/en
Publication of JPH0427705A publication Critical patent/JPH0427705A/en
Application granted granted Critical
Publication of JP3096466B2 publication Critical patent/JP3096466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To perform effective purification of exhaust gas containing harmful elements such as carcinogen by setting an angle formed by the flow direction of exhaust gas, led into a honeycomb exhaust gas purifying structure body provided with plural mutually parallel through holes, and the inlet cross section of this structure body within a specific range. CONSTITUTION:At the time of purifying diesel engine exhaust gas using a honeycomb structure body, an angle alpha between the flow direction of exhaust gas led into the honeycomb structure body and the inlet cross section of the honeycomb structure body is set to 0 deg.<alpha<90 deg., desirably 30 deg.<=alpha<=70 deg.. In this honeycomb exhaust gas structure body, fire resistant inorganic oxide of 50-400m<2>/g in specific surface area is carried by honeycomb carriers at the rate of 50-400g per honeycomb carrier. Diesel engine exhaust gas can be thus purified efficiently using the honeycomb exhaust gas purifying structure body, and especially SOF in diesel engine exhaust gas can be removed efficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はハニカム状排カス浄化構造体を用いたディーゼ
ルエンジン排ガスの浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for purifying diesel engine exhaust gas using a honeycomb-like exhaust gas purification structure.

〈従来の技術) 近年、ディーゼルエンジンから排出される、主として固
体状の炭素微粒子および液状ないし固体状の高分子量炭
化水素微粒子からなる微粒子状物質(以下、 「パティ
キュレート」という)が環境衛生上msになっている。
<Prior art> In recent years, particulate matter (hereinafter referred to as "particulates"), which is mainly composed of solid carbon particles and liquid or solid high molecular weight hydrocarbon particles, emitted from diesel engines has become a problem in terms of environmental hygiene. It has become.

それは、これらパティキュし一トが発ガン性物質などの
有害成分を含有し、またその粒子径が殆と1t1m以下
であるため大気中で浮遊しやすく、呼吸器官から人体内
に取り込まれやすいからである。このため、これらパテ
ィキュレートのディーゼルエンジンからの排出を厳しく
規制していく方向で検討が進められている。
This is because these particulates contain harmful components such as carcinogenic substances, and most of their particle diameters are less than 1t1m, so they easily float in the atmosphere and are easily taken into the human body through the respiratory tract. be. For this reason, studies are underway to strictly control the emission of these particulates from diesel engines.

パティキュレートの浄化方法としては、(1)耐熱性ガ
スフィルター(例えば、セラミックフオーム、ワイヤー
メツシュ、金属発泡体、目刺しタイプのセラミックハニ
カムなど)を用い、ディーゼルエンジン排ガスをろ過し
て、パティキュレートを捕捉し、圧損が上昇すれば、バ
ーナまたは電気ヒーターなどの加熱手段を用いて蓄積し
た炭素系微粒子を燃焼させ、フィルターを再生し、繰り
返して使用する方法、(2)上記(1)の方法の改良で
あって、フィルターに触媒物質を担持させ、フィルター
の燃焼、再生の頻度を少なくする方法、(3)通常の走
行条件で得られる排出条件(ガス組成および温度)にお
いて燃焼・浄化する、いわゆるフィルタ一方法などが提
案されている。
To purify particulates, (1) use a heat-resistant gas filter (e.g., ceramic foam, wire mesh, metal foam, piercing type ceramic honeycomb, etc.) to filter diesel engine exhaust gas and remove particulates. If the carbon-based particulates are trapped and the pressure drop increases, the accumulated carbon-based particles are burned using a heating means such as a burner or an electric heater, and the filter is regenerated and used repeatedly. (2) The method of (1) above is used. This is a method of reducing the frequency of combustion and regeneration of the filter by supporting a catalyst substance on the filter. (3) Combustion and purification under the exhaust conditions (gas composition and temperature) obtained under normal driving conditions. A filter method has been proposed.

しかし、これらフィルターを用いる方法はいずれも固体
状の炭素系微粒子を高い効率で捕捉することを目的とし
ているため、パティキュレートの燃焼・再生時における
フィルター構造体の割れの問題のほか、炭素系微粒子と
共に捕捉される、エンジンオイルからの灰成分(例えば
、酸化カルシウム、酸化亜鉛、五酸化リンなど)の蓄積
によるフィルターの閉寒ならびに触媒活性の低下などの
問題がある。ざらに、フィルタ一方式の排ガス浄化装置
は圧力損失を招くなとの欠点をも有している。このため
、実用上十分に満足のいくフィルタ一方式による排ガス
浄化方法は未だ得られていない。
However, since all of these methods using filters aim to capture solid carbon-based particulates with high efficiency, in addition to the problem of cracking of the filter structure during combustion and regeneration of particulates, carbon-based particulates Problems include filter blockage and reduced catalyst activity due to the accumulation of ash components (eg, calcium oxide, zinc oxide, phosphorus pentoxide, etc.) from the engine oil that are trapped along with the engine oil. Generally speaking, a one-filter type exhaust gas purification device also has the drawback of not causing pressure loss. For this reason, a practically satisfactory method for purifying exhaust gas using one type of filter has not yet been obtained.

