JPH04275918A - Thin laminated superconductive film and its production - Google Patents

Thin laminated superconductive film and its production

Info

Publication number
JPH04275918A
JPH04275918A JP3053504A JP5350491A JPH04275918A JP H04275918 A JPH04275918 A JP H04275918A JP 3053504 A JP3053504 A JP 3053504A JP 5350491 A JP5350491 A JP 5350491A JP H04275918 A JPH04275918 A JP H04275918A
Authority
JP
Japan
Prior art keywords
superconducting
thin film
laminated thin
substrate
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3053504A
Other languages
Japanese (ja)
Inventor
Tetsuro Sato
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3053504A priority Critical patent/JPH04275918A/en
Publication of JPH04275918A publication Critical patent/JPH04275918A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a Y-base thin laminated superconductive film which causes no reciprocal diffusion nor irregular orientation which causes deterioration of superconductive characteristics of the Y-base superconductor. CONSTITUTION:The Y-base thin laminated superconductive film has such a structure that a nonsuperconductive Pr-Ba-Cu oxide layer 3 is interposed with Y-base superconductor layers 2, 4. The thin laminated film is formed by vacuum vapor deposition, and the Pr-Ba-Cu oxide layer 3 is formed at lower temp. than for the Y-base superconductor layers 2, 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高い臨界温度(Tc)を
有するY系超伝導酸化物層により非超伝導酸化物中間層
を挟んだ構造を持つ超伝導積層薄膜およびその製造方法
に関するものである。
[Field of Industrial Application] The present invention relates to a superconducting laminated thin film having a structure in which a non-superconducting oxide intermediate layer is sandwiched between Y-based superconducting oxide layers having a high critical temperature (Tc), and a method for manufacturing the same. be.

【0002】0002

【従来の技術】高いTcを持つY系酸化物超伝導体の発
見以来、その高いTcをもたらす超伝導機構の解明のた
めの基礎研究や電子素子等への応用研究が活発に行われ
ている。Y系超伝導体は90Kという高いTcを持つた
め、その使用に際しては、77Kの沸点を持つ安価な液
体窒素を冷媒として使用でき、またその低温の維持のた
めの設備も簡単なものですむという長所を持っている。 このため、従来の低いTcを持つ物質を用いて実現した
超伝導磁石や超伝導電子素子等を、高いTcを持つY系
超伝導体を用いて実現することは産業上大きな貢献とな
る。
[Prior Art] Since the discovery of Y-based oxide superconductors with high Tc, basic research to elucidate the superconducting mechanism that provides the high Tc and applied research to electronic devices, etc. have been actively conducted. . Y-based superconductors have a high Tc of 90K, so when using them, inexpensive liquid nitrogen with a boiling point of 77K can be used as a refrigerant, and the equipment required to maintain the low temperature is simple. has advantages. Therefore, it would be a great contribution to industry to realize superconducting magnets, superconducting electronic devices, etc., which were realized using conventional materials with low Tc, using Y-based superconductors with high Tc.

【0003】0003

【発明が解決しようとする課題】このY系超伝導体を用
いて超伝導電子素子を作製する際、この素子の重要な構
成部分であるジョセフソントンネル接合やジョセフソン
弱接合を制御性良く作製する必要がある。このための方
法として、非超伝導体中間層を超伝導体で挟んだ積層構
造を作製する技術が一般的である。この中間層を構成す
る非超伝導物質としては、Y系超伝導体と結晶構造が似
ていること、Y系超伝導体との相互拡散が小さいこと、
低温で比抵抗が充分高いことなどの条件を満足する必要
がある。したがって、Y系超伝導積層薄膜の中間層とし
て、従来の低Tc超伝導積層構造で用いられていたAl
酸化物等の非超伝導物質をそのまま用いると、相互拡散
やY系超伝導薄膜の結晶配向性の乱れ等の問題が発生し
、超伝導積層薄膜の作製が不可能となる。本発明の目的
は、Y系超伝導積層薄膜で用いられる中間層としてY系
超伝導体に良く適した物質を選択することによって、相
互拡散やY系超伝導薄膜の結晶配向性の乱れ等のないY
系超伝導積層薄膜およびその製造方法を提供することに
ある。
[Problem to be solved by the invention] When fabricating a superconducting electronic device using this Y-based superconductor, it is possible to fabricate Josephson tunnel junctions and Josephson weak junctions, which are important components of this device, with good controllability. There is a need to. A common method for this purpose is to create a laminated structure in which a non-superconductor intermediate layer is sandwiched between superconductors. The non-superconducting material constituting this intermediate layer has a similar crystal structure to the Y-based superconductor, and has low interdiffusion with the Y-based superconductor.
It is necessary to satisfy conditions such as sufficiently high resistivity at low temperature. Therefore, as the intermediate layer of the Y-based superconducting laminated thin film, Al, which has been used in the conventional low Tc superconducting laminated structure,
If a non-superconducting substance such as an oxide is used as is, problems such as interdiffusion and disordered crystal orientation of the Y-based superconducting thin film will occur, making it impossible to fabricate a superconducting laminated thin film. The purpose of the present invention is to prevent mutual diffusion, disturbance of crystal orientation, etc. of the Y-based superconducting thin film by selecting a material well suited for the Y-based superconductor as the intermediate layer used in the Y-based superconducting laminated thin film. No Y
An object of the present invention is to provide a system superconducting laminated thin film and a method for manufacturing the same.

