JPH04273632A - Spread spectrum communication system - Google Patents

Spread spectrum communication system

Info

Publication number
JPH04273632A
JPH04273632A JP3034353A JP3435391A JPH04273632A JP H04273632 A JPH04273632 A JP H04273632A JP 3034353 A JP3034353 A JP 3034353A JP 3435391 A JP3435391 A JP 3435391A JP H04273632 A JPH04273632 A JP H04273632A
Authority
JP
Japan
Prior art keywords
spread spectrum
communication system
signal
spectrum communication
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3034353A
Other languages
Japanese (ja)
Inventor
Hisakazu Kato
久和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP3034353A priority Critical patent/JPH04273632A/en
Publication of JPH04273632A publication Critical patent/JPH04273632A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the frequency utilization efficiency in the spread spectrum communication system. CONSTITUTION:An input signal is coded for each n-bit by a serial/parallel conversion circuit 11. Thus, N(=2<n>) kinds of symbols are realized. A polyphase spread section 12 changes a phase of the PN series in response to the N kinds (that is, input information) to send the information of a multiple of (n) in a conventional binary spread spectrum communication system of the same band width.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はスペクトラム拡散通信方
式にかかわり、特にその周波数利用効率を改善する方式
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum communication system, and more particularly to a system for improving the frequency utilization efficiency thereof.

【0002】0002

【発明の概要】この発明はスペクトラム拡散通信方式に
おいて、伝送信号における一つの拡散符号系列の位相に
入力情報を乗せる事により、周波数利用効率を向上させ
たものである。
SUMMARY OF THE INVENTION The present invention improves frequency utilization efficiency in a spread spectrum communication system by adding input information to the phase of one spreading code sequence in a transmission signal.

【0003】0003

【従来の技術】スペクトラム拡散通信方式は任意の変調
波をその情報速度より著しく速い拡散符号によって二次
変調し周波数帯域幅を広げて伝送を行うものである。こ
の方式は対干渉波除去に特色があり、通信の秘匿、非同
期の符号多重通信方式などに利用される。
2. Description of the Related Art Spread spectrum communication systems secondarily modulate an arbitrary modulated wave using a spreading code significantly faster than its information rate, thereby widening the frequency bandwidth and transmitting the wave. This method is characterized by its ability to eliminate interference waves, and is used for communication secrecy, asynchronous code multiplex communication, etc.

【0004】このようなスペクトラム拡散通信方式の一
例をさらに詳述すると次の通りである。伝送される情報
がディジタル信号であれば一次変調波は1、0で表現さ
れる。また拡散符号としてPN系列を用いた場合、伝送
される情報は一次変調波とPN系列の積であり、出力は
そのPN系列または極性を反転したPN系列が生成され
る。受信側では入力系列の相関を取る。すなわち受信信
号を1フレーム(PN系列1周期)にわたって観測し元
のPN系列と一致すれば出力1、反転であれば出力0を
与える。この検出は相関受信の技術を用いたPN符号長
に等いタップ長を持つマッチトフィルタ(MF)で実現
でき、その出力には正極性または負極性のピークがフレ
ーム中に一回発生する。以上が2値のスペクトラム拡散
方式と呼ばれるものである。
[0004] An example of such a spread spectrum communication system will be described in more detail as follows. If the information to be transmitted is a digital signal, the primary modulated wave is represented by 1's and 0's. Furthermore, when a PN sequence is used as a spreading code, the information to be transmitted is the product of the primary modulated wave and the PN sequence, and the output is the PN sequence or a PN sequence with the polarity inverted. On the receiving side, the correlation of the input sequence is taken. That is, the received signal is observed over one frame (one period of PN sequence), and if it matches the original PN sequence, output 1 is given, and if it is inverted, output 0 is given. This detection can be realized by a matched filter (MF) having a tap length equal to the PN code length using correlation reception technology, and a peak of positive polarity or negative polarity occurs once in a frame in its output. The above is what is called a binary spread spectrum method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この通
信方式においては二次変調によって伝送帯域幅が大幅に
広がるために、一般に限られた周波数帯域では伝送可能
な情報量が制限されてしまう。
However, in this communication system, the transmission bandwidth is greatly expanded by secondary modulation, so the amount of information that can be transmitted is generally limited in a limited frequency band.