一方、近年、ディーゼルエンジンの改良(例えば、燃料
噴射の高圧化、燃料噴射タイミングの制御なと)に伴い
、ディーゼルエンジンからtiされるパティキュレート
の低減がなされた。同時に、この改良ディーゼルエンジ
ンから排出されるパティキュレートに含まれる、主とし
て液状の高分子量炭化水素からなる有機溶剤に可溶な成
分(以下、S OF (Soluble Organi
c Fraction)という)の割合が増加した。従
って、従来のディーゼルエンジンから排出される排ガス
とその性状をことにしている。このため、このような性
状の排ガスの浄化においては、主として発ガン性物質な
との有害成分を含有するSOFの除去が重要な問題とな
る。
On the other hand, in recent years, as diesel engines have been improved (for example, by increasing the pressure of fuel injection and controlling fuel injection timing), particulates emitted from diesel engines have been reduced. At the same time, the particulates discharged from this improved diesel engine contain components soluble in organic solvents (hereinafter referred to as SOF), which mainly consist of liquid high molecular weight hydrocarbons.
c Fraction) increased. Therefore, we are focusing on the exhaust gas emitted from conventional diesel engines and its properties. Therefore, in purifying exhaust gas having such properties, removal of SOF containing harmful components, mainly carcinogenic substances, becomes an important issue.

このSOFの排出量は低温域において増加する傾向にあ
ることから、低温域、特に触媒成分を用いて燃焼・浄化
できない低温域におけるSOFの除去が必要となる。
Since the amount of SOF emissions tends to increase in a low temperature range, it is necessary to remove SOF in a low temperature range, especially in a low temperature range where it cannot be burned and purified using a catalyst component.

ディーゼルエンジン排ガスのパティキュレートの浄化用
触媒として、ガス流れに対し平行に貫通孔を有するオー
ブン式のハニカム状触媒が検討され、報告されている(
SAE  Paper、810263)、uかし、これ
は白金系触媒を用いた場合の、SOF、炭化水素、−酸
化炭素などを燃焼可能な高温における燃焼・浄化性能を
示したものであり、パティキュレートの除去に1しては
、オーブン式のハニカム状触媒では効果がないことが報
告されている。また、オーブン式のハニカム状触媒のS
OF吸着・捕捉特性についてはなんら言及されていない
An oven-type honeycomb catalyst with through holes parallel to the gas flow has been investigated and reported as a catalyst for purifying particulates in diesel engine exhaust gas (
SAE Paper, 810263), U-Kashi, which shows the combustion and purification performance of SOF, hydrocarbons, carbon oxides, etc. at high temperatures when platinum-based catalysts are used. It has been reported that an oven type honeycomb catalyst is ineffective for removal. In addition, the oven-type honeycomb catalyst S
There is no mention of OF adsorption/trapping properties.

(発明が解決しようとする課題) 本発明の一つの目的は、ハニカム状排カス浄化構造体を
用いてディーゼルエンジン排ガスを効率よく浄化する、
特にディーゼルニンジン排ガース中のSOFを効率よく
除去する方法を提供することである。
(Problems to be Solved by the Invention) One object of the present invention is to efficiently purify diesel engine exhaust gas using a honeycomb-like exhaust gas purification structure.
In particular, it is an object of the present invention to provide a method for efficiently removing SOF from diesel carrot exhaust gas.

本発明の他の目的は、ディーゼルエンジン排ガス中のS
OFの除去効率を高め、長時間にわたって安定して、そ
の性能を維持するディーゼルニンジン排カスの浄化方法
を提供することである。
Another object of the present invention is to reduce the amount of S in diesel engine exhaust gas.
It is an object of the present invention to provide a method for purifying diesel carrot waste that increases OF removal efficiency and maintains its performance stably over a long period of time.

11を解決するための手段) 本発明者らは、ハニカム状排ガス浄化構造体を用い、デ
ィーゼルエンジン排ガス中の有害成分を除去して排ガス
を効率よく浄化する方法を研究したところ、排ガスを排
ガス浄化構造体中の貫通孔に平行に導入することなく、
角度をもたせて導入すると排ガス中のSOFが効率よく
除去され、さらに長時間にわたって安定して、その性能
を維持することを知り、この知見に基づいて本発明を完
成するに至った。
Means for Solving Problem 11) The present inventors researched a method for efficiently purifying exhaust gas by removing harmful components from diesel engine exhaust gas using a honeycomb-shaped exhaust gas purification structure. without being introduced parallel to the through-hole in the structure.
It was found that SOF in the exhaust gas is efficiently removed when introduced at an angle, and its performance is maintained stably over a long period of time.Based on this knowledge, the present invention was completed.