【0004】0004

【課題を解決するための手段】本発明は 、YaBab
CucOx なる式で表され、aは0.5≦a≦1.5
,bは1.5≦b≦2.5,cは2.5≦c≦3.5,
xは6.5≦x≦7.0である組成の超伝導酸化物層に
より、PrdBaeCufOy なる式で表され、dは
0.7≦d≦2.0,eは1.8≦e≦3.3,fは2
.0≦f≦3.2,yは6.5≦y≦7.0である組成
の非超伝導酸化物、またはPrgBah(Cu1−RM
R)iOZなる式(MはAl,Ti,V,Cr,Mn,
Fe,Co,Ni,Zn,Nb,Ptの中の少なくとも
1種)で表され、Rは0<R≦0.2,gは0.8≦g
≦1.8,hは1.9≦h≦2.9,iは2.2≦i≦
3.0,zは6.5≦z≦7.0である組成の非超伝導
酸化物、またはPrj(Ba1−sLs)kCumOw
なる式(LはSr,Caの中の少なくとも1種)で表さ
れ、Sは0<S≦0.5,jは0.9≦j≦1.6,k
は1.9≦k≦2.6,mは2.4≦m≦3.0,wは
6.5≦w≦7.0である組成の非超伝導酸化物よりな
る中間層の両側を挟んだ構造を持つことを特徴とする超
伝導積層薄膜である。
[Means for Solving the Problems] The present invention is based on YaBab
It is expressed by the formula CucOx, where a is 0.5≦a≦1.5
, b is 1.5≦b≦2.5, c is 2.5≦c≦3.5,
x is represented by the formula PrdBaeCufOy due to the superconducting oxide layer having a composition of 6.5≦x≦7.0, d is 0.7≦d≦2.0, and e is 1.8≦e≦3. .3, f is 2
.. A non-superconducting oxide with a composition of 0≦f≦3.2, y being 6.5≦y≦7.0, or PrgBah (Cu1-RM
R) iOZ formula (M is Al, Ti, V, Cr, Mn,
Fe, Co, Ni, Zn, Nb, Pt), R is 0<R≦0.2, g is 0.8≦g
≦1.8, h is 1.9≦h≦2.9, i is 2.2≦i≦
3.0, z is a non-superconducting oxide with a composition of 6.5≦z≦7.0, or Prj(Ba1-sLs)kCumOw
(L is at least one of Sr and Ca), S is 0<S≦0.5, j is 0.9≦j≦1.6, k
is 1.9≦k≦2.6, m is 2.4≦m≦3.0, and w is 6.5≦w≦7.0. This is a superconducting laminated thin film characterized by a sandwiched structure.

【0005】また、上記の超伝導積層薄膜の製造方法は
、非超伝導酸化物よりなる中間層を作製する際、超伝導
酸化物層を作製するときより低い温度で真空蒸着法によ
り作製することを特徴とする。
[0005] Furthermore, in the method for producing the superconducting laminated thin film described above, when producing the intermediate layer made of a non-superconducting oxide, it is produced by a vacuum evaporation method at a lower temperature than when producing the superconducting oxide layer. It is characterized by

【0006】[0006]

【作用】Y系超伝導体であるYaBabCucOxにお
いて、aの範囲を0.5≦a≦1.5、bの範囲を1.
5≦b≦2.5、cの範囲を2.5≦c≦3.5、xの
範囲を6.5≦x≦7.0と限定したのは、この範囲を
はずれると、作製された薄膜中に超伝導相以外の第2相
が高い割合で生成してしまい、Tcの値の著しい低下や
、表面平坦性の悪化等の問題が生じるためである。
[Operation] In YaBabCucOx, which is a Y-based superconductor, the range of a is 0.5≦a≦1.5, and the range of b is 1.5≦a≦1.5.
5≦b≦2.5, the range of c is limited to 2.5≦c≦3.5, and the range of x is limited to 6.5≦x≦7.0. This is because a high proportion of a second phase other than the superconducting phase is generated in the thin film, causing problems such as a significant decrease in the Tc value and deterioration of surface flatness.