【0006】そこで本発明の目的は以上のような問題を
解消し、限られた周波数帯域で、干渉除去能力や多重能
力を劣化させずに伝送容量を増大することができるスペ
クトラム拡散通信方式を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems and provide a spread spectrum communication system that can increase transmission capacity in a limited frequency band without deteriorating interference removal ability or multiplexing ability. It's about doing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明はスペクトラム拡散通信方式において、伝送信号
における拡散符号系列の位相を入力情報に基づいて変化
させることを特徴とする。
[Means for Solving the Problems] To achieve the above object, the present invention is characterized in that, in a spread spectrum communication system, the phase of a spreading code sequence in a transmission signal is changed based on input information.

【0008】[0008]

【作用】本発明によれば、伝送信号における拡散符号系
列の位相が入力情報に基づいて変化する。これによって
、限られた周波数帯域での情報伝送量が増大する。
According to the present invention, the phase of the spreading code sequence in the transmission signal changes based on input information. This increases the amount of information transmitted in a limited frequency band.

【0009】[0009]

【実施例】まず本発明の原理について説明すると、前述
した2値のスペクトラム拡散方式に対して、本発明では
、入力信号をnビット毎に符号化することにより、N=
2n 種類のシンボルを得る。PN系列の位相をこのN
種類に応じて変化させることにより、前述した2値のス
ペクトラム拡散方式と同じ帯域幅で、同方式のn倍の情
報を伝送する事が出来る。
[Embodiment] First, the principle of the present invention will be explained. In contrast to the binary spread spectrum method described above, in the present invention, the input signal is encoded every n bits, so that N=
Obtain 2n types of symbols. The phase of the PN sequence is this N
By changing the method according to the type, it is possible to transmit n times more information than the binary spread spectrum method described above with the same bandwidth.

【0010】図1はこのような本発明を実施するための
通信装置全体の系統図であり、(a)は送信部、(b)
は受信部を示す。送信部において、入力されたシリアル
信号はnビット毎に1シンボルとしてシリアル/パラレ
ル(S/P)変換回路11でまとめられ、多相拡散部1
2に入力され、そこで多相拡散された送信信号を得る。 同期信号の多重方法としては4相位相変調の直交軸を適
用し、QPSK変調器14において、多相拡散部12か
らの送信信号をI軸に、同期発生部13からの同期信号
をQ軸にしてQPSK変調して伝送信号(変調出力)を
出力する。
FIG. 1 is a system diagram of the entire communication device for implementing the present invention, in which (a) shows a transmitting section, and (b) shows a communication device for carrying out the present invention.
indicates the receiving section. In the transmitting section, the input serial signal is combined into one symbol for every n bits in a serial/parallel (S/P) conversion circuit 11, and then sent to a multiphase spreading section 1.
2, where a polyphase spread transmission signal is obtained. The orthogonal axes of four-phase phase modulation are applied as a multiplexing method for synchronization signals, and in the QPSK modulator 14, the transmission signal from the multiphase spreading unit 12 is used as the I axis, and the synchronization signal from the synchronization generation unit 13 is used as the Q axis. A transmission signal (modulated output) is output after QPSK modulation.

【0011】なお、同期信号の多重方法としては、上記
方法の他に、伝送信号中に同期符号を時間軸多重する方
法があり、さらに同期信号として全く別の信号(ビーコ
ンや既存の放送波など)を用い、これを別のチャンネル
を用いて伝送する方法なども考えられる。
[0011] In addition to the method described above, as a method for multiplexing a synchronization signal, there is a method of time-axis multiplexing a synchronization code in a transmission signal. ) and transmitting it using another channel.