すなわち、本発明は、互いに平行な複数個の貫通孔を有
するハニカム状排ガス浄化構造体にディーゼルエンジン
排ガスを導入して該排ガス中の有害成分を除去するディ
ーゼルエンジン排ガスの浄化方法において、排ガス浄化
構造体に導入される排ガスの流れ方向と該構造体の人口
断面とのなす角度(α)を O″〈αく90゜ とすることを特徴とするディーゼルエンジン排ガスの浄
化方法に間する。
That is, the present invention provides an exhaust gas purification structure in a method for purifying diesel engine exhaust gas in which harmful components in the exhaust gas are removed by introducing diesel engine exhaust gas into a honeycomb-like exhaust gas purification structure having a plurality of parallel through holes. A method for purifying diesel engine exhaust gas is provided, which is characterized in that the angle (α) formed between the flow direction of exhaust gas introduced into the body and the artificial cross section of the structure is O''〈α〉90°.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において対象とする排ガスはディーゼルエンジン
から排出される排ガスであり、特に本発明の方法は、排
ガス温度が200℃以下において排ガス1m3当りio
omg以下の微粒子状物質を含有し、かつこの微粒子状
物質のSOF含有率が20%以上であるディーゼルエン
ジン排ガス(以下、単に「排ガス」という場合もある)
の浄化に好適である。
The target exhaust gas in the present invention is exhaust gas discharged from a diesel engine, and in particular, the method of the present invention is effective at reducing io
Diesel engine exhaust gas (hereinafter sometimes simply referred to as "exhaust gas") that contains particulate matter of less than Omg, and the SOF content of this particulate matter is 20% or more.
suitable for purification.

本発明者らの研究によれば、通常のガソリンエンジンま
たはディーゼルエンジン排ガス浄化用触媒として一般に
使用されているハニカム状排ガス浄化構造体(以下、単
に「ハニカム状構造体」という)を通常の使用状態、す
なわちハニカム状構造体に導入される排ガスの流れ方向
とハニカム状構造体の入口断面との角度(α)が90°
となる状態で使用した場合、排ガス雰囲気下に200℃
以下の温度にさらされるとハニカム状構造体の人口部に
おいてSOFの析8にともなう微粒子状物質の生長がお
こり、それが長時間におよぶと完全に孔の入口部を閘塞
してしまい、−旦閉塞がおこると、その孔を通過するガ
ス量は減少し、触媒性能の低下tきたすとともに圧損の
上昇を招くことが判明した。
According to the research of the present inventors, a honeycomb-like exhaust gas purification structure (hereinafter simply referred to as "honeycomb-like structure"), which is generally used as a catalyst for purifying exhaust gas from a normal gasoline engine or a diesel engine, was used under normal usage conditions. , that is, the angle (α) between the flow direction of the exhaust gas introduced into the honeycomb structure and the inlet cross section of the honeycomb structure is 90°.
When used under conditions such as 200℃ under exhaust gas atmosphere.
When exposed to the following temperatures, fine particulate matter grows in the artificial part of the honeycomb-like structure due to SOF analysis8, and if this continues for a long time, it completely blocks the entrance of the pores, - It has been found that once blockage occurs, the amount of gas passing through the hole decreases, resulting in a decrease in catalyst performance and an increase in pressure drop.

本発明は上記知見に基づきなされたもので、ハニカム状
構造体を用いてディーゼルエンジン排ガスを浄化する際
、ハニカム状構造体に導入されろ排ガスの流れ方向とハ
ニカム状構造体の人口断面との角度(α)をθ″くαく
90°、好ましくは30゜≦α≦70″とすることを特
徴とするものである。
The present invention has been made based on the above findings, and is based on the angle between the flow direction of the exhaust gas introduced into the honeycomb structure and the artificial cross section of the honeycomb structure when diesel engine exhaust gas is purified using the honeycomb structure. It is characterized in that (α) is set to θ″ minus α minus 90°, preferably 30°≦α≦70″.

本発明の方法によれば、ハニカム状構造体が長時間20
0℃以下の温度に維持されても前記のような微粒子状物
質の生長、ひいては閉基が防止され、均一なSOFの吸
着・捕捉が達成される。
According to the method of the present invention, the honeycomb-like structure can be
Even if the temperature is maintained at 0° C. or lower, the growth of fine particulate matter as described above and further group closure are prevented, and uniform adsorption and capture of SOF is achieved.