【0007】さらに、Pr−Ba−Cu系酸化物である
PrdBaeCufOy、PrgBah(Cu1−RM
R)iOZまたはPrj(Ba1−sLs)kCumO
wにおいて、dの範囲を0.7≦d≦2.0、eの範囲
を1.8≦e≦3.3、fの範囲を2.0≦f≦3.2
、gの範囲を0.8≦g≦1.8、hの範囲を1.9≦
h≦2.9、iの範囲を2.2≦i≦3.0、jの範囲
を0.9≦j≦1.6、kの範囲を1.9≦k≦2.6
、mの範囲を2.4≦m≦3.0、yの範囲を6.5≦
y≦7.0、zの範囲を6.5≦z≦7.0、wの範囲
を6.5≦w≦7.0、Rの範囲を0<R≦0.2、S
の範囲を0<S≦0.5と限定したのは、この範囲をは
ずれると、作製された薄膜中にPr−Ba−Cu系酸化
物以外の第2相が高い割合で生成してしまい、表面平坦
性が悪化するためである。
Furthermore, PrdBaeCufOy, PrgBah(Cu1-RM
R) iOZ or Prj(Ba1-sLs)kCumO
In w, the range of d is 0.7≦d≦2.0, the range of e is 1.8≦e≦3.3, and the range of f is 2.0≦f≦3.2.
, the range of g is 0.8≦g≦1.8, the range of h is 1.9≦
h≦2.9, the range of i is 2.2≦i≦3.0, the range of j is 0.9≦j≦1.6, the range of k is 1.9≦k≦2.6
, m range is 2.4≦m≦3.0, y range is 6.5≦
y≦7.0, z range is 6.5≦z≦7.0, w range is 6.5≦w≦7.0, R range is 0<R≦0.2, S
The reason why the range of is limited to 0<S≦0.5 is that if this range is exceeded, a high proportion of second phases other than Pr-Ba-Cu-based oxides will be generated in the produced thin film. This is because the surface flatness deteriorates.

【0008】また、Pr−Ba−Cu系酸化物を中間層
として用いたのは、Y系超伝導体と同じ結晶構造を持っ
ているうえ、格子定数の差も小さく、Y系超伝導体層の
上にPr−Ba−Cu系酸化物層をエピタキシャル成長
させ得ること、および逆にPr−Ba−Cu系酸化物層
の上にY系超伝導体層をエピタキシャル成長させること
が可能であること、Y系超伝導体層との間の相互拡散が
小さいこと、低温で充分高い比抵抗を持つことが理由で
ある。
[0008] Furthermore, the use of Pr-Ba-Cu-based oxide as the intermediate layer has the same crystal structure as the Y-based superconductor, and the difference in lattice constant is small. It is possible to epitaxially grow a Pr-Ba-Cu based oxide layer on the Pr-Ba-Cu based oxide layer, and conversely, it is possible to epitaxially grow a Y-based superconductor layer on the Pr-Ba-Cu based oxide layer, Y This is because mutual diffusion with the system superconductor layer is small and the resistivity is sufficiently high at low temperatures.

【0009】さらに、Pr−Ba−Cu系酸化物の構成
元素のうち、Al等でCuを、またはSr等でBaを一
部置換すれば、Pr−Ba−Cu系酸化物の比抵抗をさ
らに高めることができ、ジョセフソントンネル接合への
応用を考えるとより好ましい。また、真空蒸着法により
500〜750℃の温度でY系超伝導積層薄膜を作製す
れば、作製後において約900℃での高温熱処理をしな
くてもY系酸化物の超伝導性が得られ、平坦な表面を持
つ超伝導積層薄膜が得られる。また、Y系酸化物に比べ
、Pr−Ba−Cu系酸化物は第2相が生成しやすいの
で、Y系超伝導積層薄膜作製の際、Pr−Ba−Cu系
酸化物層作製時にY系超伝導体層作製時より作製温度を
低くすると、比抵抗がより低くなるものの、Pr−Ba
−Cu系酸化物層の表面平坦性が向上し、良質の積層薄
膜が作製できる。
Furthermore, among the constituent elements of the Pr-Ba-Cu oxide, if Cu is partially replaced with Al or the like, or Ba is partially replaced with Sr or the like, the specific resistance of the Pr-Ba-Cu oxide can be further increased. This is more preferable when considering application to Josephson tunnel junctions. Furthermore, if a Y-based superconducting laminated thin film is produced at a temperature of 500 to 750°C by vacuum evaporation, the superconductivity of the Y-based oxide can be obtained without the need for high-temperature heat treatment at about 900°C after production. , superconducting laminated thin films with flat surfaces can be obtained. In addition, compared to Y-based oxides, Pr-Ba-Cu-based oxides are more likely to generate a second phase. Although the specific resistance becomes lower when the fabrication temperature is lower than that during superconductor layer fabrication, Pr-Ba
- The surface flatness of the Cu-based oxide layer is improved, and a high-quality laminated thin film can be produced.

