JPH04271342A - Hole burning memory - Google Patents

Hole burning memory

Info

Publication number
JPH04271342A
JPH04271342A JP3032613A JP3261391A JPH04271342A JP H04271342 A JPH04271342 A JP H04271342A JP 3032613 A JP3032613 A JP 3032613A JP 3261391 A JP3261391 A JP 3261391A JP H04271342 A JPH04271342 A JP H04271342A
Authority
JP
Japan
Prior art keywords
light
hole burning
light absorption
wavelength
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032613A
Other languages
Japanese (ja)
Inventor
Chikao Murase
至生 村瀬
Shinjiro Machida
町田 真二郎
Kazuyuki Horie
堀江 一之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3032613A priority Critical patent/JPH04271342A/en
Publication of JPH04271342A publication Critical patent/JPH04271342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out wavelength multiplex optical recording utilizing a lasting hole burning phenomenon and to attain nondestructive readout with a hole burning memory. CONSTITUTION:A recording medium is produced by using GAP contg. an azido group as a reactive moiety and represented by the formula as part of a polymer matrix and dispersing zinc substd. tetrabenzoporphin as the center of light absorption in a molecular state. Recording is carried out by irradiating the recording medium with wavelength selective light having about 635nm wavelength and gate light having 514.5nm wavelength and readout is carried out by irradiating the medium with only the wavelength selective light. Two photons of the wavelength selective light and the gate light are absorbed, energy is efficiently transferred from TZT to GAP and a recording reaction accompanied by the decomposition of azide takes place. This recording reaction hardly takes place by irradiation with only the wavelength selective light and a high gate ratio is attained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、永続的ホ−ルバ−ニン
グ現象を利用した波長多重光記録に関するものである。 通常ホ−ルバ−ニングメモリ−と呼ばれるこの記録方式
は、記録媒体の吸収スペクトル中の照射光の波長に対応
する位置に鋭い吸収率変化を起こさせて情報を記録する
方式である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to wavelength multiplexed optical recording using the permanent hole burning phenomenon. This recording method, which is usually called a hole-burning memory, records information by causing a sharp change in absorption rate at a position corresponding to the wavelength of the irradiated light in the absorption spectrum of the recording medium.

【従来の技術】ホ−ルバ−ニングメモリ−では、読み出
し光によるメモリ−の破壊を防ぐことが大きな課題とな
っている。これを解決する方法として、2つの光(波長
選択光とゲ−ト光)を照射して初めて記録される材料を
用い、読み出す時は波長選択光のみを照射する方式が有
望とされている。従来は、この方式として、ジャ−ナル
  オブ  フィジカル  ケミストリ−(Journ
al  of  Physical  Chemist
ry),91巻、3998ペ−ジから4004ペ−ジに
記載のように、記録媒体中に光吸収中心とそれを分散さ
せるマトリックスの他にハロゲン化合物を入れておき、
光吸収中心からハロゲン化合物への二光子過程による電
子移動反応を用いる方式が最も良く知られていた。この
他に、2光子過程による光吸収中心の光イオン化、光分
解などが知られている。しかし、これらの場合、ゲ−ト
比(ゲ−ト光照射の有無による記録効率の比)は高々5
0程度であった。
2. Description of the Related Art In hole burning memories, it is a major problem to prevent the memory from being destroyed by read light. A promising method to solve this problem is to use a material that is recorded only after being irradiated with two lights (wavelength selective light and gate light), and to irradiate only the wavelength selective light when reading. Traditionally, this method was published in the Journal of Physical Chemistry.
al of Physical Chemist
ry), Volume 91, pages 3998 to 4004, a halogen compound is placed in the recording medium in addition to the light absorption center and the matrix for dispersing it,
The most well-known method was to use a two-photon electron transfer reaction from a light absorption center to a halogen compound. In addition, photoionization of a light absorption center by a two-photon process, photodecomposition, etc. are known. However, in these cases, the gate ratio (ratio of recording efficiency with and without gate light irradiation) is at most 5.
It was about 0.

【発明が解決しようとする課題】本発明のすべての請求
項は前記従来技術でのゲ−ト比より高いゲ−ト比を得る
ことを目的としている。
SUMMARY OF THE INVENTION All claims of the present invention are directed to obtaining a gate ratio higher than that of the prior art.