これは、本発明の方法によれば、通常の使用方法に比べ
てハニカム状構造体の見掛けの断面積が増加し、またハ
ニカム状構造体の入口部での排ガス流れに乱れが生じる
ことによるものと考えられなお、角度(α)が70°を
超えると、上記の効果が比較的低く、また30@未満で
はハニカム状構造体を、例えばコンバータに搭載するの
が困難となる場合もある。
This is because, according to the method of the present invention, the apparent cross-sectional area of the honeycomb-like structure increases compared to the normal method of use, and the flow of exhaust gas at the inlet of the honeycomb-like structure is disturbed. However, if the angle (α) exceeds 70°, the above effect will be relatively low, and if the angle (α) is less than 30°, it may be difficult to mount the honeycomb-like structure on, for example, a converter.

第1図(イ)〜(へ)は、それぞれ実施例1〜3および
その他車発明に係わる具体例、ならびに比較例における
排ガス流れ方向とハニカム状構造体の人口断面との関係
を示す概略図であるが、比較例のようにα=90°とす
ると表1に示す結果から明らかなようにSOFの捕捉率
が低下して、本発明の目的を達成することができない。
Figures 1 (a) to (f) are schematic diagrams showing the relationship between the exhaust gas flow direction and the artificial cross section of the honeycomb-like structure in Examples 1 to 3, other specific examples related to the automobile invention, and comparative examples, respectively. However, when α=90° as in the comparative example, the SOF capture rate decreases as is clear from the results shown in Table 1, making it impossible to achieve the object of the present invention.

本発明の方法において、角度(α〉を上記範囲内に調整
するには、第1図(イ)、 (ロ)に示すようにハニカ
ム状構造体の人口端を所定角度(α)で切断して、例え
ばコンバータに搭載してもよく、あるいは第1図(ハ)
、 (ニ)、 (ホ)に示すように排ガスをハニカム状
構造体に導入するガス導入管とハニカム状構造体を設置
する管との間に角度(β)をもたせて所定角度(α)が
得られるようにしてもよい。後者の場合、ハニカム状構
造体の人口端は前者の場合のようにある角度で切断して
もよいし、切断しなくてもよい。
In the method of the present invention, in order to adjust the angle (α〉) within the above range, the artificial end of the honeycomb-like structure is cut at a predetermined angle (α) as shown in Fig. 1 (a) and (b). For example, it may be installed in a converter, or it may be installed in a converter, or
As shown in (d) and (e), an angle (β) is created between the gas introduction pipe that introduces the exhaust gas into the honeycomb-like structure and the pipe in which the honeycomb-like structure is installed, so that a predetermined angle (α) is formed. You may also be able to obtain it. In the latter case, the artificial end of the honeycomb-like structure may or may not be cut at an angle as in the former case.

上記角度(β)は、換言すればハニカム状構造体に導入
される排ガスの流れ方向とハニカム状構造体の貫通孔の
長さ方向との角度であり、この角度くβ)はO″≦βく
120°の範囲に調整するのがよく、特に06≦βく9
00の範囲に調整するのが好ましい。120°を超える
と実用的てない。
In other words, the above angle (β) is the angle between the flow direction of the exhaust gas introduced into the honeycomb structure and the length direction of the through hole of the honeycomb structure, and this angle β) is O″≦β It is best to adjust within the range of 120°, especially when 06≦β9
It is preferable to adjust it to a range of 00. It is not practical if it exceeds 120°.

本発明で使用するハニカム状構造体については、互いに
平行な貫通孔を有するハニカム状の耐火性構造体であれ
ば特に限定されるものではないが、特に本特許出願人が
先に提案したハニカム状排ガス構造体(特願平1−25
821)が好適に使用される。このハニカム状排ガス構
造体は、ハニカム担体に、比表面積が50〜400m2
/gの耐火性無機酸化物をハニカム担体l 当り50〜
400gの割合で担持したものである。
The honeycomb-like structure used in the present invention is not particularly limited as long as it is a honeycomb-like fireproof structure having mutually parallel through holes, but in particular, the honeycomb-like structure proposed earlier by the applicant of this patent is Exhaust gas structure (patent application Hei 1-25
821) is preferably used. This honeycomb-like exhaust gas structure has a honeycomb carrier with a specific surface area of 50 to 400 m2.
/g of refractory inorganic oxide per liter of honeycomb carrier
It was supported at a ratio of 400g.