【0010】0010

【実施例】次に、本発明の実施例について説明する。図
1は本発明によるY系超伝導積層薄膜の概略断面図であ
る。基板1には(001)SrTiO3単結晶基板を用
いた。基板としてはSrTiO3基板の他の方位の結晶
や、LaAlO3、MgO等、他の材質を用いてもさし
つかえない。基板の大きさは15mm角で、厚さは0.
5mmである。基板1上に、まずY系超伝導体層2を堆
積させ、その上にPr−Ba−Cu系酸化物層3を、最
後にその上にY系超伝導体層4を堆積させて作製する。
[Example] Next, an example of the present invention will be described. FIG. 1 is a schematic cross-sectional view of a Y-based superconducting laminated thin film according to the present invention. As the substrate 1, a (001) SrTiO3 single crystal substrate was used. As the substrate, crystals in other orientations of the SrTiO3 substrate, LaAlO3, MgO, and other materials may be used. The size of the board is 15 mm square, and the thickness is 0.
It is 5mm. First, a Y-based superconductor layer 2 is deposited on a substrate 1, a Pr-Ba-Cu-based oxide layer 3 is deposited thereon, and finally a Y-based superconductor layer 4 is deposited thereon. .

【0011】図2は図1に示したY系超伝導積層薄膜を
作製するために本実施例で用いた多元蒸着装置の概略構
成図である。真空槽11には電子線加熱装置13,14
,15,16,17,18が備え付けられており、6種
類の蒸着材料Y19,Pr20,Ba21,Cu22,
Al等23、Sr等24をそれぞれ独立に加熱し、各成
分原子を独立に蒸発させる。この際、加熱装置としては
抵抗加熱装置等、他の加熱装置を用いてもさしつかえな
い。さらに蒸着材料として、例えばBaの代わりにBa
CO3、Yの代わりにY2O3を用いる等、他の組み合
わせを採用してもさしつかえない。積層薄膜作製中、基
板42はヒ−タ37によって900℃まで加熱すること
ができる。また積層薄膜の均一性を高めるため、積層薄
膜作製中に基板を基板回転機構38によって回転させる
ことができる。酸素ガスをオゾン発生装置39に導入し
てオゾンを含む酸素ガスを作製し、これをテフロン製チ
ュ−ブ40および石英管41を通して積層薄膜作製中基
板に向けて吹き付けることができる。
FIG. 2 is a schematic diagram of a multi-component vapor deposition apparatus used in this example to fabricate the Y-based superconducting laminated thin film shown in FIG. 1. The vacuum chamber 11 is equipped with electron beam heating devices 13 and 14.
, 15, 16, 17, 18, and six types of vapor deposition materials Y19, Pr20, Ba21, Cu22,
Al, etc. 23 and Sr, etc. 24 are each independently heated to evaporate each component atom independently. At this time, other heating devices such as a resistance heating device may be used as the heating device. Furthermore, as a vapor deposition material, for example, Ba can be used instead of Ba.
Other combinations may be used, such as using Y2O3 instead of CO3 or Y. During the production of the laminated thin film, the substrate 42 can be heated to 900° C. by the heater 37. Further, in order to improve the uniformity of the laminated thin film, the substrate can be rotated by the substrate rotation mechanism 38 during the production of the laminated thin film. Oxygen gas is introduced into the ozone generator 39 to produce an oxygen gas containing ozone, which can be blown through the Teflon tube 40 and the quartz tube 41 toward the substrate during the production of the laminated thin film.

