JPH0427702A - Coal gasification combined power generation control device - Google Patents

Coal gasification combined power generation control device

Info

Publication number
JPH0427702A
JPH0427702A JP12884390A JP12884390A JPH0427702A JP H0427702 A JPH0427702 A JP H0427702A JP 12884390 A JP12884390 A JP 12884390A JP 12884390 A JP12884390 A JP 12884390A JP H0427702 A JPH0427702 A JP H0427702A
Authority
JP
Japan
Prior art keywords
load
steam
steam turbine
gas
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12884390A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamada
利広 山田
Hitoshi Tanabe
田邊 仁志
Yasuo Goshima
安生 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12884390A priority Critical patent/JPH0427702A/en
Publication of JPH0427702A publication Critical patent/JPH0427702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To obtain a coal gasification combined power generation control device with desirable load follow-up performance by constructing this device in such a way as to control steam flow to a steam turbine at the time of changing load in a gasifying furnace lead mode. CONSTITUTION:This coal gasification combined power generation control device is formed by providing a steam turbine control system further with an incomplete differentiating element 46 and an adder 47. The output signal of a subractor 34 in a gasifying furnace control system 26, that is, a load deviation signal, is inputted into the incomplete differentiating element 46 where the deviation quantity is incompletely differentiated, and then the output signal of the incomplete differentiating element 46 is inputted into the additionally provided adder 47, together with the output signal of a steam quantity setter 42. As a result, load increase operation by the generating speed part of load deviation generated at the time of load increase is performed on the steam turbine side. The reverse action of output is not therefore generated at the load change time, so that the gasifying furnace can be operated stably.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は石炭を利用した石炭ガス化複合発電の石炭ガス
化炉と複合発S設備との協調的な運転を行なうなめに、
負荷上昇時にガスタービン発生出力に生ずる逆応答、即
ち、瞬時的な負荷降下現象を蒸気タービン発生出力で着
圧すべく機能する石炭ガス化複合発電制御装置に関する
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention provides a method for cooperatively operating a coal gasification furnace and a combined cycle S facility in a coal gasification combined cycle using coal. To,
The present invention relates to a coal gasification integrated power generation control device that functions to suppress the reverse response that occurs in the gas turbine generated output when the load increases, that is, the instantaneous load drop phenomenon, with the steam turbine generated output.

(従来の技術) 石炭ガス化複合発電システムは、石炭をガス化し、その
ガスを燃料としてガスタービンと蒸気タービンとからな
る複合発電システムを運用するものであって、エネルギ
ー有効活用、公害問題の優位性などの点で注目をあびて
いる。
(Conventional technology) A coal gasification combined power generation system is a system that gasifies coal and uses the gas as fuel to operate a combined power generation system consisting of a gas turbine and a steam turbine. It is attracting attention for its gender and other aspects.

第6図はこの種の発電プラントのうち、熱回収能力が極
めて高い石炭ガス化複合発電システムの概略系統図であ
る。大きな特徴は、ガスタービンの排熱をボイラに導き
、排熱による熱交換で得た蒸気と、ガス化炉の熱交換器
(冷却器)より得られた蒸気とを蒸気タービンに導き、
発電を行なっている点である。以下に該システムの説明
を行なう。
FIG. 6 is a schematic system diagram of a coal gasification combined cycle power generation system that has an extremely high heat recovery capacity among this type of power generation plants. The main feature is that the exhaust heat of the gas turbine is guided to the boiler, and the steam obtained by heat exchange with the exhaust heat and the steam obtained from the heat exchanger (cooler) of the gasifier are guided to the steam turbine.
The point is that it generates electricity. The system will be explained below.