上記ハニカム担体としては、一般にハニカム担体と称さ
れるものであればいずれも使用することがてきる。これ
らのうちで、コージェライト、ムライト、α−アルミナ
、ジルコニア、チタニア、リン酸チタン、アルミニウム
チタネート、ペタライト、スボジュメン、アルミナ・シ
リケート、ケイ酸マグネシウムなどからなるセラミック
ハニカムおよびステンレスまたはFe−Cr−AQ金合
金との酸化抵抗性の耐熱金属を用いて一体構造体とした
メタルハニカムなどが好適に使用される。
As the honeycomb carrier, any carrier generally referred to as a honeycomb carrier can be used. Among these, ceramic honeycombs made of cordierite, mullite, α-alumina, zirconia, titania, titanium phosphate, aluminum titanate, petalite, subodumene, alumina silicate, magnesium silicate, stainless steel or Fe-Cr-AQ gold A metal honeycomb made into an integral structure using an oxidation-resistant heat-resistant metal with an alloy is preferably used.

特に、ディーゼルエンジン排ガス浄化用としては、コー
ジェフ・イト質ハニカムあるいはメタルハニカムが好適
である。
Particularly, for diesel engine exhaust gas purification, corrugated honeycombs or metal honeycombs are suitable.

上記ハニカム担体は、オーブン式であって排ガス流れに
対し平行な複数個の貫通孔(ガス流通孔)を有する。特
に、ハニカム担体の横断面1平方インチ当りのガス流通
孔の数が100〜600個であり、開孔率が40〜95
%の場合に優れたSOFの吸着・捕捉効果が得られる。
The honeycomb carrier is oven type and has a plurality of through holes (gas flow holes) parallel to the exhaust gas flow. In particular, the number of gas flow holes per square inch of cross section of the honeycomb carrier is 100 to 600, and the porosity is 40 to 95.
%, an excellent SOF adsorption/trapping effect can be obtained.

なお、ここにいう開孔率とは、ハニカム担体の横断面積
に対する全ガス流通孔の横断面積の合計の割合を意味す
る。
The porosity referred to herein means the ratio of the total cross-sectional area of all gas flow holes to the cross-sectional area of the honeycomb carrier.

上記ガス流通孔の数が100個未満、あるいは閘孔率が
40%未満では、ハニカム構造体の単位容積当りの排ガ
スとの接触表面積が減少してSOFの吸着・捕捉効果が
低下し、さらには背圧上昇を招いて好ましくない。一方
、ガス流通孔の数が600個を超えるか、あるいは開孔
率が95%を超えるとハニカム構造体を構成する隔壁が
薄くなり、十分な強度が得られず実用上好ましくない。
If the number of gas flow holes is less than 100 or the porosity is less than 40%, the contact surface area with the exhaust gas per unit volume of the honeycomb structure decreases, and the SOF adsorption/trapping effect decreases. This is undesirable as it causes an increase in back pressure. On the other hand, if the number of gas flow holes exceeds 600 or the porosity exceeds 95%, the partition walls constituting the honeycomb structure become thin and sufficient strength cannot be obtained, which is not preferred in practice.

上記ハニカム担体に担持する耐火性無機酸化物としては
、比表面積が50〜400m2/Hの範囲にあり、SO
Fを吸着し得るものであればいずれも使用することがで
きるが、特にアルミナ、ジルコニア、チタニアおよびシ
リカが好適に使用される。これらは単独でも、あるいは
2種以上混合して使用することもてきる。また、これら
の複合酸化物としても使用することができる。
The refractory inorganic oxide supported on the honeycomb carrier has a specific surface area in the range of 50 to 400 m2/H, and SO
Any material that can adsorb F can be used, but alumina, zirconia, titania, and silica are particularly preferred. These may be used alone or in combination of two or more. It can also be used as a composite oxide of these.

上記比表面積が50m”/g未満てはSOFの吸着・捕
捉効果が低く、一方400m2/gを超えると熱的に不
安定なものとなり実用的でない。
When the specific surface area is less than 50 m''/g, the SOF adsorption/trapping effect is low, while when it exceeds 400 m2/g, it becomes thermally unstable and is not practical.

上記耐火性無機酸化物はハニカム担体上に、該担体の容
jilR当り50〜400gのV)合にて担持される。
The refractory inorganic oxide is supported on the honeycomb carrier in an amount of 50 to 400 g per volume of the carrier.

この担持量が50g未満てはSOFを吸着・捕捉できる
飽和量が著しく低下し、一方400gを超えると耐火性
無機酸化物のばくりゃハニカム状構造体の孔の目づまり
が起こりやすくなって好ましくない。
If the supported amount is less than 50 g, the saturation amount capable of adsorbing and trapping SOF will be significantly reduced, while if it exceeds 400 g, the refractory inorganic oxide will easily clog the pores of the honeycomb structure, which is not preferable.