【0012】薄膜作製に際しては、まず真空槽11を真
空排気系12により10−7Torr台まで排気する。 この後、真空槽11内の真空度が4×10−4Torr
程度になるように、酸素ガスをオゾン発生装置39、テ
フロン製チュ−ブ40および石英管41を通して真空槽
11内に導入する。この際、真空槽11内の真空度は1
0−5Torr台〜10−3Torr台の範囲内であれ
ば、他の真空度でもさしつかえない。オゾン発生装置3
9でオゾンを発生させると、オゾンを含む酸素ガスを基
板42に向けて吹き付ける。オゾン発生装置39を稼働
させず、酸素ガスのみを基板に向けて吹き付けた場合は
、良質のY系超伝導体が得られず、目的の超伝導積層薄
膜を作製することはできない。なお、本実施例ではオゾ
ン発生装置を用いてオゾンを含んだ酸素ガスを基板に吹
き付け薄膜を酸化したが、酸素ガスを高周波(RF)や
マイクロ波で活性化させ、薄膜の酸化を行っても同じよ
うに良質の超伝導積層薄膜を作製することができる。基
板42はヒ−タ37によって加熱され、その温度は約6
00℃に保持されている。なおこの基板温度は500〜
750℃の範囲であれば他の温度でもさしつかえない。 また積層薄膜作製中、基板42は基板回転機構38で約
10rpmの速度で回転している。この状態で電子線加
熱装置13,14,15,16,17,18で各蒸着材
料19,20,21,22,23,24を加熱し、各原
子を蒸発させる。ただしY系超伝導体層を堆積させる際
は、Pr用シャッタ26、Al等用シャッタ29および
Sr等用シャッタ30を閉じて不要な原子が基板に到達
しないようにし、Pr−Ba−Cu系酸化物層を堆積さ
せる際にはY用シャッタ25、Al等用シャッタ29お
よびSr等用シャッタ30を閉じて不要な原子が基板に
到達しないようにする。また例えば、Pr−Ba−Cu
系酸化物層のCuをAlで一部置換したい場合は、蒸着
材料23としてAlを置き、Pr−Ba−Cu系酸化物
層堆積時にシャッタ29もあわせて開ければよい。
When producing a thin film, first, the vacuum chamber 11 is evacuated to a pressure of about 10 -7 Torr using the vacuum evacuation system 12 . After this, the degree of vacuum in the vacuum chamber 11 is set to 4 x 10-4 Torr.
Oxygen gas is introduced into the vacuum chamber 11 through the ozone generator 39, the Teflon tube 40, and the quartz tube 41 so that the temperature is at a certain level. At this time, the degree of vacuum in the vacuum chamber 11 is 1
Other degrees of vacuum may be used as long as they are within the range of 0-5 Torr to 10-3 Torr. Ozone generator 3
When ozone is generated in step 9, oxygen gas containing ozone is blown toward the substrate 42. If the ozone generator 39 is not operated and only oxygen gas is blown toward the substrate, a high quality Y-based superconductor cannot be obtained and the desired superconducting laminated thin film cannot be produced. Note that in this example, an ozone generator was used to spray oxygen gas containing ozone onto the substrate to oxidize the thin film, but it is also possible to activate the oxygen gas using radio frequency (RF) or microwaves to oxidize the thin film. Similarly, high-quality superconducting laminated thin films can be produced. The substrate 42 is heated by the heater 37, and its temperature is about 6
The temperature is maintained at 00°C. Note that this substrate temperature is 500~
Other temperatures within the range of 750°C are also acceptable. Further, during the production of the laminated thin film, the substrate 42 is rotated at a speed of about 10 rpm by the substrate rotation mechanism 38. In this state, each vapor deposition material 19, 20, 21, 22, 23, 24 is heated by electron beam heating devices 13, 14, 15, 16, 17, 18 to evaporate each atom. However, when depositing a Y-based superconductor layer, close the Pr shutter 26, the Al etc. shutter 29, and the Sr etc. shutter 30 to prevent unnecessary atoms from reaching the substrate. When depositing a material layer, the shutter 25 for Y, the shutter 29 for Al, etc., and the shutter 30 for Sr, etc. are closed to prevent unnecessary atoms from reaching the substrate. For example, Pr-Ba-Cu
If it is desired to partially replace Cu in the Pr-Ba-Cu based oxide layer with Al, Al may be placed as the vapor deposition material 23 and the shutter 29 may be opened at the same time when the Pr-Ba-Cu based oxide layer is deposited.