ガス化炉3は粗ガスを作り出すものであって、ここには
、酸化剤量調整装置2を経て空気等の酸化材が送られて
おり、石炭量調整装置1を経て石炭によるガスがそれぞ
れ送り込まれている。ガス化炉3で作り出された粗ガス
はガスクーラ4を経てガス精製装置5に送り込まれ、こ
こで燃料ガスが精製される。その燃料ガスは燃料圧力調
整弁6燃料流量調整弁7を経て燃焼88に送られ、圧縮
機9により大気を昇圧した空気とにより燃焼し、この燃
焼ガスをガスタービン10に送り込み、カスタービン1
0の駆動により、圧縮機9を駆動すると共に発電機11
が回され、電力を作り出す。加えて圧al19により大
気を昇圧した空気は、圧縮119から抽気し、更に電動
機13駆動の昇圧圧縮機12で昇圧の上、前記酸化射流
量調整弁2へ供給する。
The gasifier 3 produces crude gas, to which oxidizing agents such as air are sent through the oxidizing agent amount adjusting device 2, and gas from coal is sent through the coal amount adjusting device 1. It is. The crude gas produced in the gasifier 3 is sent to a gas purification device 5 via a gas cooler 4, where fuel gas is purified. The fuel gas is sent to the combustion chamber 88 through the fuel pressure regulating valve 6 and the fuel flow regulating valve 7, where it is combusted with air pressurized from the atmosphere by the compressor 9, and this combustion gas is sent to the gas turbine 10.
0 drives the compressor 9 and the generator 11.
is rotated to generate electricity. In addition, the air whose pressure has been increased by the pressure al 19 is extracted from the compressor 119, further increased in pressure by a booster compressor 12 driven by an electric motor 13, and then supplied to the oxidation injection flow rate adjustment valve 2.

一方、ガスタービン10を駆動後、燃焼ガスはガスター
ビンの排ガスとして排熱回収ボイラ15に送り出され、
ここで排カスの熱エネルギー回収がなされる。すなわち
、排熱回収ボイラ15はその排カスの流れに対し上流か
ら順に、スーパーヒータ16エバボレータ17.エコノ
マイザ−18を有しており、これら熱交換器によって蒸
気が発生せしめられる。
On the other hand, after driving the gas turbine 10, the combustion gas is sent to the exhaust heat recovery boiler 15 as exhaust gas of the gas turbine,
Here, the thermal energy of the waste waste is recovered. That is, the exhaust heat recovery boiler 15 sequentially connects the super heater 16, evaporator 17, . It has an economizer 18, and steam is generated by these heat exchangers.

まず、エコノマイザ−18によって加熱された給水は、
一部がガスクーラドラム14に送られ、ガスクーラ4を
経てガスクーラドラム14に循環し、この間、発生する
蒸気はカスクーラドラム14からスーパーヒータ16に
送られる。また、エコノマイザ−18の給水の残りは、
蒸気ドラム79に送られ、エバポレータ17を経て再び
蒸気ドラム19に戻され、この間発生する蒸気はスーパ
ー延−夕16に送られる。
First, the feed water heated by the economizer 18 is
A portion is sent to the gas cooler drum 14 and circulated to the gas cooler drum 14 via the gas cooler 4, while the generated steam is sent from the cas cooler drum 14 to the superheater 16. In addition, the remainder of the water supply from economizer 18 is
The steam is sent to the steam drum 79, passed through the evaporator 17, and returned to the steam drum 19 again, and the steam generated during this time is sent to the super elongator 16.

かくして、スーパーヒータ16によって生成された乾き
蒸気は、蒸気加減弁20を経て蒸気タービン21に送ら
れ、ここて蒸気のエネルギーを動力に代えて発電機22
を回して電力を作り出す。エネルギーを失った蒸気は蒸
気タービン21から復水器23に送られ、ここで冷却水
と間接熱交換がなされ、はぼ常温化される。常温化され
た復水は、給水加熱器24.脱気器25を経て上述エコ
ノマイザ−18に送られ、再度蒸気化がなされている。
In this way, the dry steam generated by the super heater 16 is sent to the steam turbine 21 via the steam control valve 20, where the energy of the steam is converted into power and is driven by the generator 22.
to generate electricity. The steam that has lost energy is sent from the steam turbine 21 to the condenser 23, where it undergoes indirect heat exchange with cooling water and is brought to approximately room temperature. The condensate that has been brought to room temperature is sent to the feed water heater 24. It is sent through the deaerator 25 to the economizer 18, where it is vaporized again.

