JPH0427505B2 - - Google Patents

Info

Publication number
JPH0427505B2
JPH0427505B2 JP56103654A JP10365481A JPH0427505B2 JP H0427505 B2 JPH0427505 B2 JP H0427505B2 JP 56103654 A JP56103654 A JP 56103654A JP 10365481 A JP10365481 A JP 10365481A JP H0427505 B2 JPH0427505 B2 JP H0427505B2
Authority
JP
Japan
Prior art keywords
gate
filter
integrator
antenna
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56103654A
Other languages
Japanese (ja)
Other versions
JPS585676A (en
Inventor
Chuji Okamura
Yukio Fujiwara
Tadakatsu Watanabe
Koji Ito
Nobumasa Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP56103654A priority Critical patent/JPS585676A/en
Publication of JPS585676A publication Critical patent/JPS585676A/en
Publication of JPH0427505B2 publication Critical patent/JPH0427505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Locating Faults (AREA)

Description

【発明の詳細な説明】 この発明は、高電圧パルス印加法による架空配
電線路の事故点の探査に使用する受信装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a receiving device used for detecting a fault point on an overhead power distribution line using a high voltage pulse application method.

架空配電線に接地事故が生じたときは、高電圧
パルス印加法により事故点の探査を行つている。
これは停電状態の線路区間に高電圧パルスを印加
し、配電線路を流れるパルス電流をアンテナ付き
の受信装置により検出して接地事故点の探査を行
うものである。
When a grounding fault occurs on an overhead power distribution line, the fault point is detected using the high-voltage pulse application method.
This involves applying a high voltage pulse to a section of line that is in a power outage state, and detecting the pulse current flowing through the distribution line using a receiver equipped with an antenna to locate the point of a ground fault.

このような探査原理を以下に説明する。第1図
は、接地事故点を探査している状態を示す図であ
る。図において、1は高電圧パルス発生器、2は
配電線路、3は大地、4は接地事故点、Rgは接
地事故抵抗、Cgは接地事故点以降の対地静電容
量、5は配電線に近接するサーチコイル形アンテ
ナ、6は受信装置、7はアンテナと受信装置6を
接続するリード線である。
The principle of such exploration will be explained below. FIG. 1 is a diagram showing a state in which a grounding accident point is being searched. In the figure, 1 is the high voltage pulse generator, 2 is the distribution line, 3 is the ground, 4 is the ground fault point, Rg is the ground fault resistance, Cg is the ground capacitance after the ground fault point, and 5 is close to the distribution line. 6 is a receiving device, and 7 is a lead wire connecting the antenna and the receiving device 6.

このような構成において、高電圧パルス発生器
1により配電線2と大地3との間に高電圧パルス
を印加し、アンテナ5付きの受信装置6で配電線
路2に流れる電流を検出して接地事故点を探査す
る。
In such a configuration, a high voltage pulse generator 1 applies a high voltage pulse between the power distribution line 2 and the ground 3, and a receiving device 6 equipped with an antenna 5 detects the current flowing through the power distribution line 2, thereby preventing a grounding accident. Explore points.

すなわち、第2図は高電圧パルス発生器1が発
生する電圧パルスの波形であり、この高電圧パル
スの印加により線路に流れる電流を1回積分すれ
ば (イ) 線路に接地事故がない場合はその積分値は零 (ロ) 事故があつて、パルス発生器1からその事故
点までの区間では、その積分値は事故電流値 (ハ) 事故があつて、その事故点を通り過ぎた後の
区間ではその積分値は零 になるので、一定時間後に積分値を読み取ること
により上記3種類の値を判別して事故点の探査を
行なう。
In other words, Figure 2 shows the waveform of the voltage pulse generated by the high voltage pulse generator 1, and if the current flowing through the line due to the application of this high voltage pulse is integrated once, (a) If there is no grounding fault on the line, then The integral value is zero (b) In the section from pulse generator 1 to the fault point when an accident occurs, the integral value is the fault current value (c) The section after the fault occurs and passes the fault point Since the integral value becomes zero, the above three types of values are discriminated by reading the integral value after a certain period of time, and the accident point is searched.