【0013】なお、各材料の蒸発速度は蒸発速度計31
,32,33,34,35,36で常に測定し、その測
定値をもとに電子線加熱装置を制御し、蒸発速度を制御
している。各材料の蒸発速度が目的組成の酸化物層を堆
積するのに適した値になったことを確認してから基板シ
ャッタ43を開け、薄膜の堆積を開始する。なお各蒸着
材料の蒸発速度、すなわち各酸化物層の組成は、Y系酸
化物およびPr−Ba−Cu系酸化物の各単層薄膜をあ
らかじめ作製し、その組成をもとに決定した。単層薄膜
の組成は電子線励起X線微小分析装置(EPMA)で決
定した。各蒸発原子は酸素分子またはオゾン分子と反応
し、加熱された基板上で酸化物層として堆積する。堆積
速度は約0.5オングストロ―ム/sである。作製した
積層薄膜の各層の厚さは、いずれも約300オングスト
ロ―ムである。
[0013] The evaporation rate of each material is measured using an evaporation rate meter 31.
, 32, 33, 34, 35, and 36, and based on the measured values, the electron beam heating device is controlled to control the evaporation rate. After confirming that the evaporation rate of each material has reached a value suitable for depositing an oxide layer of the desired composition, the substrate shutter 43 is opened and thin film deposition is started. The evaporation rate of each vapor deposition material, that is, the composition of each oxide layer, was determined based on the compositions of single-layer thin films of Y-based oxide and Pr-Ba-Cu-based oxide prepared in advance. The composition of the single-layer thin film was determined using an electron beam excited X-ray microanalyzer (EPMA). Each evaporated atom reacts with an oxygen or ozone molecule and is deposited as an oxide layer on the heated substrate. The deposition rate is about 0.5 angstroms/s. The thickness of each layer of the produced laminated thin film was approximately 300 angstroms.

【0014】積層薄膜作製後は、各シャッタ25,26
,27,28,29,30および基板シャッタ43を閉
じて堆積を終了させる。次にヒ−タ37での加熱をやめ
、基板42およびその上に作製された積層薄膜を自然冷
却する。この冷却の際も、オゾンを含む酸素ガスは基板
に向けて吹き付け続ける。約1時間の冷却で基板温度は
約100℃にまで下がる。ここで基板42を大気中に取
り出す。
After producing the laminated thin film, each shutter 25, 26
, 27, 28, 29, 30 and the substrate shutter 43 are closed to complete the deposition. Next, heating by the heater 37 is stopped, and the substrate 42 and the laminated thin film formed thereon are naturally cooled. Even during this cooling, oxygen gas containing ozone continues to be blown toward the substrate. After about 1 hour of cooling, the substrate temperature drops to about 100°C. Here, the substrate 42 is taken out into the atmosphere.

【0015】こうして作製したY系超伝導積層薄膜を2
次イオン質量分析装置(SIMS)で分析すると、各層
は相互拡散せず堆積されており、良質の積層薄膜が作製
されていることが確認された。また、この積層薄膜をX
線回折法および電子線回折法で調べると、各層ともc軸
が基板表面に垂直で、基板の[100]方向と各酸化物
の[100]方向とが平行なエピタキシャル成長してい
ることが確認された。なおX線回折法で調べた結果、Y
系酸化物相およびPr−Ba−Cu系酸化物相以外の相
は薄膜中に存在していないことが確認された。積層薄膜
の表面および同条件で作製した各単層薄膜の表面を2次
電子顕微鏡で観察したところ、表面は50オングストロ
―ム以下の精度で平坦であることが確認された。4端子
法でY系超伝導体層2,4の抵抗の温度変化を測定した
ところ、いずれの層ともに85K以上のTcを持つこと
が確認され、良質のY系超伝導体層が作製されているこ
とがわかった。また、室温でのY系酸化物層間の抵抗値
は充分に高く、Pr−Ba−Cu系酸化物層3がY系酸
化物層間に均一に存在していることが確認された。また
、Pr−Ba−Cu系酸化物の比抵抗は、Al等による
Cuの一部置換およびSr等によるBaの一部置換によ
り、置換無しの場合に比べて2倍以上高くすることがで
きた。
[0015] The Y-based superconducting laminated thin film thus produced was
Analysis using a subsequent ion mass spectrometer (SIMS) confirmed that each layer was deposited without interdiffusion, and that a high-quality laminated thin film had been produced. In addition, this laminated thin film is
When examined by line diffraction and electron diffraction, it was confirmed that the c-axis of each layer was perpendicular to the substrate surface, and the [100] direction of the substrate and the [100] direction of each oxide were epitaxially grown parallel to each other. Ta. Furthermore, as a result of investigation using X-ray diffraction method, Y
It was confirmed that no phases other than the Pr-Ba-Cu-based oxide phase and the Pr-Ba-Cu-based oxide phase were present in the thin film. When the surface of the laminated thin film and the surface of each single-layer thin film produced under the same conditions were observed using a secondary electron microscope, it was confirmed that the surface was flat with an accuracy of 50 angstroms or less. When the temperature change in the resistance of Y-based superconductor layers 2 and 4 was measured using the four-probe method, it was confirmed that both layers had a Tc of 85K or more, indicating that a high-quality Y-based superconductor layer had been fabricated. I found out that there is. Furthermore, it was confirmed that the resistance value between the Y-based oxide layers at room temperature was sufficiently high, and the Pr-Ba-Cu-based oxide layer 3 was uniformly present between the Y-based oxide layers. In addition, the specific resistance of the Pr-Ba-Cu oxide could be made more than twice as high as that without substitution by partially replacing Cu with Al etc. and partially replacing Ba with Sr etc. .