【0012】受信部においては、入力信号からI,Qそ
れぞれをQPSK復調器15で復調する。Q軸信号を同
期検出用MF17に入力してそこから拡散信号の開始点
の同期タイミングを得る。I軸からの信号は巡回型MF
16に入力され、そこで同期検出用MF17からの同期
信号との位相差を検出し信号が復調される。巡回型MF
16によって得られた位相情報をパラレル/シリアル(
P/S)変換回路18でP/S変換して元の信号を復元
する。
In the receiving section, a QPSK demodulator 15 demodulates I and Q from the input signal. The Q-axis signal is input to the synchronization detection MF 17, and the synchronization timing of the starting point of the spread signal is obtained therefrom. The signal from the I-axis is a cyclic MF
16, where the phase difference with the synchronization signal from the synchronization detection MF 17 is detected and the signal is demodulated. Itinerant midfielder
The phase information obtained by 16 is converted into parallel/serial (
A P/S conversion circuit 18 performs P/S conversion to restore the original signal.

【0013】図2は多相拡散部12の詳細を示す。この
多相拡散部12は、2n 種類の位相のPN信号を発生
する2n 個の発生器21と、それらの出力をS/P変
換回路11からのnビットのシンボルに基づいて切り替
えて出力するセレクタ22から構成され、最大2n 種
類の位相の異なる拡散信号からなる多相スペクトラム拡
散信号を得るものである。
FIG. 2 shows details of the multiphase diffusion section 12. This multiphase spreading unit 12 includes 2n generators 21 that generate PN signals of 2n types of phases, and a selector that switches and outputs their outputs based on n-bit symbols from the S/P conversion circuit 11. 22, and obtains a multiphase spread spectrum signal consisting of a maximum of 2n types of spread signals with different phases.

【0014】受信側においては、巡回型MF16によっ
て相関受信による逆拡散と同時にPN系列の位相を検出
する。これには二組のマッチトフィルタ(MF)を用い
る。(後述のようにしてPN信号の同期はとれているも
のと仮定すると)一組のMFにおいては、あるフレーム
では現在伝送されている系列を1フレーム分蓄える。そ
の間他方のMFでは1フレーム前に蓄えた系列がどのP
Nの位相で送られてきたかを検出する。ピークを検出し
た位置とフレーム先頭との位相差から元の信号が復元で
きる。この蓄積・検出の動作を2つのMFで交互に繰り
返す事により小規模な受信機でも多相のPN系列の検出
が可能となる。伝送されている信号は元のPN系列の位
相が異なっただけであるため、その干渉除去能力は二値
伝送のものと同等と考えられる。
On the receiving side, the cyclic MF 16 detects the phase of the PN sequence at the same time as despreading by correlation reception. Two sets of matched filters (MF) are used for this purpose. (Assuming that the PN signals are synchronized as described below), in a set of MFs, one frame of the currently transmitted sequence is stored in one frame. Meanwhile, in the other MF, which P is the sequence stored one frame ago?
It is detected whether the signal is sent with N phase. The original signal can be restored from the phase difference between the position where the peak was detected and the beginning of the frame. By repeating this accumulation/detection operation alternately between the two MFs, it becomes possible to detect polyphase PN sequences even with a small-scale receiver. Since the transmitted signal differs only in phase from the original PN sequence, its interference cancellation ability is considered to be equivalent to that of binary transmission.

【0015】図3はこのような巡回型MFの詳細なブロ
ック図である。すべてのスイッチ31a,31b,31
cは同期検出MFからの同期信号によって各フレームの
開始点で切り替わる。この図の状態では一方のMF33
に現在の信号が蓄えられて行く。この間、他方のMF3
2では1フレーム前に蓄えられた信号を循環させて、相
関信号をピーク位相検出回路34に出力する。ピーク位
相検出回路34では、巡回動作をしているMF32の出
力信号から最大のピークを得る位相を検出する。次のフ
レームではスイッチ31a,31b,31cが下に切り
替わり、一方のMF32に信号が入力されて行き、他方
のMF33の出力信号からピーク検出を行う。
FIG. 3 is a detailed block diagram of such a cyclic MF. All switches 31a, 31b, 31
c is switched at the start point of each frame by a synchronization signal from the synchronization detection MF. In the state shown in this figure, one MF33
The current signal is stored in. During this time, the other MF3
2, the signal stored one frame before is circulated and a correlation signal is output to the peak phase detection circuit 34. The peak phase detection circuit 34 detects the phase at which the maximum peak is obtained from the output signal of the MF 32 performing a cyclic operation. In the next frame, the switches 31a, 31b, and 31c are turned down, a signal is input to one MF 32, and peak detection is performed from the output signal of the other MF 33.