さて、プラント全体の運用は公知の如く、(a)ガス化
炉設備が負荷制御を行ない、カスタービン設備かガスタ
ービン入口ガス圧力(又はガス精製設備入口ガス圧力)
を制御するカスタービン追従モードと、(b)ガスター
ビン設備が負荷制御を行ない、カス化炉設備がガスター
ビン入口ガス圧力を制御するガス化炉追従モードとがあ
り、目的に応じてこのいずれかのモードで運用を行なう
ことが可能である。一般的に、ガス化炉追従モードは、
要求発電量に対して大きな遅れが無く発電を行なえる利
点があるが、ガス化炉3から供給されるガス圧力が大き
な遅れを件なっているため、特に負荷変化時にガス圧力
か大きく変動する欠点がある。
Now, as is well known, the operation of the entire plant is as follows: (a) The gasifier equipment performs load control, and the gas turbine equipment or gas turbine inlet gas pressure (or gas purification equipment inlet gas pressure)
(b) gasifier follow-up mode in which the gas turbine equipment performs load control and the cassifier equipment controls the gas turbine inlet gas pressure; either of these modes is available depending on the purpose. It is possible to operate in this mode. Generally, the gasifier following mode is
It has the advantage of being able to generate electricity without a large delay in relation to the required power generation amount, but the disadvantage is that the gas pressure supplied from the gasifier 3 has a large delay, so the gas pressure fluctuates greatly, especially when the load changes. There is.

方、カスタービン追従モードはガス化炉追従モードとは
逆に、ガス圧力を負荷変化時等においても大きな変動も
なく安定状態を保つのに対し、発電出力は発生するガス
の遅れに伴なって変化するため、負荷変化時には大きく
遅延するという特徴がある。
On the other hand, unlike the gasifier follow-up mode, the gas turbine follow-up mode maintains the gas pressure in a stable state without large fluctuations even when the load changes, but the power generation output changes due to the delay of the generated gas. Because the load changes, there is a large delay when the load changes.

負荷要求の見地から・はガス化炉追従モードに利点があ
り、システムの安定運転、即ち、機器の消耗防止の見地
からはガスタービン追従モードに利点がある。石炭ガス
化発電プラントは、ガス化炉内温度が1400〜160
0°Cという高温となるため、殻の金属材料では対応で
きず、よってガス化炉内はレンガ等を用いて対処してい
るが5炉内温度等炉内環境の急変は、レンガの消耗を加
速させる要因となる。しかるに、運用系態としては、シ
ステムのより安定な運用を望むなめ、ガスタービン追従
モードでの運用が多く用いられている。
From the standpoint of load requirements, the gasifier follow-up mode has an advantage, and from the standpoint of stable system operation, ie, prevention of equipment wear and tear, the gas turbine follow-up mode has an advantage. In a coal gasification power plant, the temperature inside the gasifier is 1400 to 160℃.
Because the temperature is as high as 0°C, metal materials for the shell cannot cope with the temperature, so bricks are used inside the gasifier. This is a factor that accelerates the process. However, in order to achieve more stable operation of the system, the gas turbine follow-up mode is often used.

第5図は、(a)ガスタービン追従モードに備えた制御
回路の一例を示すものてあり、以下説明を行なう。
FIG. 5 shows an example of a control circuit for (a) gas turbine follow-up mode, which will be explained below.

図中、ガス化炉37石炭量調整装置I、酸化剤量訳整装
置2からなるガス化炉設備と燃焼器8圧縮機9.ガスタ
ービン10.発電機11.燃料圧力調整弁6.燃料流量
調整弁7からなるガスタービン設備、更には、蒸気ター
ビン211発電機22. ;I気流量調整弁20からな
る蒸気タービン設備が示されている。これらのガス化炉
設備、ガスタービン設備、蒸気タービン設備には、夫々
の制御を実總するため、ガス化炉制御系26.ガスター
ビン制御系27.蒸気タービン制御系28の各制御系か
ら構成されており、ガス化炉制御系26では、ガスター
ビン設備の発電1111の発電機出力検出器29からの
信号と、蒸気タービン設備の発電機22の発電機出力検
出器30からの信号を入力し、加算器37で加算の後、
負荷設定器33の信号と共に減算器34へ入力し、減算
処理の後、比例積分要素35に導き、比例積分演算がな
される。比例積分処Bl!後の値はガス化炉制御信号と
して石炭・酸化剤制御系36へ入力され、石炭酸化剤夫
々の投入量をガス化炉制御信号に基づいて制御演算の後
、石炭量調整装置1.酸化剤量調整装置2夫々の制御指
令が出力される。
In the figure, the gasifier equipment includes a gasifier 37, a coal amount adjustment device I, an oxidizer amount adjustment device 2, a combustor 8, a compressor 9. Gas turbine 10. Generator 11. Fuel pressure regulating valve6. Gas turbine equipment consisting of a fuel flow regulating valve 7, further includes a steam turbine 211 and a generator 22. ; A steam turbine installation consisting of an I airflow regulating valve 20 is shown. These gasifier equipment, gas turbine equipment, and steam turbine equipment have a gasifier control system 26. Gas turbine control system 27. It is composed of each control system of the steam turbine control system 28, and the gasifier control system 26 receives the signal from the generator output detector 29 of the power generation 1111 of the gas turbine equipment and the power generation of the generator 22 of the steam turbine equipment. After inputting the signal from the machine output detector 30 and adding it in the adder 37,
The signal is input to the subtracter 34 along with the signal from the load setting device 33, and after subtraction processing, it is led to the proportional integral element 35, where a proportional integral calculation is performed. Proportional integral processing Bl! The latter value is input to the coal/oxidizer control system 36 as a gasifier control signal, and after controlling and calculating the input amount of each coal oxidizer based on the gasifier control signal, the coal amount adjusting device 1. Control commands for each of the oxidizing agent amount adjusting devices 2 are output.