しかしながらサーチコイル形のアンテナではア
ンテナ出力が線路電流波形を1回ある種の微分回
路を通したものと等価であるので、積分を2回行
なうことにより上記と同等の結果を得る。第3図
は従来の事故点探査用受信装置の一例で、8は増
幅器、9はゲート、10は第1積分器、11は第
2積分器、12は検出表示ゲート、13は検出メ
ーター、14はゲート信号発生器である。
However, in the case of a search coil type antenna, the antenna output is equivalent to passing the line current waveform through a kind of differentiation circuit once, so the same result as above can be obtained by performing the integration twice. FIG. 3 shows an example of a conventional receiving device for fault point detection, in which 8 is an amplifier, 9 is a gate, 10 is a first integrator, 11 is a second integrator, 12 is a detection display gate, 13 is a detection meter, 14 is a gate signal generator.

このような、受信装置6の動作波形について説
明すると第4図は線路に事故がない場合、第5図
は線路に事故があつて高電圧パルス発生器1から
その事故点までの区間の場合、第6図は事故点以
降の場合で、それぞれaは線路電流、bはアンテ
ナ出力、g1はゲート信号発生器14のゲート9
への信号、cは第1積分器10の出力、dは第2
積分器11の出力、g0はゲート信号発生器14
の検出表示ゲート12への信号、eは検出メータ
13の振れである。
To explain the operating waveforms of the receiving device 6, FIG. 4 shows the waveform when there is no accident on the line, and FIG. Figure 6 shows the case after the fault point, where a is the line current, b is the antenna output, and g1 is the gate 9 of the gate signal generator 14.
c is the output of the first integrator 10, d is the signal of the second
Output of integrator 11, g0 is gate signal generator 14
The signal e to the detection display gate 12 is the deflection of the detection meter 13.

次に受信装置6の動作について説明する。アン
テナ5からの出力信号を増幅器8で充分な大きさ
に増幅し、この信号の最初の時点をゲート信号発
生器14が検出し、高電圧パルスのパルス幅より
長い時間ゲート9を開き、第1、第2積分器1
0,11により2回積分を行う。次に一定時間後
検出表示ゲート12を開き、検出メータ13によ
り事故の状態を判別する。
Next, the operation of the receiving device 6 will be explained. The output signal from the antenna 5 is amplified to a sufficient magnitude by an amplifier 8, and the gate signal generator 14 detects the first point in time of this signal and opens the gate 9 for a time longer than the pulse width of the high voltage pulse. , second integrator 1
Integrate twice using 0 and 11. Next, after a certain period of time, the detection display gate 12 is opened, and the detection meter 13 determines the state of the accident.

ところで数KΩ以上の高抵抗事故では、上記配
電線路電流の積分値が非常に小さくなり、近隣の
配電線に高次の高調波成分を含んだ大きな商用周
波電流が流れている場所、例えば、複雑で大きな
迷走電流が共同地線に流れる区間、あるいは、特
異な負荷を多数有する系統が含まれる2重架線区
間等では、商用周波やこれに重畳する高次の高調
波成分が上記の抵抗事故の積分値より非常に大き
くなるため探査が不正確になり、アンテナと事故
線路の距離関係によつては、探査が全く不可能に
なることがあつた。
However, in the case of a high resistance fault of several kilohms or more, the integrated value of the distribution line current becomes extremely small. In sections where a large stray current flows through the common ground wire, or in sections with double overhead lines that include a system with many unique loads, the commercial frequency and high-order harmonic components superimposed on it may cause the above-mentioned resistance fault. Since the value was much larger than the integral value, exploration became inaccurate, and depending on the distance between the antenna and the faulty line, exploration was sometimes impossible.