【0016】以上のように良質なY系超伝導積層薄膜が
多元蒸着法で作製できたが、Pr−Ba−Cu系酸化物
層3を堆積中に限って基板温度を約550℃に下げると
、Pr−Ba−Cu系酸化物層の表面平坦性が向上し、
より良質な積層薄膜を作製することができた。なおこの
Pr−Ba−Cu系酸化物層を堆積する際の基板温度は
500〜750℃の範囲内であれば他の温度でも差し支
えない。
As described above, a high-quality Y-based superconducting laminated thin film was fabricated by the multi-component vapor deposition method, but if the substrate temperature was lowered to about 550° C. only during the deposition of the Pr-Ba-Cu-based oxide layer 3, , the surface flatness of the Pr-Ba-Cu-based oxide layer is improved,
We were able to create a laminated thin film of better quality. Note that the substrate temperature when depositing this Pr--Ba--Cu based oxide layer may be any other temperature within the range of 500 to 750°C.

【0017】[0017]

【発明の効果】以上、詳細に説明したように、本発明に
よるY系超伝導積層薄膜は、相互拡散やY系超伝導薄膜
の結晶配向性の乱れ等のない良質なもので、Y系超伝導
体の超伝導電子素子への応用上効果が大きい。
Effects of the Invention As explained above in detail, the Y-based superconducting laminated thin film according to the present invention is of good quality without interdiffusion or disorder of crystal orientation of the Y-based superconducting thin film, and is of good quality. This is highly effective in applying conductors to superconducting electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるY系超伝導積層薄膜の概略断面図
である。
FIG. 1 is a schematic cross-sectional view of a Y-based superconducting laminated thin film according to the present invention.

【図2】本発明による実施例で使用した多元蒸着装置の
一例の概略構成図である。
FIG. 2 is a schematic configuration diagram of an example of a multi-component vapor deposition apparatus used in an example according to the present invention.

【符号の説明】[Explanation of symbols]

1,42  基板                 
       2,4  Y系超伝導体層 3  Pr−Ba−Cu系酸化物層        1
1  真空槽12  真空排気系 13,14,15,16,17,18  電子線加熱装
置19,20,21,22,23,24  蒸着材料2
5,26,27,28,29,30  シャッタ31,
32,33,34,35,36  蒸発速度計37  
ヒ−タ                      
    38  基板回転機構 39  オゾン発生装置              
    40  テフロン製チュ−ブ 41  石英管                  
        43  基板シャッタ
1,42 board
2,4 Y-based superconductor layer 3 Pr-Ba-Cu-based oxide layer 1
1 Vacuum chamber 12 Vacuum exhaust system 13, 14, 15, 16, 17, 18 Electron beam heating device 19, 20, 21, 22, 23, 24 Vapor deposition material 2
5, 26, 27, 28, 29, 30 shutter 31,
32, 33, 34, 35, 36 Evaporation rate meter 37
heater
38 Substrate rotation mechanism 39 Ozone generator
40 Teflon tube 41 Quartz tube
43 Board shutter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  YaBabCucOx なる式で表さ
れ、aは0.5≦a≦1.5,bは1.5≦b≦2.5
,cは2.5≦c≦3.5,xは6.5≦x≦7.0で
ある組成の超伝導酸化物層により、PrdBaeCuf
Oy なる式で表され、dは0.7≦d≦2.0,eは
1.8≦e≦3.3,fは2.0≦f≦3.2,yは6
.5≦y≦7.0である組成の非超伝導酸化物よりなる
中間層の両側を挟んだ構造を持つことを特徴とする超伝
導積層薄膜。
[Claim 1] Represented by the formula YaBabCucOx, where a is 0.5≦a≦1.5, and b is 1.5≦b≦2.5.
, c is 2.5≦c≦3.5, x is 6.5≦x≦7.0, and PrdBaeCuf
Oy is expressed by the formula, d is 0.7≦d≦2.0, e is 1.8≦e≦3.3, f is 2.0≦f≦3.2, y is 6
.. A superconducting laminated thin film characterized by having a structure in which both sides of an intermediate layer made of a non-superconducting oxide having a composition of 5≦y≦7.0 are sandwiched.
【請求項2】  請求項1記載の超伝導酸化物層により
、PrgBah(Cu1−RMR)iOZなる式(Mは
Al,Ti,V,Cr,Mn,Fe,Co,Ni,Zn
,Nb,Ptの中の少なくとも1種)で表され、Rは0
<R≦0.2,gは0.8≦g≦1.8,hは1.9≦
h≦2.9,iは2.2≦i≦3.0,zは6.5≦z
≦7.0である組成の非超伝導酸化物よりなる中間層の
両側を挟んだ構造を持つことを特徴とする超伝導積層薄
膜。
2. The superconducting oxide layer according to claim 1 has the formula PrgBah(Cu1-RMR)iOZ (M is Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zn
, Nb, Pt), and R is 0
<R≦0.2, g is 0.8≦g≦1.8, h is 1.9≦
h≦2.9, i is 2.2≦i≦3.0, z is 6.5≦z
A superconducting laminated thin film characterized by having a structure in which both sides of an intermediate layer made of a non-superconducting oxide having a composition of ≦7.0 are sandwiched.
【請求項3】  請求項1記載の超伝導酸化物層により
、Prj(Ba1−sLs)kCumOwなる式(Lは
Sr,Caの中の少なくとも1種)で表され、Sは0<
S≦0.5,jは0.9≦j≦1.6,kは1.9≦k
≦2.6,mは2.4≦m≦3.0,wは6.5≦w≦
7.0である組成の非超伝導酸化物よりなる中間層の両
側を挟んだ構造を持つことを特徴とする超伝導積層薄膜
3. The superconducting oxide layer according to claim 1 is represented by the formula Prj(Ba1-sLs)kCumOw (L is at least one of Sr and Ca), and S is 0<
S≦0.5, j is 0.9≦j≦1.6, k is 1.9≦k
≦2.6, m is 2.4≦m≦3.0, w is 6.5≦w≦
A superconducting laminated thin film characterized by having a structure in which both sides of an intermediate layer made of a non-superconducting oxide having a composition of 7.0 are sandwiched.
【請求項4】  非超伝導酸化物よりなる中間層を作製
する際、超伝導酸化物層を作製するときより低い温度で
真空蒸着法により作製することを特徴とする請求項1〜
3のいずれかに記載の超伝導積層薄膜の製造方法。
4. The intermediate layer made of a non-superconducting oxide is produced by a vacuum evaporation method at a lower temperature than the superconducting oxide layer is produced.
3. The method for producing a superconducting laminated thin film according to any one of 3.
JP3053504A 1991-02-27 1991-02-27 Thin laminated superconductive film and its production Pending JPH04275918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053504A JPH04275918A (en) 1991-02-27 1991-02-27 Thin laminated superconductive film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053504A JPH04275918A (en) 1991-02-27 1991-02-27 Thin laminated superconductive film and its production

