JPH04275982A - Boron nitride-aluminum nitride combined sintered body and its production - Google Patents

Boron nitride-aluminum nitride combined sintered body and its production

Info

Publication number
JPH04275982A
JPH04275982A JP3058210A JP5821091A JPH04275982A JP H04275982 A JPH04275982 A JP H04275982A JP 3058210 A JP3058210 A JP 3058210A JP 5821091 A JP5821091 A JP 5821091A JP H04275982 A JPH04275982 A JP H04275982A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
boron nitride
sintering
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3058210A
Other languages
Japanese (ja)
Inventor
Hidenobu Miyazawa
宮澤 英伸
Shu Kashida
周 樫田
Toshiyuki Murayama
村山 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3058210A priority Critical patent/JPH04275982A/en
Publication of JPH04275982A publication Critical patent/JPH04275982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high purity boron nitride-aluminum nitride combined sintered body having superior characteristics at high temp. such as superior strength and electric insulating property and applicable to various applications. CONSTITUTION:When boron nitride is mixed with aluminum nitride and sintered, the denseness of the resulting sintered body is acceleratedly increased with a low m.p. sintering aid and the sintered body is annealed by heating to a high temp. after sintering. By this annealing, the excess sintering aid in the sintered body is vaporized or deposited on the surface of the sintered body and removed to enhance the purity of the sintered body and to improve the electric insulating property at high temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業の利用分野】本発明は、高純度でかつ高温での電
気絶縁性に優れる窒化ほう素・窒化アルミニウム複合焼
結体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron nitride/aluminum nitride composite sintered body having high purity and excellent electrical insulation properties at high temperatures, and a method for producing the same.

【0002】0002

【従来の技術及び発明が解決しようとする課題】従来よ
り、機械加工が可能なセラミックスとして窒化ほう素と
窒化アルミニウムとの複合焼結体が知られており、この
複合焼結体は、窒化ほう素、窒化アルミニウムともに難
焼結性物質であることから緻密な焼結体を得るために焼
結助剤を用いて焼結製造することが行われている。
[Prior Art and Problems to be Solved by the Invention] Composite sintered bodies of boron nitride and aluminum nitride have been known as ceramics that can be machined. Since aluminum nitride and aluminum nitride are both difficult to sinter, sintering is carried out using a sintering aid in order to obtain a dense sintered body.

【0003】この場合、焼結助剤としては、Y2O3等
の希土類化合物の他にB2O3、CaO等も使用される
が、通常焼結助剤として用いられるものは低融点化合物
であり、これらが焼結体中に残存すると、高温下での強
度、電気絶縁性の低下といった焼結体の高温特性を低下
させる原因となる。
In this case, in addition to rare earth compounds such as Y2O3, B2O3 and CaO are also used as sintering aids, but the ones normally used as sintering aids are low melting point compounds; If it remains in the sintered body, it causes deterioration in the high-temperature properties of the sintered body, such as a decrease in strength and electrical insulation at high temperatures.

【0004】一方、窒化ほう素・窒化アルミニウム複合
焼結体は、優れた耐熱性を有することから高温下で用い
られることが多いが、この場合上記焼結助剤による高温
強度や高温電気絶縁性の低下は、その応用範囲を制限す
る原因になっている。
On the other hand, boron nitride/aluminum nitride composite sintered bodies are often used at high temperatures because of their excellent heat resistance, but in this case, the high-temperature strength and high-temperature electrical insulation properties are The decrease in the amount of carbon dioxide has become a cause of limiting its range of application.

【0005】本発明は、上記事情に鑑みなされたもので
、高純度でかつ高温強度や高温電気絶縁性といった高温
特性に優れ、種々の用途に応用可能な窒化ほう素・窒化
アルミニウム複合焼結体及びその製造方法を提供するこ
とを目的とする。
The present invention was made in view of the above circumstances, and provides a boron nitride/aluminum nitride composite sintered body that is highly pure and has excellent high temperature properties such as high temperature strength and high temperature electrical insulation, and can be applied to various uses. The purpose is to provide a method for producing the same.