上記ハニカム担体に耐火性無機酸化物を担持してなるハ
ニカム状構造体に吸着・捕捉されたSOFは、高温酸素
雰囲気下におくことによって燃焼・分解させることが可
能であり、これによってハニカム状構造体を容易に再生
させることができる。
The SOF adsorbed and captured by the honeycomb-like structure formed by supporting a refractory inorganic oxide on the honeycomb carrier can be burned and decomposed by placing it in a high-temperature oxygen atmosphere, thereby forming a honeycomb-like structure. The body can be easily regenerated.

具体的には、ハニカム状構造体をエンジンの運転条件の
変更に応じて排出される、例えば400℃を超える高温
排ガスと接触させるか、あるいはバーナ、電気ヒーター
なとの加熱手段を用いて加熱することによってハニカム
状構造体を再生することができる。
Specifically, the honeycomb-like structure is brought into contact with high-temperature exhaust gas, e.g., exceeding 400°C, which is discharged according to changes in engine operating conditions, or heated using a heating means such as a burner or an electric heater. This allows the honeycomb-like structure to be regenerated.

上記燃尽・分解温度を低下させる目的で耐火性無機酸化
物のほかに白金、パラジウムおよびロジウムから選ばれ
る少なくとも1種の貴金属を担持させることもてきる。
In addition to the refractory inorganic oxide, at least one noble metal selected from platinum, palladium, and rhodium may be supported for the purpose of lowering the burnout/decomposition temperature.

(発明の効果) 本発明の方法によって得られる主たる効果を列挙すれば
次の通りである。
(Effects of the Invention) The main effects obtained by the method of the present invention are listed below.

(1)  発ガン性物質などの有害成分を含有する排ガ
スの浄化に効果的であり、特にディーゼルエンジン排ガ
ス中のSOFを効率よく除去することができる。
(1) It is effective in purifying exhaust gas containing harmful components such as carcinogenic substances, and in particular, SOF in diesel engine exhaust gas can be efficiently removed.

(2)ディーゼルエンジン排ガス中のSOFの割合は低
温域で増加する傾向にあるが、このような低温域におい
てもSOFを効果的に除去することができる。
(2) Although the proportion of SOF in diesel engine exhaust gas tends to increase in low temperature ranges, SOF can be effectively removed even in such low temperature ranges.

(3)ディーゼルエンジン排ガス中のSOFを長時間安
定して除去することができる。
(3) SOF in diesel engine exhaust gas can be removed stably for a long time.

(実施例) 以下、実施例を挙げて本発明をさらに具体的に説明する
。なお、間口率とはハニカム状構造体の横断面積に対す
る全ガス流通孔の横断面積の合計の割合である。
(Example) Hereinafter, the present invention will be described in more detail with reference to Examples. Note that the frontage ratio is the ratio of the total cross-sectional area of all gas flow holes to the cross-sectional area of the honeycomb-like structure.

実施例1 横断面1平方インチ当り400個のカス流通孔を有し、
開口率が75%、内径が5.66インチの円筒状のコー
ジェライトモノリス担体の一端をガス流通孔のガス流れ
方向に対して60°の角度で切断して、容量が2Rのハ
ニカム状担体を準備した。
Example 1 Having 400 waste flow holes per 1 square inch of cross section,
One end of a cylindrical cordierite monolith carrier with an aperture ratio of 75% and an inner diameter of 5.66 inches was cut at an angle of 60° to the gas flow direction of the gas flow holes to obtain a honeycomb-shaped carrier with a capacity of 2R. Got ready.

この担体をパラジウムを1重量%担持したアルミナ粉体
と水とからなるスラリーに浸漬した。余分なスラリーを
取り除いた後、乾燥、焼成して担体の容量IQ当りアル
ミナおよびパラジウムをそれぞれ100gおよび1g担
持したハニカム状構造体(a)を得た。
This carrier was immersed in a slurry consisting of water and alumina powder supporting 1% by weight of palladium. After removing excess slurry, it was dried and fired to obtain a honeycomb structure (a) carrying 100 g and 1 g of alumina and palladium, respectively, per volume IQ of the carrier.

このハニカム状構造体(a)を単筒型コンバータに、構
造体の切断面がコンバータ入口側になるように装着した
。この時の、排ガスの流れ方向とハニカム状構造体(a
)の人口断面との関係を明らかにするために、第1図(
イ)にその概略図を示した。
This honeycomb-like structure (a) was attached to a single-tube converter so that the cut surface of the structure was on the converter inlet side. At this time, the flow direction of exhaust gas and the honeycomb structure (a
) to clarify the relationship with the population cross-section, Figure 1 (
A) shows the schematic diagram.

この場合の角度(α)は60°である。The angle (α) in this case is 60°.

上記単筒型コンバータに装着したハニカム状構造体(a
)について、市販の過給直噴式ディーゼルエンジン(4
気筒、2800cc)を用いて下記の試験を行った。
The honeycomb structure (a) attached to the above monotube converter
), commercially available supercharged direct injection diesel engine (4
The following test was conducted using a 2800 cc cylinder.