【0016】図4はMFの構成例を示す。PN系列を持
つk個の係数器42とk個の遅延回路41と加算器43
とからなるトランスバーサル型フィルタであり、遅延回
路41の出力を入力に戻す事で、巡回型MFを構成する
ことができる。
FIG. 4 shows an example of the configuration of the MF. k coefficient units 42 having a PN sequence, k delay circuits 41, and adder 43
By returning the output of the delay circuit 41 to the input, a cyclic MF can be configured.

【0017】最後に符号の割り当ては次のように考える
。すなわち、mビットの帰還型シフトレジスタによるP
N系列(M系列)の長さはM=2m −1である。伝送
する符号が2のべき乗であることを考えるならば、この
M種類の位相を1つおきに割り当てれば2m−1 種類
の情報を伝送でき、2値伝送に比べて(m−1)倍ビッ
トの情報を伝送できる。さらに位相情報とともに正負の
極性を考慮すればさらに1ビットの位相を伝送できるた
めにm倍ビットの情報を送る事が出来る。これによって
周波数利用効率はm倍となる。
Finally, code assignment is considered as follows. In other words, P by an m-bit feedback shift register
The length of the N sequence (M sequence) is M=2m −1. Considering that the code to be transmitted is a power of 2, by assigning every other M types of phases, 2m-1 types of information can be transmitted, which is (m-1) times faster than binary transmission. Can transmit bits of information. Furthermore, if positive and negative polarities are taken into account along with phase information, one more bit of phase can be transmitted, so m times more bits of information can be transmitted. This increases the frequency utilization efficiency by m times.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、限
られた周波数帯域で、干渉除去能力や多重能力を劣化さ
せずに伝送容量を増大することができるスペクトラム拡
散通信方式を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a spread spectrum communication system that can increase transmission capacity in a limited frequency band without deteriorating interference removal ability or multiplexing ability. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施するための通信装置全体の系統図
である。
FIG. 1 is a system diagram of an entire communication device for implementing the present invention.

【図2】多相拡散部12の詳細を示すブロック図である
FIG. 2 is a block diagram showing details of a multiphase spreading section 12.

【図3】巡回型MFの詳細なブロック図である。FIG. 3 is a detailed block diagram of a cyclic MF.

【図4】MFの構成例を示す図である。FIG. 4 is a diagram showing a configuration example of an MF.

【符号の説明】[Explanation of symbols]

11  S/P変換回路 12  多相拡散部 13  同期発生部 14  QPSK変調器 15  QPSK復調器 16  巡回型MF 17  同期検出用MF 18  P/S変換回路 11 S/P conversion circuit 12 Multiphase diffusion part 13 Synchronization generation part 14 QPSK modulator 15 QPSK demodulator 16 Itinerant midfielder 17 MF for synchronization detection 18 P/S conversion circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  スペクトラム拡散通信方式において、
伝送信号における拡散符号系列の位相を入力情報に基づ
いて変化させることを特徴とするスペクトラム拡散通信
方式。
[Claim 1] In a spread spectrum communication system,
A spread spectrum communication system characterized by changing the phase of a spreading code sequence in a transmission signal based on input information.
JP3034353A 1991-02-28 1991-02-28 Spread spectrum communication system Pending JPH04273632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034353A JPH04273632A (en) 1991-02-28 1991-02-28 Spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034353A JPH04273632A (en) 1991-02-28 1991-02-28 Spread spectrum communication system

Publications (1)

Publication Number Publication Date
JPH04273632A true JPH04273632A (en) 1992-09-29