ガスタービン制御系27ではガスタービン設備入日精製
ガス圧力検出器31の信号を入力し、圧力設定器38か
らの信号と共に減算器39で減算処理の後比例積分要素
40に導き、比pA積分演算がなされる。
In the gas turbine control system 27, the signal from the gas turbine equipment incoming purified gas pressure detector 31 is input, and after subtraction processing is performed by the subtractor 39 together with the signal from the pressure setting device 38, it is guided to the proportional integral element 40, and the ratio pA integral calculation is performed. will be done.

比例積分演算処理後の値は、ガスタービン制御指令信号
としてガスタービン制御部41に入力され、ガスタービ
ン制御指令信号に基づいて燃料流量制御弁開度を演算し
、図示しない制限制御指令信号と比較処理の後、燃料流
量調整弁7に制御弁開度指令信号として出力される。更
に、蒸気タービン制御系28では蒸気量設定器42より
蒸気タービン蒸気流量信号として蒸気タービン制御部4
5に入力され、蒸気タービン制御指令信号に基づいて蒸
気流量制御弁開度を演算し、蒸気流量調整弁20に制御
弁開度指令信号として出力される。
The value after the proportional integral calculation process is input to the gas turbine control unit 41 as a gas turbine control command signal, and the fuel flow control valve opening degree is calculated based on the gas turbine control command signal and compared with a limit control command signal (not shown). After the processing, it is output to the fuel flow rate regulating valve 7 as a control valve opening command signal. Further, in the steam turbine control system 28, the steam amount setting device 42 outputs a steam turbine steam flow rate signal to the steam turbine control section 4.
5, the steam flow rate control valve opening is calculated based on the steam turbine control command signal, and is output to the steam flow rate regulating valve 20 as a control valve opening command signal.

以上の制御系の構成により、要求負荷を得ると共に、ガ
ス系内圧力を所望の値とすることが可能となる。
The configuration of the control system described above makes it possible to obtain the required load and to set the pressure within the gas system to a desired value.

(発明が解決しようとする課題) ガスタービン追従モードにおいて負荷上昇を行なう場合
、負荷制御系はガス化炉制御系26で備えているため、
負荷上昇信号に基づき、まずガス化炉3への石炭量調整
装置1での石炭量と酸化剤量調整装置2での空気量が増
加され、生成されたカス量の増加に伴なうガスタービン
設備入口精製ガス圧力検出器31での圧力増加分を補正
すべく、ガスタービンへの供給精製ガス量が増加され、
その結果ガスタービン負荷が増加し、加えて、ガスター
ビン10からの排出ガス熱量の増加と、ガスクーラ4で
の発生熱量の増加に伴なう蒸発量の増加により、蒸気タ
ービン21への供給蒸気量が増加され、その結果蒸気タ
ービン出力が増加することにより、ガス化炉制御系26
での負荷設定器33からの要求負荷を得ることとなる。
(Problem to be Solved by the Invention) When increasing the load in the gas turbine follow-up mode, since the load control system is provided in the gasifier control system 26,
Based on the load increase signal, first, the amount of coal in the coal amount adjustment device 1 and the amount of air in the oxidizer amount adjustment device 2 are increased to the gasifier 3, and the gas turbine increases as the amount of generated waste increases. In order to compensate for the pressure increase at the equipment inlet purified gas pressure detector 31, the amount of purified gas supplied to the gas turbine is increased,
As a result, the gas turbine load increases, and in addition, the amount of steam supplied to the steam turbine 21 increases due to the increase in the amount of heat of the exhaust gas from the gas turbine 10 and the amount of evaporation due to the increase in the amount of heat generated in the gas cooler 4. is increased, resulting in an increase in steam turbine output, which increases the gasifier control system 26.
The requested load will be obtained from the load setter 33 at .