【0006】[0006]

【課題を解決しようとする手段及び作用】本発明者は、
上記目的を達成するため鋭意検討を行った結果、窒化ほ
う素と窒化アルミニウムとを混合焼結する際に、焼結助
剤、特に低融点の焼結助剤を用いて焼結体の緻密化を促
進させ、焼結後に焼結体を高温加熱処理してアニールす
ることにより、焼結体中の過剰な焼結助剤を気散させ、
又は焼結体表面に析出させた後に取り除くことによって
純度及び高温下での電気絶縁性を改善し得ることを見出
した。
[Means and effects for solving the problem] The present inventors:
As a result of intensive studies to achieve the above objectives, we found that when boron nitride and aluminum nitride are mixed and sintered, a sintering aid, especially a low melting point sintering aid, is used to densify the sintered body. By promoting the sintering process and annealing the sintered body by high-temperature heat treatment after sintering, the excess sintering aid in the sintered body is diffused.
Alternatively, it has been found that purity and electrical insulation properties at high temperatures can be improved by depositing on the surface of a sintered body and then removing it.

【0007】そして更に、本発明者は上記純度及び高温
電気絶縁性の改善効果が良好に発揮される焼結材料及び
加熱処理条件を見出すべく更に検討を進めた結果、焼結
材料としては、平均粒子径10μm以下の窒化アルミニ
ウム粉末を5〜90重量%、平均粒子径20μm以下の
窒化ほう素粉末を5〜90重量%及び焼結助剤を1〜1
0重量%の範囲でそれぞれ含有し、これらの合計が10
0重量%となる組成物が好適であり、また加熱処理条件
としては、不活性ガス雰囲気下において常圧又は減圧下
に1700〜2300℃の温度で熱処理する条件が良好
な結果を与え、上記焼結材料を焼結して得られた複合焼
結体を上記条件で加熱処理することにより、残存酸素量
が1重量%以下で1000℃における体積抵抗率が2×
108Ωcm以上である高純度で良好な高温電気絶縁性
を有する窒化ほう素・窒化アルミニウム複合焼結体が得
られることを知見し、本発明を完成するに至ったもので
ある。
[0007] Further, the present inventor conducted further studies in order to find a sintering material and heat treatment conditions that would exhibit the above-mentioned purity and high-temperature electrical insulation improvement effects favorably. As a result, as a sintered material, the average 5-90% by weight of aluminum nitride powder with a particle size of 10 μm or less, 5-90% by weight of boron nitride powder with an average particle size of 20 μm or less, and 1-1% of a sintering aid.
They each contain within the range of 0% by weight, and the total of these is 10% by weight.
A composition in which the concentration is 0% by weight is suitable, and as the heat treatment conditions, heat treatment at a temperature of 1700 to 2300°C under an inert gas atmosphere at normal pressure or reduced pressure gives good results. By heat-treating the composite sintered body obtained by sintering the sintering material under the above conditions, the volume resistivity at 1000°C is 2x with a residual oxygen amount of 1% by weight or less.
It was discovered that a boron nitride/aluminum nitride composite sintered body having a high purity of 108 Ωcm or more and good high-temperature electrical insulation properties can be obtained, and the present invention was completed.