エンジン回転数11000rp、トルク1.0kg−m
、ハニカム状構造体人口温度100℃の条件において、
この構造体の人口部および出口部の排ガス中のパティキ
ュレートを通常のダイリューショントンネル法を用いて
捕捉した。このパティキュレートをジクロロメタン溶液
で抽出して、抽出前後のパティキュレートの重量変化か
らSOFの排出量(mg/m 3−排ガス)を測定し、
ハニカム状構造体によるSOFの捕捉率を求めた。
Engine speed 11,000 rpm, torque 1.0 kg-m
, under the condition that the population temperature of the honeycomb structure is 100°C,
Particulates in the exhaust gas at the entrance and outlet of this structure were captured using a conventional dilution tunnel method. The particulates are extracted with a dichloromethane solution, and the SOF emission amount (mg/m3-exhaust gas) is measured from the change in weight of the particulates before and after extraction.
The capture rate of SOF by the honeycomb structure was determined.

さらに、上記の排ガス雰囲気下でハニカム状構造体(a
)を20時間曝露した後、再度同様にしてSOFの捕捉
率を測定した。
Furthermore, a honeycomb-like structure (a
) was exposed for 20 hours, and the SOF capture rate was measured again in the same manner.

また、20時閘曝露後のハニカム状構造体(a)入口部
における閉塞状態を観測し、閉寒に至ったセル(ガス流
通孔)の割合(閉塞率(%))を求めた。
In addition, the blockage state at the inlet of the honeycomb structure (a) after the 20-hour exposure was observed, and the percentage of cells (gas flow holes) that became closed (blockage rate (%)) was determined.

閉塞率(%)= 試験結果を表1に示す。Occlusion rate (%) = The test results are shown in Table 1.

実施例2 実施例1において、担体として、その一端をガス流通孔
のガス流れ方向に対し75°の角度で切断したコージェ
ライトハニカム担体を使用した以外は実施例1と同様に
してハニカム状構造体(b)を作成し、性能試験を行っ
た。
Example 2 A honeycomb-like structure was produced in the same manner as in Example 1 except that a cordierite honeycomb carrier whose one end was cut at an angle of 75° to the gas flow direction of the gas flow holes was used as the carrier. (b) was created and a performance test was conducted.

排ガス流れ方向とハニカム状構造体(b)の人口断面と
の間係を明らかにするため、その概略図を第1区(ロ)
に示した。なお、この場合の角度(α)は75℃である
In order to clarify the relationship between the exhaust gas flow direction and the artificial cross section of the honeycomb-like structure (b), the schematic diagram is shown in Section 1 (b).
It was shown to. Note that the angle (α) in this case is 75°C.

試験結果を表1に示す。The test results are shown in Table 1.

実施例3 実施例2て得られたハニカム状構造体(b)を角度(α
)が50°に、また角度(β)が25゜になるように装
着して、実施例1と同じ性能試験を行った。
Example 3 The honeycomb structure (b) obtained in Example 2 was
) was 50° and the angle (β) was 25°, and the same performance test as in Example 1 was conducted.

この場合の排ガス流れ方向とハニカム状構造体(b)の
人口断面との関係を示す概略図を第1(ハ)に示した。
A schematic diagram showing the relationship between the exhaust gas flow direction and the artificial cross section of the honeycomb structure (b) in this case is shown in the first part (c).

試験結果を表1に示す。The test results are shown in Table 1.

比較例 実施例1において、担体の一端をガス流通孔のガス流れ
方向に対し90°の角度で切断した以外は実施例1と同
様にしてハニカム状構造体(C)を作成し、その性能試
験を行った。
Comparative Example A honeycomb-like structure (C) was prepared in the same manner as in Example 1 except that one end of the carrier was cut at an angle of 90° to the gas flow direction of the gas flow hole, and its performance test was conducted. I did it.

排ガス流れ方向とハニカム状構造体(C)の入口断面と
の関係を示す概略図を第1図(へ)に示した。この場合
の角度(α)は90°である。
A schematic diagram showing the relationship between the exhaust gas flow direction and the inlet cross section of the honeycomb structure (C) is shown in FIG. The angle (α) in this case is 90°.