【課題を解決するための手段】前記目的を達成するため
に、本発明では、従来とは違うタイプのホ−ルバ−ニン
グ反応を起こさせる。前記従来技術で示した2光子型の
反応は下記の■か■の技術手段をとっている。■反応の
前後で光吸収中心に化学反応を起こさせて、イオン化あ
るいは分解をさせるという技術手段。■光吸収中心とま
わりのマトリックスとの相互作用を光照射の前後で変化
させるという技術手段(これは、ノンフォトケミカルな
過程と呼ばれ、1光子の照射でも、よく生じる)。本発
明では、これらとは違う技術手段として、光吸収中心は
光のエネルギ−を受け取るだけで、一時的に変化するこ
とはあっても、最終的には変化せず、そのエネルギ−が
移動して近傍の反応性部位に移ってから化学反応を起こ
すという技術手段を採用した(請求項1,2).反応性
部位が多い方がホ−ルバ−ニング反応の効率が高まると
考えられるので、反応性部位を高分子の繰り返し構造に
入れるという技術手段を採用した(請求項3)。反応性
部位の一例として、アジド基があげられる(請求項4)
。しかし、本発明はアジド基を含む材料に限られるわけ
ではなく、後述するように多くの材料がエネルギ−移動
型のホ−ルバ−ニング反応を起こす。当然のことながら
反応性部位が反応するために必要なエネルギ−をE,波
長選択光の波長をλ1、ゲ−ト光の波長をλ2とすると
き ch/λ1<E≦ch/λ1+ch/λ2(cは光速、
hはプランク定数) の関係が成立するようにλ1とλ2を選ぶと都合がいい
。 λ1とλ2は、通常800nm以下の可視光か紫外光で
ある。
[Means for Solving the Problems] In order to achieve the above object, the present invention causes a hole burning reaction of a type different from the conventional one. The two-photon reaction shown in the prior art takes the following technical means. ■A technological method that causes a chemical reaction to occur at the light absorption center before and after the reaction, resulting in ionization or decomposition. ■Technical means of changing the interaction between the light absorption center and the surrounding matrix before and after light irradiation (this is called a non-photochemical process and often occurs even with single photon irradiation). In the present invention, as a technical means different from these, the light absorption center only receives light energy, and although it may change temporarily, it does not ultimately change, and the energy is transferred. A technical means is adopted in which a chemical reaction occurs after the chemical reaction moves to a nearby reactive site (Claims 1 and 2). Since it is thought that the efficiency of the hole burning reaction increases when there are many reactive sites, a technical means of incorporating reactive sites into the repeating structure of the polymer was adopted (Claim 3). An example of a reactive moiety is an azide group (Claim 4)
. However, the present invention is not limited to materials containing azide groups, and many materials cause energy transfer type hole burning reactions, as described below. Naturally, when the energy required for the reactive site to react is E, the wavelength of the wavelength selection light is λ1, and the wavelength of the gate light is λ2, ch/λ1<E≦ch/λ1+ch/λ2( c is the speed of light,
h is Planck's constant) It is convenient to choose λ1 and λ2 so that the following relationship holds. λ1 and λ2 are usually visible light or ultraviolet light of 800 nm or less.

【作用】光吸収中心が2光子過程でエネルギ−を効率よ
く吸収し、そのエネルギ−が近傍に多数存在する反応性
部位に移動後、反応性部位が反応を起こすことによって
ホ−ルバ−ニング現象が起きる。つまり記録媒体に分子
状に分散させた光吸収中心は、2光子吸収をおこす増感
剤として作用する。1光子の吸収のみでは反応性部位に
反応を起こさせるのに十分でなく、2光子の吸収が起き
て初めてホ−ルバ−ニング反応が起きるように照射光を
選んでいる。本発明が対象としている固相反応では、配
向がランダムなままで固定されている。従って、従来の
電子移動型の反応では、電子移動に有利な配向をとって
いる場所でのみ反応が起きる。一方、エネルギ−移動型
反応の場合は、まわりの配向の様子は反応の起きやすさ
に影響しない。このため、2光子を吸収した場合の反応
効率が高くなる。また、エネルギー移動型反応では、1
光子の吸収ではエネルギーが足りないためにほとんど反
応が起きない。このため、高いゲ−ト比が実現される。
[Operation] The light absorption center efficiently absorbs energy in a two-photon process, and after that energy is transferred to reactive sites that exist in large numbers nearby, the reactive sites cause a reaction, resulting in the hole burning phenomenon. happens. In other words, the light absorption centers dispersed in molecular form in the recording medium act as a sensitizer that causes two-photon absorption. The irradiation light is selected so that the absorption of one photon alone is not sufficient to cause a reaction in the reactive site, and the hole-burning reaction occurs only after the absorption of two photons. In the solid-phase reaction targeted by the present invention, the orientation remains random and fixed. Therefore, in conventional electron transfer reactions, the reaction occurs only at locations where the orientation is favorable for electron transfer. On the other hand, in the case of an energy transfer reaction, the orientation of the surroundings does not affect the ease with which the reaction occurs. Therefore, the reaction efficiency when two photons are absorbed becomes high. In addition, in energy transfer reactions, 1
Absorption of photons causes almost no reaction because there is not enough energy. Therefore, a high gate ratio can be achieved.