【0008】従って、本発明は、残存酸素量が1重量%
以下で1000℃における体積抵抗率が2×108Ωc
m以上であることを特徴とする窒化ほう素・窒化アルミ
ニウム複合焼結体、及び平均粒子径10μm以下の窒化
アルミニウム粉末を5〜90重量%、平均粒子径20μ
m以下の窒化ほう素粉末を5〜90重量%及び焼結助剤
を1〜10重量%の範囲でそれぞれ含有し、これらの合
計が100重量%となる組成物を焼結してなる複合焼結
体を不活性ガス雰囲気下において常圧又は減圧下に17
00〜2300℃の温度で熱処理することにより上記窒
化ほう素・窒化アルミニウム複合焼結体を得ることを特
徴とする窒化ほう素・窒化アルミニウム複合焼結体の製
造方法を提供するものである。
Therefore, in the present invention, the amount of residual oxygen is 1% by weight.
Below, the volume resistivity at 1000℃ is 2×108Ωc
A boron nitride/aluminum nitride composite sintered body characterized by having a particle size of 5 to 90% by weight and an average particle size of 20 μm or less, and an aluminum nitride powder having an average particle size of 10 μm or less.
A composite sintered product obtained by sintering a composition containing boron nitride powder of 5 to 90% by weight and a sintering aid in a range of 1 to 10% by weight, the total of which is 100% by weight. The aggregate is heated under normal pressure or reduced pressure under an inert gas atmosphere.
The present invention provides a method for manufacturing a boron nitride/aluminum nitride composite sintered body, characterized in that the boron nitride/aluminum nitride composite sintered body is obtained by heat treatment at a temperature of 00 to 2300°C.

【0009】以下、本発明につき更に詳述すると、本発
明の窒化ほう素・窒化アルミニウム複合焼結体は、上述
したように残存酸素量が1重量%以下で、1000℃に
おける体積抵抗率が2×108Ωcm以上のものである
が、この場合、残存酸素量が1重量%を超えたり、体積
抵抗率が2×108Ωcm未満であると、高温電気特性
などの高温物性が低下し、本発明の目的を達成すること
ができず、また1000℃を超えるような高温下に晒さ
れる高温炉用の絶縁材や処理物容器として用いた場合、
ガスの発生などにより炉内の処理物に悪影響を与える場
合がある。なお、より好ましい残存酸素量は0.5重量
%以下、より好ましい体積抵抗率は1010Ωcm以上
、特に1012〜1016Ωcmである。
The present invention will be described in more detail below. As mentioned above, the boron nitride/aluminum nitride composite sintered body has a residual oxygen content of 1% by weight or less and a volume resistivity of 2 at 1000°C. x 108 Ωcm or more, but in this case, if the residual oxygen amount exceeds 1% by weight or the volume resistivity is less than 2 x 108 Ωcm, high-temperature physical properties such as high-temperature electrical properties deteriorate, and the object of the present invention is When used as an insulating material or processing material container for a high-temperature furnace that is exposed to high temperatures exceeding 1000°C,
The production of gas may have an adverse effect on the processed material in the furnace. In addition, a more preferable residual oxygen amount is 0.5% by weight or less, and a more preferable volume resistivity is 1010 Ωcm or more, particularly 1012 to 1016 Ωcm.

【0010】このような窒化ほう素・窒化アルミニウム
複合焼結体は、上述したように窒化アルミニウム粉末、
窒化ほう素粉末及び焼結助剤からなる混合物を焼結して
得た複合焼結体を高温加熱処理することにより、焼結体
中の過剰な焼結助剤を気散させ、又は焼結体表面に析出
させた後に取り除くことによって得ることができる。
[0010] Such a boron nitride/aluminum nitride composite sintered body is made of aluminum nitride powder, aluminum nitride powder,
By heating a composite sintered body obtained by sintering a mixture consisting of boron nitride powder and a sintering aid at a high temperature, excess sintering aid in the sintered body is diffused or sintered. It can be obtained by depositing it on the body surface and then removing it.