試験結果を表1に示す。 (以下余白)The test results are shown in Table 1. (Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図の(イ)〜(ハ)はそれぞれ実施例1〜3、(ニ
)と(ホ)はその池水発明に係わる具体例、(へ)は比
較例での排ガス流れ方向(→て示した)とハニカム状構
造体の入口断面との間係を示す概略図である。 特許出願人 日本触媒化学工業株式会社第 区 (イ) (ロ) (・・) ■ (ニ) (ホ)
In Fig. 1, (a) to (c) are Examples 1 to 3, respectively, (d) and (e) are specific examples related to the pond water invention, and (f) is a comparative example in the exhaust gas flow direction (indicated by →). FIG. 3 is a schematic diagram showing the relationship between the honeycomb-shaped structure and the inlet cross section of the honeycomb-like structure. Patent applicant: Nippon Shokubai Chemical Industry Co., Ltd. Ward (a) (b) (...) ■ (d) (e)

Claims (2)

【特許請求の範囲】[Claims] (1)互いに平行な複数個の貫通孔を有するハニカム状
排ガス浄化構造体にディーゼルエンジン排ガスを導入し
て該排ガス中の有害成分を除去するディーゼルエンジン
排ガスの浄化方法において、排ガス浄化構造体に導入さ
れる排ガスの流れ方向と該構造体の入口断面とのなす角
度(α)を 0゜<α<90゜ とすることを特徴とするディーゼルエンジン排ガスの浄
化方法。
(1) In a method for purifying diesel engine exhaust gas in which harmful components in the exhaust gas are removed by introducing diesel engine exhaust gas into a honeycomb-like exhaust gas purification structure having a plurality of parallel through holes, the introduction into the exhaust gas purification structure A method for purifying diesel engine exhaust gas, characterized in that the angle (α) between the flow direction of the exhaust gas and the inlet cross section of the structure satisfies 0°<α<90°.
(2)角度(α)が 30゜≦α≦70゜ である請求項(1)に記載のディーゼルエンジン排ガス
の浄化方法。
(2) The method for purifying diesel engine exhaust gas according to claim (1), wherein the angle (α) is 30°≦α≦70°.
JP4248090A 1990-02-26 1990-02-26 Purification method of diesel engine exhaust gas Expired - Lifetime JP3096466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248090A JP3096466B2 (en) 1990-02-26 1990-02-26 Purification method of diesel engine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248090A JP3096466B2 (en) 1990-02-26 1990-02-26 Purification method of diesel engine exhaust gas

Publications (2)

Publication Number Publication Date
JPH0427705A true JPH0427705A (en) 1992-01-30
JP3096466B2 JP3096466B2 (en) 2000-10-10

Family

ID=12637227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248090A Expired - Lifetime JP3096466B2 (en) 1990-02-26 1990-02-26 Purification method of diesel engine exhaust gas

Country Status (1)

Country Link
JP (1) JP3096466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806554A1 (en) * 1996-05-10 1997-11-12 Renault Exhaust system for internal combustion engines
JP2002070532A (en) * 2000-08-28 2002-03-08 Ibiden Co Ltd Exhaust emission control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806554A1 (en) * 1996-05-10 1997-11-12 Renault Exhaust system for internal combustion engines
FR2748518A1 (en) * 1996-05-10 1997-11-14 Renault EXHAUST DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2002070532A (en) * 2000-08-28 2002-03-08 Ibiden Co Ltd Exhaust emission control device

Also Published As

Publication number Publication date
JP3096466B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3113662B2 (en) Catalyst for exhaust gas purification of diesel engines
JP4889873B2 (en) Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
JP2736099B2 (en) Diesel engine exhaust gas purification catalyst
JP3560408B2 (en) Diesel exhaust gas purification filter and method for producing the same
US5100632A (en) Catalyzed diesel exhaust particulate filter
RU2392456C2 (en) Method and device for cleaning of exhaust gas
JP5193437B2 (en) Exhaust gas purification catalyst
JP2014079755A (en) Improved diesel exhaust filter
WO2006101777A1 (en) Oxydation catalyst on a substrate utilized for the purification of exhaust gases
WO2007070344A1 (en) Low pressure drop coated diesel exhaust filter
WO2007032825A1 (en) Diesel exhaust article and catalyst compositions therefor
JPH0160652B2 (en)
JP2015520675A (en) Selective catalytic reduction wall flow filter containing vanadate
KR20090092291A (en) Improved soot filter
JPH03118811A (en) Purifying material of exhaust gas and purifying method for exhaust gas
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JP2008188511A (en) Exhaust gas cleaning filter and its manufacturing method
JP4604374B2 (en) Exhaust gas purification device for internal combustion engine
JP2008151100A (en) Exhaust emission control device
JP5502885B2 (en) Oxidation catalyst suitable for burning light oil components
JPH0768178A (en) Catalyst body for removing particulate substance in diesel vehicle and preparation thereof
JP2788494B2 (en) Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure
KR19980052956A (en) Catalyst for exhaust gas purification of diesel engine
JP2003190793A (en) Filter type catalyst for purifying diesel exhaust gas
JPH0427705A (en) Diesel engine exhaust gas purifying method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10