この発明は従来のものの欠点を除去するために
なされたもので、複数のフイルターを組み合せ受
信機に設置し、商用周波およびその高調波成分を
除去する機能を受信機に設けて、高調波成分を含
んだ商用周波電流が流れている区間でも、高抵抗
事故が極めて良好に探査できる受信装置を提供す
ることを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones. Multiple filters are installed in a combination receiver, and the receiver is equipped with a function to remove commercial frequencies and their harmonic components. It is an object of the present invention to provide a receiving device that can extremely effectively detect high resistance faults even in sections where commercial frequency currents containing high-resistance faults are flowing.

以下この発明の一実施例について説明する。第
7図はこの発明の配電線事故点探査用受信装置1
5の一例を示すブロツク図で、16はフイルター
で、第3図の従来の受信装置6における増幅器
8とアンテナ5の間に前記フイルター16が挿入
された構成となつている。また、17,18は並
列に接続されるフイルター,で、増幅器8と
第1ゲート9の間にこれらのフイルター17,1
8が挿入された構成となつている。20は第2ゲ
ート、21は減算器である。
An embodiment of this invention will be described below. FIG. 7 shows a receiving device 1 for detecting fault points in distribution lines according to the present invention.
5, 16 is a filter, and the filter 16 is inserted between the amplifier 8 and the antenna 5 in the conventional receiving device 6 of FIG. Further, 17 and 18 are filters connected in parallel, and these filters 17 and 18 are connected between the amplifier 8 and the first gate 9.
8 has been inserted. 20 is a second gate, and 21 is a subtracter.

次にこの受信装置の動作について説明する。フ
イルター16は、減算増幅器、抵抗、コンデン
サから構成されて帯域消去形のアクテイブフイル
ターで、この場合、商用周波数fcを中心周波数に
選ぶ。
Next, the operation of this receiving device will be explained. The filter 16 is a band elimination type active filter composed of a subtracting amplifier, a resistor, and a capacitor, and in this case, the commercial frequency fc is selected as the center frequency.

第8図はフイルターの減衰比の周波数特性の例
で、実線で示すカーブが、フイルター16の特
性である。この場合、構成部品の性能によつて
は、−数+dB〜−百十dB程度の減衰特性が得ら
れる。このためフイルターの作用により単に商
用周波成分だけを大幅に減衰させることができ、
大電流の商用周波に対する影響を非常に小さくで
きる。
FIG. 8 shows an example of the frequency characteristic of the damping ratio of the filter, and the curve shown by the solid line is the characteristic of the filter 16. In this case, depending on the performance of the component parts, an attenuation characteristic of about -several +dB to -100 dB can be obtained. Therefore, only the commercial frequency component can be significantly attenuated by the action of the filter.
The influence of large currents on commercial frequencies can be minimized.

また、フイルター17は高域通過フイルタ
ー、フイルター18は低域通過フイルターで同
様に演算増幅器、抵抗、コンデンサから構成され
るアクテイブフイルターである。この場合高域通
過フイルターのフイルター17のしや断周波数
は、商用周波数fcに含まれる高次の高調波周波数
fh例えば、第11調波〜第13調波程度に選び低域通
過フイルターのフイルター18のしや断周波数
は商用周波数fc付近に選ぶ。尚第8図において、
fcは商用周波数、fhは高調波周波数、斜線部は通
過領域を示している。
Further, the filter 17 is a high-pass filter, and the filter 18 is a low-pass filter, which is also an active filter composed of an operational amplifier, a resistor, and a capacitor. In this case, the cutoff frequency of the filter 17 of the high-pass filter is the higher harmonic frequency included in the commercial frequency fc.
For example, fh is selected to be around the 11th to 13th harmonic, and the cutting frequency of the filter 18 of the low-pass filter is selected to be around the commercial frequency fc. In addition, in Figure 8,
fc indicates the commercial frequency, fh indicates the harmonic frequency, and the shaded area indicates the pass region.