Publications (1)

Publication Number Publication Date
JPH04275918A true JPH04275918A (en) 1992-10-01

Family

ID=12944658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053504A Pending JPH04275918A (en) 1991-02-27 1991-02-27 Thin laminated superconductive film and its production

Country Status (1)

Country Link
JP (1) JPH04275918A (en)

Similar Documents

Publication Publication Date Title
Naito et al. MgB2 thin films for superconducting electronics
JP3207058B2 (en) Superconductor thin film and method of manufacturing the same
JP2004530046A (en) Method and apparatus for fabricating buffer layer and structure of crystalline thin film with biaxial texture
JP2004071359A (en) Oxide superconductor wire material
JP3188358B2 (en) Method for producing oxide superconductor thin film
Xu et al. Synthesis of La2− xSrxCuO4 films via atomic layer-by-layer molecular beam epitaxy
US5567673A (en) Process of forming multilayered Tl-containing superconducting composites
US7871663B1 (en) Minute doping for YBCO flux pinning
JPH0297427A (en) Production of oxide superconducting thin film
JP3001273B2 (en) Superconducting laminated thin film
JP2720665B2 (en) Superconducting laminated thin film and manufacturing method thereof
JPH04275918A (en) Thin laminated superconductive film and its production
JP3579690B2 (en) A method and apparatus for producing a composite oxide thin film and a composite oxide thin film produced by the method.
US5244873A (en) Process for preparing a thin film of bi-type oxide superconductor
US5462921A (en) Method of forming Hg-containing oxide superconducting films
JPS63225599A (en) Preparation of oxide superconductive thin film
JP3353871B2 (en) Oxide superconductor thin film laminate and method for producing oxide superconductor thin film laminate
JPH02175613A (en) Production of oxide superconducting thin film
JPH057027A (en) Oxide superconducting thin film and manufacture thereof and superconducting tunnel junction and manufacture thereof
Naito et al. Growth and properties of superconducting MgB2 thin films
Braginski et al. In-situ fabrication, processing and characterization of superconducting oxide films
JPH06196760A (en) Superconductive lamination thin film
JPH05170448A (en) Production of thin ceramic film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JPS63236794A (en) Production of superconductive thin film of oxide