【0011】この場合、上記焼結原料混合物中の窒化ア
ルミニウム粉末としては、平均粒子径10μm以下、好
ましくは0.5〜5μmのものが5〜90%(重量%、
以下同じ)、好ましくは35〜60%配合され、また窒
化ほう素粉末としては、平均粒子径20μm以下、好ま
しくは0.5〜10μmのものが5〜90%、好ましく
は35〜60%配合され、更に焼結助剤としては、Y2
O3、B2O3、CaO、等が1〜10%、好ましくは
3〜5%配合され、これらの3成分の合計が100%と
なる組成物を焼結原料とする。この組成物は上記3成分
を混合することにより調製され、この場合の混合方法は
乾式で行ってもよいが、特に湿式で行うことが好ましく
、湿式で行う場合に用いられる分散媒としては、アルコ
ール類、炭化水素系溶媒を用いることが適当であり、水
は窒化アルミニウムを分解する恐れがあるので用いるべ
きではない。
In this case, 5 to 90% (by weight,
The same applies below), preferably 35 to 60%, and boron nitride powder with an average particle size of 20 μm or less, preferably 0.5 to 10 μm, is 5 to 90%, preferably 35 to 60%. , Furthermore, as a sintering aid, Y2
A composition in which O3, B2O3, CaO, etc. are blended in an amount of 1 to 10%, preferably 3 to 5%, and the total of these three components is 100% is used as a sintering raw material. This composition is prepared by mixing the above three components, and although the mixing method in this case may be carried out in a dry manner, it is particularly preferable to carry out in a wet manner. It is appropriate to use hydrocarbon-based solvents such as the like, and water should not be used since it may decompose aluminum nitride.

【0012】なお、上記焼結原料組成物中の窒化アルミ
ニウム粉末の配合量が90%を超えると、得られる複合
焼結体の機械加工性が極度に低下してしまい、窒化ほう
素粉末の配合量が90%を超えると、機械加工性は優れ
るものの緻密化が困難になり、強度の低下を招くことに
なる。また、この組成物中の窒化アルミニウムと窒化ほ
う素との好ましい配合比率は、重量比で60:40〜8
0:20である。
[0012] If the amount of aluminum nitride powder in the sintering raw material composition exceeds 90%, the machinability of the resulting composite sintered body will be extremely reduced, and the amount of boron nitride powder will be reduced. If the amount exceeds 90%, although machinability is excellent, densification becomes difficult, resulting in a decrease in strength. Further, the preferred blending ratio of aluminum nitride and boron nitride in this composition is 60:40 to 8 by weight.
It was 0:20.

【0013】この焼結原料から複合焼結体を得る方法と
しては、一軸加圧成形、静水圧加圧成形などの通常の成
形法で所望の形状に成形した後、成形体を不活性ガス雰
囲気中で焼結する通常の方法が用いられる。この場合、
焼結温度は通常1700〜2100℃とされ、1700
℃未満では緻密な焼結体が得られにくく、一方2100
℃を超える温度にしても焼結体の緻密化効果に変わりは
なく、経済的に不利となる。なお、成形法や焼結法は、
上記の方法に限定されず、例えば原料粉末を黒鉛製金型
に充填し、加熱と加圧を同時に行う熱間加圧法やHIP
など、粉末原料の焼結に通常用いられる他の方法を採用
することは差し支えない。
[0013] The method for obtaining a composite sintered body from this sintered raw material is to mold it into a desired shape by a normal forming method such as uniaxial pressing or isostatic pressing, and then place the molded body in an inert gas atmosphere. The usual method of sintering in a container is used. in this case,
The sintering temperature is usually 1700-2100℃,
Below 2100°C, it is difficult to obtain a dense sintered body;
Even if the temperature exceeds .degree. C., there is no change in the densification effect of the sintered body, which is economically disadvantageous. In addition, the molding method and sintering method are
Not limited to the above methods, for example, hot pressing method in which raw material powder is filled into a graphite mold and heated and pressurized at the same time, HIP
There is no problem in adopting other methods commonly used for sintering powder raw materials.

【0014】本発明の窒化ほう素・窒化アルミニウム複
合焼結体は、上記焼結原料を上記成形,焼結方法で焼結
して複合焼結体を得た後、これを高温加熱処理すること
により、高温電気絶縁性などの高温下での物性を低下さ
せる原因となる過剰な焼結助剤を該複合焼結体から除去
することにより得ることができる。
[0014] The boron nitride/aluminum nitride composite sintered body of the present invention can be obtained by sintering the above-mentioned sintering raw material by the above-described forming and sintering method to obtain a composite sintered body, and then subjecting this to high-temperature heat treatment. This can be obtained by removing from the composite sintered body excess sintering aid that causes deterioration of physical properties at high temperatures, such as high-temperature electrical insulation.