第8図の破線で示すカーブがフイルター17
の特性、一点鎖線で示すカーブがフイルター1
8の特性で、これらフイルター16、17、
18を合わせた特性は周波数帯域が非常に広い
一種の帯域除去フイルターに等価で、商用周波成
分に含まれる基本波から数次の高調波成分を大き
く減衰させ、その影響を小さくできる。この減衰
の効果は特に基本波成分に対し最も顕著となる。
The curve shown by the broken line in Fig. 8 is the filter 17.
The curve shown by the dashed line is filter 1.
With the characteristics of 8, these filters 16, 17,
The combined characteristics of 18 are equivalent to a type of band rejection filter with a very wide frequency band, and can greatly attenuate harmonic components of several orders from the fundamental included in commercial frequency components, thereby reducing their influence. The effect of this attenuation is particularly noticeable for the fundamental wave component.

一方事故探査時に高電圧パルス発生器1から流
れるパルス電流は、フイルター16,17,18
の影響により、その通過出力波形fは多少変歪す
るようになるが、第8図の斜線で示すように直流
成分は減衰なくそのまま通過する特性を有してい
るので、本受信装置のような完全積分形の受信装
置の探査性能は全く変化しない。第4、第5、第
6図に対応する本願の発明による受信装置15の
動作波形をそれぞれ第9、第10、第11図に示
しているが、検出メーターの指示eはフイルター
16,17,18が付加されても何ら変化しない
ことを示している。
On the other hand, the pulse current flowing from the high voltage pulse generator 1 during accident investigation is passed through the filters 16, 17, 18.
Due to the influence of The search performance of the fully integral receiver does not change at all. The operating waveforms of the receiving device 15 according to the invention of the present application corresponding to FIGS. 4, 5, and 6 are shown in FIGS. 9, 10, and 11, respectively. This shows that there is no change even if 18 is added.

アンテナ5からフイルター16、増幅器8、
フイルター17、フイルター18を通つた信
号の最初の時点をゲート信号発生器14が検出し
て一連のゲート信号を発生する。まず、受信時点
から高電圧パルスの時間幅より長い時間第1ゲー
ト9を一定期間開きフイルター出力fを通過させ
る。次に(第1ゲート出力)−(第2ゲート出力)
の減算機能を持つた減算器21を経由して、第1
積分器10、第2積分器11で2回積分をする。
次に第1ゲート9を閉じた時点から、短時間に例
えば10μs程度第1積分器10の積分内容を初期状
態に戻す。
From the antenna 5 to the filter 16, the amplifier 8,
A gate signal generator 14 detects the first point in time of the signal passing through the filters 17 and 18 and generates a series of gate signals. First, from the time of reception, the first gate 9 is opened for a certain period of time longer than the time width of the high voltage pulse to allow the filter output f to pass through. Next (1st gate output) - (2nd gate output)
The first
Integration is performed twice by the integrator 10 and the second integrator 11.
Next, from the time when the first gate 9 is closed, the integration contents of the first integrator 10 are returned to the initial state within a short time, for example, about 10 μs.

次に最初の受信時点から商用周波数周期の整数
倍の時間遅らして、第1ゲートと同じ時間第2ゲ
ート20を開き、フイルター出力fを減算器21
により極性反転(第1ゲート9が閉じているた
め)して第1ゲート9が開のときと同様に2回積
分する。次に高電圧パルス印加周期より短い時間
検出表示ゲート12を開き、検出メータ13に第
2積分器11の内容を指示する。
Next, the second gate 20 is opened for the same time as the first gate with a delay of an integral multiple of the commercial frequency period from the first reception time, and the filter output f is sent to the subtracter 21.
The polarity is reversed (because the first gate 9 is closed) and integration is performed twice in the same way as when the first gate 9 is open. Next, the detection display gate 12 is opened for a time shorter than the high voltage pulse application period, and the content of the second integrator 11 is indicated to the detection meter 13.