ところが、負荷要求が増加した直後は、ガス化炉3.ガ
スクーラ4及びガス精製装置5の大きな容積のため、ガ
ス圧力が増加せずガスタービン出力が増加しないばかり
か、酸化剤量調整装置2が流量増方向に動作するなめ、
ガスタービン設備の圧縮119吐出からの抽気流量増に
より、燃焼器8に流入する空気量が減方向に動作するた
めガスタービン10へ流入する燃焼ガスエネルギーが低
下し、その結果ガスタービン発電機出力が降下する、い
わゆる逆応答が生じてしまう。
However, immediately after the load request increases, the gasifier 3. Due to the large volumes of the gas cooler 4 and the gas purification device 5, the gas pressure does not increase and the gas turbine output does not increase, and the oxidizer amount adjustment device 2 operates in the direction of increasing the flow rate.
Due to an increase in the flow rate of extracted air from the compressor 119 discharge of the gas turbine equipment, the amount of air flowing into the combustor 8 decreases, so the combustion gas energy flowing into the gas turbine 10 decreases, and as a result, the gas turbine generator output decreases. This results in a so-called reverse response.

なお、蒸気タービンは、排熱回収ボイラー15又はガス
クーラ4での発生熱量の増加に遅れが生ずるため、蒸気
タービン発電@22での発生出力の増加も、遅れること
となる。
Note that in the steam turbine, since there is a delay in the increase in the amount of heat generated in the exhaust heat recovery boiler 15 or the gas cooler 4, the increase in the output generated in the steam turbine power generation @22 is also delayed.

その結果、ガス化炉制御系26へ入力される複合発電設
備からの発生電力量は、負荷上昇時に逆動作を示すこと
となり、そのため、負荷上昇を開始すると、逆動作現象
からガス化炉制御系26内の減算器34出力、即ち負荷
偏差が増大し、よってガス化炉への石炭量及び酸化剤量
の投入が更に増大してしまい、本運転モードの目的であ
るガス化炉の安定運転が達成されなくなってしまう。以
上、負荷上昇について説明したが、負荷降下時にも同様
の問題が生じる。
As a result, the amount of power generated from the combined power generation equipment that is input to the gasifier control system 26 will show a reverse operation when the load increases, and therefore, when the load starts to increase, the gasifier control system will The output of the subtractor 34 in 26, that is, the load deviation increases, and the amount of coal and oxidizer input to the gasifier further increases, making it difficult to operate the gasifier stably, which is the purpose of this operation mode. It will no longer be achieved. Although the load increase has been explained above, a similar problem occurs when the load decreases.

本発明は上記問題点を解決するためになされたものであ
り、負荷変化時に発生出力の逆動作が生ぜず、ガス化炉
の安定な運用が行なえる石炭ガス化複合発電制御装置を
提供することを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and provides a coal gasification combined cycle power generation control device that does not cause reverse operation of the generated output when the load changes and allows stable operation of the gasifier. It is an object.

[発明の構v1.] (課題を解決するための手段) 上記目的を達成するため、本発明はガス化炉制御系での
負荷設定器の出力信号、即ち負荷設定信号を蒸気タービ
ン制御系に入力し、負荷設定信号を不完全微分する回路
を設け、演算後の値を蒸気タービン制御系に加算し、負
荷設定・上昇又は降下速度に応じた蒸気タービン供給蒸
気量を与える回路を備える構成とした。
[Structure of the invention v1. (Means for Solving the Problems) In order to achieve the above object, the present invention inputs the output signal of the load setting device in the gasifier control system, that is, the load setting signal, to the steam turbine control system, and inputs the load setting signal into the steam turbine control system. The structure includes a circuit that performs incomplete differentiation, adds the calculated value to the steam turbine control system, and provides the amount of steam supplied to the steam turbine according to the load setting and speed of rise or fall.