【0015】この場合、加熱処理条件としては、窒素ガ
ス、アルゴンガス、ヘリウムガス等の不活性ガス雰囲気
下において常圧下又は減圧下に1700〜2300℃、
好ましくは1900〜2100℃の温度で1時間以上、
特に3〜24時間程度熱処理する条件とされる。処理温
度が1700℃未満では焼結助剤を良好に除去すること
が困難であり、一方2300℃を超える温度で処理を行
っても炉材の消耗が激しくなるだけで焼結助剤の除去効
果は向上せず、不経済である。また、処理時間が1時間
未満であると、過剰の焼結助剤が残留してしまう場合が
あり、十分な高温特性が得られない場合がある。なお、
減圧下に処理を行う場合は、処理温度が2000℃を超
えると窒化アルミニウム及び窒化ほう素が分解してしま
う恐れがあるので、この場合は処理温度を2000℃以
下とすることが好ましい。この加熱処理により、過剰な
焼結助剤が気散又は焼結体表面に析出するが、この場合
焼結体表面に析出した焼結助剤は機械的又は表面に析出
した成分を溶解することが可能な溶媒を用いて化学的に
除去するものである。
In this case, the heat treatment conditions are 1700 to 2300° C. under normal pressure or reduced pressure in an inert gas atmosphere such as nitrogen gas, argon gas, helium gas, etc.
Preferably at a temperature of 1900 to 2100°C for 1 hour or more,
In particular, the conditions are such that the heat treatment is performed for about 3 to 24 hours. If the treatment temperature is less than 1700°C, it is difficult to remove the sintering aid properly, while if the treatment is performed at a temperature higher than 2300°C, the furnace material will only be consumed more rapidly and the removal effect of the sintering aid will be reduced. is not improved and is uneconomical. Furthermore, if the treatment time is less than 1 hour, excessive sintering aid may remain and sufficient high temperature properties may not be obtained. In addition,
If the treatment is carried out under reduced pressure, aluminum nitride and boron nitride may decompose if the treatment temperature exceeds 2000°C, so in this case the treatment temperature is preferably 2000°C or less. Due to this heat treatment, excessive sintering aid is diffused or precipitated on the surface of the sintered compact, but in this case, the sintering aid precipitated on the surface of the sintered compact cannot be mechanically or dissolved the components precipitated on the surface. It is chemically removed using a solvent that allows for

【0016】[0016]

【実施例】以下、実施例,比較例を示して本発明を具体
的に説明するが、本発明は下記実施例に制限されるもの
ではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0017】[実施例1,比較例1]平均粒子径3μm
の窒化アルミニウム粉末、平均粒子径3μmの窒化ほう
素粉末及び焼結助剤として酸化イットリウムを表1に示
した割合で混合し、1900℃、200kg/cm2の
圧力で1時間熱間加圧成形し、3種類の複合焼結体を得
た。
[Example 1, Comparative Example 1] Average particle diameter 3 μm
Aluminum nitride powder, boron nitride powder with an average particle size of 3 μm, and yttrium oxide as a sintering aid were mixed in the proportions shown in Table 1, and the mixture was hot-pressed at 1900°C and a pressure of 200 kg/cm2 for 1 hour. , three types of composite sintered bodies were obtained.