この受信装置15の商用周波成分を除いた動作
波形は前記第9、第10、第11により説明でき
るので、ここでは省略し、商用周波成分除去性能
を第12図に説明する。図において、fはフイル
ター出力に残留する商用周波成分に、一例として
第3高調波成分が重畳した例を示している。信号
受信時間T1である第1ゲート9の開区間g1は、
この例では特に商用周波数の周期の整数倍として
ものであるため、高調波成分があつても第1積分
器の出力cは第1ゲート9が閉じる時点では零と
なつている。しかし第2積分器の出力dは第1ゲ
ート9が閉じる時点である値を持つ、g3は積分
休止区間で、このとき第1積分器13は初期状態
に戻されるが、積分器は零であるためdは変化し
ない。
The operating waveforms of this receiver 15 excluding the commercial frequency component can be explained by the ninth, tenth, and eleventh sections, so they are omitted here, and the commercial frequency component removal performance will be explained with reference to FIG. In the figure, f indicates an example in which a third harmonic component is superimposed on the commercial frequency component remaining in the filter output. The open section g1 of the first gate 9, which is the signal reception time T1 , is
In this example, the output c of the first integrator is zero at the time when the first gate 9 closes, even if there is a harmonic component, since it is an integral multiple of the period of the commercial frequency. However, the output d of the second integrator has a certain value when the first gate 9 closes, and g3 is an integration pause interval, at which time the first integrator 13 is returned to its initial state, but the integrator is zero. Therefore, d does not change.

次に商用周波数の周期の整数倍の時間T2遅ら
して第2ゲート20を開く、このときの第2ゲー
ト20のゲート開区間g2は第1ゲート9の開区
間g1と同一の信号受信時間T1であるため、減
算器12により極性が反転され第2ゲート20が
閉じる時点で最終の積分値は零となる。
Next, the second gate 20 is opened after a time T 2 that is an integral multiple of the period of the commercial frequency, and the gate open period g2 of the second gate 20 at this time is the same signal reception time as the open period g1 of the first gate 9. Since T 1 , the polarity is inverted by the subtracter 12 and the final integrated value becomes zero at the time when the second gate 20 closes.

また、第1ゲートの開区間が商用周波数の零以
外の位相で始まるとき、または開区間が商用周波
数の周期の整数倍以外のときは、上記のように第
1積分器の出力は第1ゲートが閉じるときに零に
はならない。しかし、第1積分器の入力波形は、
第1ゲートが開区間の時と第2ゲートが開区間の
時では、波形の形状が同じで極性のみが反転して
いるため、第1積分器の出力波形も積分波形の形
状が同じで極性のみが反転する。第2積分器はこ
の積分波形をすべて積分するため、最終の積分値
は零となり、商用周波数及びその高調波成分の除
去が可能である。
In addition, when the open interval of the first gate starts at a phase other than zero of the commercial frequency, or when the open interval is other than an integral multiple of the period of the commercial frequency, the output of the first integrator is does not become zero when it closes. However, the input waveform of the first integrator is
When the first gate is in the open section and when the second gate is in the open section, the waveform shape is the same and only the polarity is reversed, so the output waveform of the first integrator also has the same integration waveform shape and polarity. only is reversed. Since the second integrator integrates all of this integrated waveform, the final integrated value becomes zero, making it possible to remove the commercial frequency and its harmonic components.