(作 用) 石炭ガス化複合発電設備が、ガスタービン追従モードで
運用されている場合において負荷上昇を行なった場合、
負荷指令信号の増加の速さに応じた不完全微分要素での
演算値に基づいて蒸気タービンの制御系に加算すること
により、蒸気タービンの発電機出力が一時的に増加し、
ガスタービンの発電機出力の一時的な減少を補正し、プ
ラント全体として逆応答を生じないように作用する。こ
の時、蒸気タービン出力の一時的な増加は、蒸気系の保
有蒸気量が十分に大きいため問題は生じない。
(Function) If the coal gasification combined cycle power generation facility is operated in gas turbine follow-up mode and the load is increased,
By adding it to the steam turbine control system based on the calculated value of the incomplete differential element according to the speed of increase in the load command signal, the steam turbine generator output temporarily increases.
It compensates for the temporary decrease in the gas turbine generator output and acts to prevent the plant as a whole from causing an adverse response. At this time, the temporary increase in steam turbine output does not cause any problem because the amount of steam retained in the steam system is sufficiently large.

(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第1図は石炭ガス化複合発電プラントがガスタービン追
従モードで運用される場合の各設備制御系の概略ブロッ
ク図である。なお、第5図と同−構成部分については同
一符号を付し、その重複説明は省略する。
FIG. 1 is a schematic block diagram of each equipment control system when a coal gasification combined cycle power plant is operated in a gas turbine follow-up mode. Note that the same components as those in FIG. 5 are denoted by the same reference numerals, and redundant explanation thereof will be omitted.

蒸気タービン制御系28に新たに不完全微分要素46と
加算器47を備えて構成される。不完全微分要素46に
はガス化炉制御系26の減算器34の出力信号、即ち、
負荷偏差信号を入力し、偏差量を不完全微分の後、蒸気
量設定器42の出力信号と共に、不完全微分要素46の
出力信号を新たに備えた加算器47に入力する。その結
果、負荷上昇時において発生する負荷偏差の生ずる速さ
分を蒸気タービン側で負荷増操作させることとなる。
The steam turbine control system 28 is newly provided with an incomplete differential element 46 and an adder 47. The incomplete differential element 46 receives the output signal of the subtracter 34 of the gasifier control system 26, that is,
After inputting the load deviation signal and incompletely differentiating the amount of deviation, the output signal of the incomplete differentiation element 46 is inputted together with the output signal of the steam amount setting device 42 to an adder 47 newly provided. As a result, the steam turbine side is operated to increase the load by the speed at which the load deviation occurs when the load increases.

上記構成によれば、ガスタービン追従モードにおいてガ
ス化炉制御系26での負荷上昇指令時において、ガスタ
ービンは逆動作により発電機出力が瞬時降下するものの
、蒸気タービンにおいて発電機出力設定に対する実出力
の偏差の速度分だけ発電機出力が増加するため、ガス化
炉制御系26での加算器37出力信号、即ち、複合発電
系発電機出力信号は見掛は上、逆動作が生じなくなる。
According to the above configuration, when the gasifier control system 26 issues a load increase command in the gas turbine follow-up mode, the generator output momentarily drops due to reverse operation of the gas turbine, but the steam turbine outputs the actual output corresponding to the generator output setting. Since the generator output increases by the speed of the deviation, the output signal of the adder 37 in the gasifier control system 26, that is, the output signal of the combined power generation system generator, looks better and no reverse operation occurs.

なお、本回路は負荷上昇時のみならず、負荷降下時にお
いても同様に有効に動作する。
Note that this circuit operates effectively not only when the load increases, but also when the load decreases.

第2図は本発明によるプラントの応答(a)、従来のプ
ラントの応答(b)を示したもので、負荷上昇時にガス
タービン発電機出力は一時的に降下するため、従来はプ
ラント総出力も一時的に逆応答が生じるのに対し、本発
明によれば、蒸気タービン発電機出力がこれを補正する
ように動作するため、第2図(a、)に示すように、プ
ラント総出力に逆応答を生じさせず、良好に負荷上昇さ
せることができる。また、負荷降下時も同様である。
Figure 2 shows the response of the plant according to the present invention (a) and the response of the conventional plant (b).As the gas turbine generator output temporarily drops when the load increases, conventionally the total plant output also decreases. While a temporary reverse response occurs, according to the present invention, the steam turbine generator output operates to compensate for this, so as shown in FIG. The load can be increased satisfactorily without causing any response. The same applies when the load drops.