Family

ID=12411790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034353A Pending JPH04273632A (en) 1991-02-28 1991-02-28 Spread spectrum communication system

Country Status (1)

Country Link
JP (1) JPH04273632A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183829A (en) * 1993-12-24 1995-07-21 Nec Corp Radio data communication equipment
JPH0951289A (en) * 1995-08-09 1997-02-18 Nec Corp Spread spectrum communication system
KR970072739A (en) * 1996-04-30 1997-11-07 스나오 다까또리 Spectrum spread communication system for high speed communication
EP1046240A1 (en) * 1998-01-05 2000-10-25 Intel Corporation A method for using circular spreading codes to achieve high bit densities in a direct-sequence spread spectrum communications system
JP2006339924A (en) * 2005-06-01 2006-12-14 Nec Corp Spread spectrum communication system and demodulation circuit therefor
JP2007258849A (en) * 2006-03-22 2007-10-04 Nec Corp Spread spectrum communication system and method therefor, transmitter used therefor, and receiver

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183829A (en) * 1993-12-24 1995-07-21 Nec Corp Radio data communication equipment
US6363100B1 (en) 1993-12-24 2002-03-26 Nec Corporation Radio data communication system using spread spectrum scheme
JPH0951289A (en) * 1995-08-09 1997-02-18 Nec Corp Spread spectrum communication system
KR970072739A (en) * 1996-04-30 1997-11-07 스나오 다까또리 Spectrum spread communication system for high speed communication
EP1046240A1 (en) * 1998-01-05 2000-10-25 Intel Corporation A method for using circular spreading codes to achieve high bit densities in a direct-sequence spread spectrum communications system
JP2006339924A (en) * 2005-06-01 2006-12-14 Nec Corp Spread spectrum communication system and demodulation circuit therefor
JP4701840B2 (en) * 2005-06-01 2011-06-15 日本電気株式会社 Spread spectrum communication system and demodulation circuit used therefor
JP2007258849A (en) * 2006-03-22 2007-10-04 Nec Corp Spread spectrum communication system and method therefor, transmitter used therefor, and receiver

Similar Documents

Publication Publication Date Title
US5291515A (en) Spread spectrum communication device
US4707839A (en) Spread spectrum correlator for recovering CCSK data from a PN spread MSK waveform
US8514690B2 (en) M-ary orthogonal keying system
US7787355B2 (en) M-ary orthogonal keying system
US6324171B1 (en) Multicarrier CDMA base station system and multi-code wave forming method therof
WO2007013278A1 (en) Data communication system and data transmitting apparatus
RU99114846A (en) PHASE SHIFT ENCODED CHANNEL
JP2004229269A (en) Constant amplitude binary quadrature modulation and demodulation apparatus
US20040001534A1 (en) Spread spectrum communication system with automatic rate detection
JPH10112695A (en) Communication system for spread spectrum pulse position modulation
WO2006059619A1 (en) Wireless communication system, wireless communication method, and communication apparatus
US5796774A (en) Spread spectrum communication apparatus with conversion of input patterns to uniform spectral patterns
US5359627A (en) Channel codec apparatus and method utilizing flat codes
US6320842B1 (en) Spread spectrum communication apparatus
JPH09223983A (en) Transmitter and receiver for spread spectrum communication
JP2004522388A (en) Code selection code division multiple access modulation / modulation method and apparatus embodying the same
JPH04273632A (en) Spread spectrum communication system
US5568507A (en) Geometric harmonic modulation (GHM) - analog implementation
WO1998042079A2 (en) A method of chip interleaving in direct sequence spread spectrum communications
JPH08293818A (en) Spectrum diffusion communication equipment
US5724382A (en) Multimode spread spectrum communication system tolerant to varying channel characteristics
JPH07107007A (en) Spreading code generation system
JP2896817B2 (en) Spread spectrum communication equipment
JPH09284176A (en) Spread spectrum transmitter and receiver
RU2127486C1 (en) Method and device for transmitting messages by broad-band signals