以上のように、この出願の発明によれば、商用
周波数電流による影響の除去機能を受信装置に具
備させたので、2重架線区間等、高調波成分を含
む商用周波電流の影響を受け易い所でも、極めて
良好に高抵抗事故の探査ができるようになつた。
As described above, according to the invention of this application, since the receiving device is equipped with a function to remove the influence of commercial frequency current, places that are easily affected by commercial frequency current including harmonic components, such as double overhead line sections, However, it has become possible to search for high-resistance accidents extremely well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は接地事故点を探査している状態を示す
図、第2図は第1図の高電圧パルス発生器の高電
圧パルスの波形を示す図、第3図は従来の事故点
探査用受信装置のブロツク図、第4図、第5図、
第6図は探査原理を示す動作波形図、第7図はこ
の発明の受信装置のブロツク図、第8図は第7図
に示した受信装置に使用されるフイルターの周波
数特性、第9図、第10図、第11図は第7図に
示した受信装置の探査原理を示す動作波形図であ
る。第12図は商用周波数の除去原理を示す図で
ある。 図において、5はアンテナ、15及び19は受
信装置、8は増幅器、9は第1ゲート、20は第
2ゲート、10は第1積分器、11は第2積分
器、13は検出メータ、14はゲート信号発生
器、16は帯域消去フイルタ、17は高域通過フ
イルタ、18は低域通過フイルタ、21は減算器
である。なお、図中、同一符号は同一または相当
部分を示す。
Figure 1 is a diagram showing the state in which a ground fault point is being searched, Figure 2 is a diagram showing the waveform of the high voltage pulse of the high voltage pulse generator of Figure 1, and Figure 3 is a diagram showing the state in which the ground fault point is being searched. Block diagram of the receiving device, Fig. 4, Fig. 5,
FIG. 6 is an operating waveform diagram showing the principle of exploration, FIG. 7 is a block diagram of the receiving device of the present invention, FIG. 8 is the frequency characteristic of the filter used in the receiving device shown in FIG. 7, and FIG. 10 and 11 are operational waveform diagrams showing the principle of exploration of the receiver shown in FIG. 7. FIG. 12 is a diagram showing the principle of removal of commercial frequencies. In the figure, 5 is an antenna, 15 and 19 are receiving devices, 8 is an amplifier, 9 is a first gate, 20 is a second gate, 10 is a first integrator, 11 is a second integrator, 13 is a detection meter, 14 1 is a gate signal generator, 16 is a band elimination filter, 17 is a high-pass filter, 18 is a low-pass filter, and 21 is a subtracter. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 配電線の事故点を探査するために、上記配電
線に繰返し印加される高電圧パルスに基いて上記
配電線に流れるパルス電流をアンテナにより検出
して配電線に事故点を探査する受信装置におい
て、上記アンテナで受信した信号の商用周波数成
分だけを減衰させる第1のフイルターと、上記第
1のフイルターの出力側に接続した増幅器と、上
記増幅器の出力側に並列接続され、上記商用周波
数に含まれる高次の高調波周波数をしや断周波数
とする第2のフイルタおよび該商用周波数付近に
しや断周波数を選んだ第3のフイルタと、上記第
2のフイルタおよび第3のフイルタの出力側に並
列に配置された第1および第2のゲートと、これ
ら第1および第2ゲートを通過した信号を減算す
る減算器と、この減算された信号を2回積分する
直列に接続された2個の積分器と、この積分器出
力を指示する表示器と、上記アンテナで受信した
信号の開始時から上記高電圧パルスのパルス幅よ
り大である時間上記第1ゲートを開かせ、更に上
記アンテナで受信した信号の開始時から商用周波
数の周期の整数倍の時間遅らせて上記第1ゲート
と同じ時間上記第2ゲートを開かせるゲート信号
発生器とを備えた受信装置。
1. In a receiving device that detects a pulse current flowing through the distribution line based on high voltage pulses repeatedly applied to the distribution line using an antenna to search for a failure point on the distribution line. , a first filter that attenuates only the commercial frequency component of the signal received by the antenna; an amplifier connected to the output side of the first filter; a second filter whose shedding frequency is a high-order harmonic frequency selected as the shedding frequency; a third filter whose shedding frequency is selected near the commercial frequency; First and second gates arranged in parallel, a subtracter that subtracts the signals passed through these first and second gates, and two serially connected gates that integrate the subtracted signal twice. an integrator, an indicator for indicating the output of the integrator, and an integrator for opening the first gate for a period of time greater than the pulse width of the high voltage pulse from the start of the signal received by the antenna, and further for receiving the signal by the antenna. and a gate signal generator that opens the second gate for the same time as the first gate by delaying the time by an integral multiple of the period of the commercial frequency from the start of the signal.
JP56103654A 1981-07-02 1981-07-02 Receiving apparatus Granted JPS585676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56103654A JPS585676A (en) 1981-07-02 1981-07-02 Receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56103654A JPS585676A (en) 1981-07-02 1981-07-02 Receiving apparatus