第3図及び第4図は本発明の他の実鳩例を示すブロック
図である。
FIGS. 3 and 4 are block diagrams showing other examples of real pigeons of the present invention.

第3図は第1図における不完全微分要素4Gの入力信号
として、減算器34の出力の代りに、負荷設定器33の
出力を使用することを除いて、第1図と同じ構成である
3 has the same configuration as FIG. 1, except that the output of the load setter 33 is used instead of the output of the subtracter 34 as the input signal of the incomplete differential element 4G in FIG.

例えば負荷上昇時、負荷設定器33の出力は上昇し、不
完全微分要lA46の出力も増加するために、前述の実
施例で説明したのと同様の効果が得られる。
For example, when the load increases, the output of the load setter 33 increases and the output of the incomplete differential element 1A 46 also increases, so that the same effect as described in the previous embodiment can be obtained.

第4図は第5図における蒸気タービン制御系28が、圧
力設定器48と圧力検出器49及び減算器50と比例積
分要素51とから構成される場合に、負荷設定器33の
出力を比例要素52を介して、比例積分要素51の出力
信号に加える構成である。
FIG. 4 shows that the output of the load setter 33 is converted to the proportional element when the steam turbine control system 28 in FIG. 52, it is added to the output signal of the proportional-integral element 51.

そして、負荷上昇時に負荷設定器33の出力が上昇すれ
ば、それに合せて比例要素52の出力も増加するために
結果的に蒸気加減弁20の開度が大きくなり、蒸気流量
が増加することで、蒸気タービン発電機出力が増加する
。この時、蒸気圧力は降下するために、蒸気タービン制
御系28は減方向に動作するが、保有蒸気量が十分に多
いためにゆっくりと動作する。従って、負荷変化の初め
の所では、−時的に蒸気タービン発電機出力が増加する
こととなり、前述した実施例と同様の効果が得られる。
If the output of the load setter 33 increases when the load increases, the output of the proportional element 52 also increases accordingly, resulting in an increase in the opening degree of the steam control valve 20 and an increase in the steam flow rate. , the steam turbine generator output increases. At this time, the steam pressure decreases, so the steam turbine control system 28 operates in a decreasing direction, but it operates slowly because the amount of retained steam is sufficiently large. Therefore, at the beginning of a load change, the steam turbine generator output temporarily increases, and the same effect as in the embodiment described above can be obtained.

[発明の効果] 以上説明したように、本発明によればガス化炉リードモ
ードにて負荷を変化させるとき蒸気タービンへの蒸気流
量を操作する構成としたので、プラントの内部状態を良
好に保ったまま(状態を大きくすることなく)負荷追従
性のよい石炭ガス化複合発電制御装置を提供することが
できる。
[Effects of the Invention] As explained above, according to the present invention, since the steam flow rate to the steam turbine is controlled when changing the load in the gasifier lead mode, the internal state of the plant can be maintained in good condition. Therefore, it is possible to provide a coal gasification combined cycle power generation control device with good load followability without changing the state (without increasing the state).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る石炭ガス化複合発電制御装置の一
実雑例の要部制御ブロック図、第2図は本発明と従来制
御の応答図、第3図、第4図は本発明の他の実施例を示
すブロック図、第5図は従来の石炭ガス化複合発電制御
装置ブロック図、第6図は複合発電プラントの概略全体
系統図である。 1・・・石炭量詞整装置  2・・・酸化剤量調整装置
3・・・ガス化炉     7・・・燃料流量側整弁8
・・・燃焼器      9・・・圧縮機10・・・ガ
スタービン   20・・・蒸気流量調整弁21・・・
蒸気タービン   26・・・ガス化炉制御系27・・
・カスタービン制御系 28・・・蒸気タービン制御系 46・・・不完全微分要素
Fig. 1 is a control block diagram of main parts of a practical example of a coal gasification combined cycle power generation control system according to the present invention, Fig. 2 is a response diagram of the present invention and conventional control, and Figs. 3 and 4 are in accordance with the present invention. FIG. 5 is a block diagram of a conventional coal gasification combined power generation control device, and FIG. 6 is a schematic overall system diagram of the combined power generation plant. 1...Coal amount adjustment device 2...Oxidizer amount adjustment device 3...Gasifier 7...Fuel flow rate side valve adjustment 8
...Combustor 9...Compressor 10...Gas turbine 20...Steam flow rate adjustment valve 21...
Steam turbine 26...Gasifier control system 27...
・Customer turbine control system 28...Steam turbine control system 46...Incomplete differential element