【0018】得られた複合焼結体をそれぞれ50mm×
50mm×10mmに加工し、黒鉛容器内で窒素雰囲気
下に常圧2000℃で10時間加熱した。処理後、それ
ぞれの複合焼結体から試験片を採取し、残存酸素量及び
1000℃での体積抵抗率を測定した。結果を表1に示
す。なお、残存酸素量は非分散赤外分光器を用いて測定
した。また、比較のため上記加熱処理を行わなかった以
外は同様にして得た複合焼結体からも試験片を採取し、
同様に残存酸素量及び体積抵抗率を測定した。結果を表
1に併記する。なお、表中%はすべて重量%である。
[0018] Each of the obtained composite sintered bodies has a size of 50 mm×
It was processed into a size of 50 mm x 10 mm and heated in a graphite container under a nitrogen atmosphere at normal pressure of 2000° C. for 10 hours. After the treatment, test pieces were taken from each composite sintered body, and the residual oxygen amount and volume resistivity at 1000°C were measured. The results are shown in Table 1. Note that the amount of residual oxygen was measured using a non-dispersive infrared spectrometer. For comparison, test pieces were also collected from composite sintered bodies obtained in the same manner except that the heat treatment was not performed.
The residual oxygen amount and volume resistivity were measured in the same manner. The results are also listed in Table 1. Note that all percentages in the table are percentages by weight.

【0019】[0019]

【表1】[Table 1]

【0020】[実施例2,比較例2]焼結助剤として酸
化イットリウムに代えて酸化ほう素を用いた以外は実施
例1及び比較例1と同様にして6種類の窒化ほう素・窒
化アルミニウム複合焼結体を得、これらについて上記と
同様にして残存酸素量及び体積抵抗率を測定した。結果
を表2に示す。
[Example 2, Comparative Example 2] Six types of boron nitride and aluminum nitride were prepared in the same manner as in Example 1 and Comparative Example 1, except that boron oxide was used instead of yttrium oxide as a sintering aid. Composite sintered bodies were obtained, and the residual oxygen amount and volume resistivity were measured in the same manner as above. The results are shown in Table 2.

【0021】[0021]

【表2】 表1及び表2の結果から、本発明の窒化ほう素・窒化ア
ルミニウム複合焼結体は残存酸素量が少ないことからY
2O3、B2O3の残存量が非常に少ないものであり、
従って十分な高純度化が達成され、しかもその体積抵抗
率をみると高温での電気絶縁性が改善されていることが
確認された。
[Table 2] From the results in Tables 1 and 2, it is clear that the boron nitride/aluminum nitride composite sintered body of the present invention has a small amount of residual oxygen.
The remaining amount of 2O3 and B2O3 is very small,
Therefore, it was confirmed that a sufficiently high degree of purity was achieved, and that the electrical insulation properties at high temperatures were improved when looking at the volume resistivity.

【0022】[0022]

【発明の効果】本発明の窒化ほう素・窒化アルミニウム
複合焼結体は、高純度で高温電気絶縁性等の高温特性に
優れ、1000℃以上の高温においても電気絶縁性の低
下が比較的少ない。また、2000℃付近の高温下でも
焼結体からのガス発生が少なく、従って従来高温特性の
低下から用いることが困難であった高温炉の絶縁材や処
理物容器などの高温下に晒される用途にも利用すること
ができ、窒化ほう素・窒化アルミニウム複合焼結体の応
用範囲を拡大するものである。
Effect of the invention: The boron nitride/aluminum nitride composite sintered body of the present invention has high purity and excellent high-temperature properties such as high-temperature electrical insulation, and shows relatively little decrease in electrical insulation even at high temperatures of 1000°C or higher. . In addition, there is little gas generation from the sintered compact even at high temperatures around 2000°C, so it is suitable for applications that are exposed to high temperatures, such as insulating materials for high-temperature furnaces and containers for processed materials, which were previously difficult to use due to deterioration of high-temperature properties. This expands the range of applications of boron nitride/aluminum nitride composite sintered bodies.