Publications (2)

Publication Number Publication Date
JPS585676A JPS585676A (en) 1983-01-13
JPH0427505B2 true JPH0427505B2 (en) 1992-05-12

Family

ID=14359762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56103654A Granted JPS585676A (en) 1981-07-02 1981-07-02 Receiving apparatus

Country Status (1)

Country Link
JP (1) JPS585676A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313779A (en) * 1988-06-14 1989-12-19 Hitachi Cable Ltd Fault section detecting device for underground transmission line
JP2972408B2 (en) * 1991-09-20 1999-11-08 三菱電機株式会社 Substrate equipment
JP4853699B2 (en) * 2005-03-30 2012-01-11 東京電力株式会社 Electric charge type accident investigation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331251A (en) * 1976-09-06 1978-03-24 Toshiba Mach Co Ltd Heat pipe sealing method
JPS5576292A (en) * 1978-12-05 1980-06-09 Tlv Co Ltd Disc type steam trap
JPS634148A (en) * 1986-06-25 1988-01-09 松下電工株式会社 Structure of ceiling panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331251A (en) * 1976-09-06 1978-03-24 Toshiba Mach Co Ltd Heat pipe sealing method
JPS5576292A (en) * 1978-12-05 1980-06-09 Tlv Co Ltd Disc type steam trap
JPS634148A (en) * 1986-06-25 1988-01-09 松下電工株式会社 Structure of ceiling panel

Also Published As

Publication number Publication date
JPS585676A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
Schweitzer et al. Filtering for protective relays
US5675465A (en) Field ground fault detector and field ground fault relay for detecting ground fault corresponding to DC component extracted from ground fault current
McLaren et al. Fourier-series techniques applied to distance protection
EP0574465B1 (en) Device for filtering out baseline fluctuations from physiological measurement signals
EP0677922A2 (en) Fast response low-pass filter
CA1039799A (en) Protective circuit arrangement for a high-voltage capacitor bank
EP0135081A2 (en) Noise reduction by linear interpolation using a dual function amplifier circuit
JPH0427505B2 (en)
EP0136482B1 (en) Noise reduction by linear interpolation using a dual function amplifier circuit
US5708375A (en) Minimum pulse width detector for a measurement instrument
EP0161403B1 (en) Protective relay for a power system
JP3218163B2 (en) Ground fault detection method
JPH0210388B2 (en)
Lin et al. Effective transmission line fault detection during power swing with wavelet transform
JPS5821963B2 (en) Quadruple detection device
JPS5924271A (en) Receiving apparatus
JP2742637B2 (en) Diagnosis method for insulation of CV cable
JP3126391B2 (en) Partial discharge detector
SU904066A1 (en) Device for centralized protection from earthing in the network with insulated or compensated neutral wire
JP3191567B2 (en) Digital protection and control equipment for power systems
JPS634148B2 (en)
Stoddard Application of filters in bioacoustics
JPH08507914A (en) Power line fault detection
JP3538475B2 (en) Field grounding relay
JPH04223278A (en) Diagnosis of cable insulation deterioration