Claims (1)

【特許請求の範囲】[Claims] 石炭ガス化炉から供給される精製ガス圧力を検出して該
圧力を要求される設定圧力とするため圧力制御系にて制
御するガスタービン設備と、複合発電系発電機出力を検
出して該出力を要求出力とするため負荷制御系にて制御
するガス化炉設備と、ガスタービンの排出ガスによる熱
交換及び石炭ガス化炉ガスクーラによる熱交換により発
生した蒸気を蒸気流量制御弁を通して蒸気タービンに供
給する蒸気タービン設備とを有する石炭ガス化複合発電
プラントにおいて、負荷増・減時に際して蒸気タービン
へ供給する蒸気量を一時的に増・減し、蒸気タービン発
電量を先行的に補正する手段を備えたことを特徴とする
石炭ガス化複合発電制御装置。
Gas turbine equipment that detects the pressure of purified gas supplied from the coal gasifier and controls it with a pressure control system to adjust the pressure to the required set pressure, and detects the output of the combined cycle generator system and controls the output. In order to achieve the required output, the gasifier equipment is controlled by a load control system, and the steam generated through heat exchange with the gas turbine exhaust gas and heat exchange with the coal gasifier gas cooler is supplied to the steam turbine through the steam flow control valve. In a coal gasification combined cycle power generation plant having steam turbine equipment, the present invention is equipped with means for temporarily increasing or decreasing the amount of steam supplied to the steam turbine when the load increases or decreases, and proactively corrects the amount of power generated by the steam turbine. A coal gasification combined cycle power generation control device characterized by:
JP12884390A 1990-05-18 1990-05-18 Coal gasification combined power generation control device Pending JPH0427702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12884390A JPH0427702A (en) 1990-05-18 1990-05-18 Coal gasification combined power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12884390A JPH0427702A (en) 1990-05-18 1990-05-18 Coal gasification combined power generation control device

Publications (1)

Publication Number Publication Date
JPH0427702A true JPH0427702A (en) 1992-01-30

Family

ID=14994760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12884390A Pending JPH0427702A (en) 1990-05-18 1990-05-18 Coal gasification combined power generation control device

Country Status (1)

Country Link
JP (1) JPH0427702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130171A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Combined plant and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130171A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Combined plant and control method thereof

Similar Documents

Publication Publication Date Title
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2002129910A (en) Control equipment of integrated coal gasification combined cycle power generation plant
JP3433968B2 (en) Operation control method of integrated coal gasification combined cycle system
JPH0427702A (en) Coal gasification combined power generation control device
JPH0996227A (en) Pressure controller of gasification plant
JP2645128B2 (en) Coal gasification power plant control unit
JPH074603A (en) Refuse incinerating power-plant
JPS62279208A (en) Power generating plant control method
JPS6149487B2 (en)
JP2656352B2 (en) Coal gasification power plant
JP2585328B2 (en) Operating method of combined plant and apparatus therefor
JPH05340205A (en) Controller for combined power generation plant
JP2507426B2 (en) Coal gasification combined cycle controller
JPS61145322A (en) Control device in combined cycle plant for producing coal gas
JP3354776B2 (en) Operation method of incinerator complex plant equipment
JPH0674723B2 (en) Power plant control equipment
JPH01249926A (en) Controller for coal gasifying power generation
JPS63192919A (en) Control device for coal gasification combined plant
JPH0343609A (en) Control of power generation plant
JPH04116204A (en) Overshoot preventive circuit for controlling turbine bypass desuperheating
JPH10238315A (en) Combined cycle power plant
JP2507458B2 (en) Control equipment for coal gasification combined cycle plant
JPH03168333A (en) Controller for coal gasification combined cycle
JPH0323302A (en) Coal gasification power generating plant
JPS63100237A (en) Load control method of coal gasification power plant