【0023】また、本発明の製造方法によれば、上記窒
化ほう素・窒化アルミニウム複合焼結体を確実に得るこ
とができる。
Furthermore, according to the manufacturing method of the present invention, the boron nitride/aluminum nitride composite sintered body can be reliably obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  残存酸素量が1重量%以下で1000
℃における体積抵抗率が2×108Ωcm以上であるこ
とを特徴とする窒化ほう素・窒化アルミニウム複合焼結
体。
[Claim 1] 1000 with residual oxygen amount of 1% by weight or less
A boron nitride/aluminum nitride composite sintered body having a volume resistivity of 2×10 8 Ωcm or more at °C.
【請求項2】  平均粒子径10μm以下の窒化アルミ
ニウム粉末を5〜90重量%、平均粒子径20μm以下
の窒化ほう素粉末を5〜90重量%及び焼結助剤を1〜
10重量%の範囲でそれぞれ含有し、これらの合計が1
00重量%となる組成物を焼結してなる複合焼結体を不
活性ガス雰囲気下において常圧又は減圧下に1700〜
2300℃の温度で熱処理することにより請求項1記載
の窒化ほう素・窒化アルミニウム複合焼結体を得ること
を特徴とする窒化ほう素・窒化アルミニウム複合焼結体
の製造方法。
2. 5-90% by weight of aluminum nitride powder with an average particle size of 10 μm or less, 5-90% by weight of boron nitride powder with an average particle size of 20 μm or less, and 1-1% by weight of a sintering aid.
Contains each in the range of 10% by weight, and the total of these is 1
A composite sintered body obtained by sintering a composition with a concentration of
A method for producing a boron nitride/aluminum nitride composite sintered body, which comprises obtaining the boron nitride/aluminum nitride composite sintered body according to claim 1 by heat treatment at a temperature of 2300°C.
JP3058210A 1991-02-28 1991-02-28 Boron nitride-aluminum nitride combined sintered body and its production Pending JPH04275982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058210A JPH04275982A (en) 1991-02-28 1991-02-28 Boron nitride-aluminum nitride combined sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3058210A JPH04275982A (en) 1991-02-28 1991-02-28 Boron nitride-aluminum nitride combined sintered body and its production

Publications (1)

Publication Number Publication Date
JPH04275982A true JPH04275982A (en) 1992-10-01

Family

ID=13077687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058210A Pending JPH04275982A (en) 1991-02-28 1991-02-28 Boron nitride-aluminum nitride combined sintered body and its production

Country Status (1)

Country Link
JP (1) JPH04275982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042241A1 (en) * 2000-11-22 2002-05-30 Ibiden Co., Ltd. Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2002220282A (en) * 2001-01-24 2002-08-09 Tokuyama Corp Aluminum nitride sintered compact and method of manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042241A1 (en) * 2000-11-22 2002-05-30 Ibiden Co., Ltd. Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2002220282A (en) * 2001-01-24 2002-08-09 Tokuyama Corp Aluminum nitride sintered compact and method of manufacture

Similar Documents

Publication Publication Date Title
KR20120007115A (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compound(s) for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
JP2999486B2 (en) Manufacturing method of machinable ceramics
JPH04275982A (en) Boron nitride-aluminum nitride combined sintered body and its production
JPH0212893B2 (en)
JP3241350B2 (en) Conductive ceramics and method for producing the same
JP4458692B2 (en) Composite material
JP3127824B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP2654108B2 (en) Manufacturing method of aluminum nitride sintered body
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPH0522670B2 (en)
JP3898346B2 (en) Conductive ceramic materials
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
SU1074402A3 (en) Method of producing silicon nitride-base articles
JPH0512299B2 (en)
JPH02307871A (en) Production of ceramic sintered compact
JPS6152103B2 (en)
JPH04310571A (en) Sintered material of aluminum nitride and its production
JPS62270468A (en) Aluminum nitride base sintered body
JPH06166569A (en) Production of sintered silicon nitride
JPH06100366A (en) Production of ceramic-carbon composite material
JP2001139379A (en) Method of producing highly thermal conductive aluminum nitride sintered compact
JPH02248368A (en) Ceramics sintered body and production thereof
JPS61205665A (en) Electrically insulating substrate and manufacture
JPS5891060A (en) Manufacture of silicon carbide sintered body
JPH05330917A (en) Production of highly heat conductive silicon carbide sintered compact