【実施例】以下、本発明の実施例を図を用いて説明する
。 [実施例1]反応性部位としてアジド基を含むグリシジ
ルアジドポリマ−(GAP,図1)をイソシアナ−トで
架橋したものを用い、これをマトリックスとした。光吸
収中心として、亜鉛置換型テトラベンゾポルフィン(T
ZT,図2)を用いた。試料作製の手順をさらに詳しく
述べると以下のようになる。前記GAP(詳しくは分子
量2250のオリゴマ−)50gに架橋剤のtrime
thylol  Propane(TMP,C2H5C
(CH2OH))1.6gおよび触媒のdi−n−bu
thyltin  dilaurate(DBTL,図
3)1滴を加えて、0.1mmHgの減圧下でおよそ1
時間100°C程度に保った後に、室温に冷却する。次
に、硬化剤のイソシアナ−トとしてIPDI(図4)を
18.7g加えて0.1mmHgの減圧下で撹拌した。 この時、溶液は発泡した。これを約50°Cで約30分
静止させて脱泡した。その後、前記TZTのアセトン溶
液を適量加えて約60°Cで3日間放置すると架橋反応
が終了して固化した。このようにして作製した記録媒体
の吸収ピ−クでの光学密度(OD)は0.82,厚みは
およそ0.5mmであった。次にこの記録媒体を20K
に冷却してアルゴンイオンレ−ザ−光(波長488nm
と514.5nmの混合)と、アルゴンイオンレ−ザ−
励起の色素レ−ザ−光をそれぞれゲ−ト光及び波長選択
光として照射した。波長選択光の波長はおよそ635n
mであった。波長選択光を380μW/cm2の強度、
アルゴンイオンレ−ザ−光を8mW/cm2の強度で、
10分間同時照射した時の光学密度変化デルタODは、
(デルタOD)/OD=0.35であった。次に、今度
は波長選択光のみを380μW/cm2の強度で10分
間照射したところ、(デルタOD)/OD=0.02で
あった。従ってこの場合のゲ−ト比は約18(≒0.3
5/0.02)である。GAPのアジド基は、波長32
0nm付近の光を吸収して光分解してN2を放出するこ
とが知られている。従って、光分解するために必要なエ
ネルギ−Eは、E=c・h/(320nm)=6.2/
1019Jである。一方、波長選択光のエネルギ−ε1
はε1=c・h/(625nm)=3.2/1019J
であり、ゲ−ト光の波長を514.5nmとするとその
エネルギ−ε2は、ε2=c・h/(514.5nm)
=3.9x1019Jである。このためε1+ε2=7
.1x1019Jとなり、ch/λ1<E≦ch/λ1
+ch/λ2の関係が成り立っていることがわかる。本
実施例では、波長選択光が強過ぎてホールが飽和してい
る可能性がある。つまり、照射条件を適切にすれば、さ
らにゲート比が上がることが期待される。 [実施例2]前記実施例1でゲ−トがかかることが確認
できたので、同じ記録媒体を用いて照射条件を検討した
。およそ635nmの波長選択光を38μW/cm2の
強度で、ゲ−ト光を8mW/cm2の強度で、60秒間
同時に照射したところ、(デルタOD)/OD=0.0
78のホ−ルが観測された。この場合の波長選択光の総
エネルギ−は2.3mJ/cm2(=38μW/cm2
×60sec)である。この場合のホ−ル幅は、約1.
8(1/cm)であった。次に、実施例1と同様に、お
よそ635nmの波長選択光のみを380μW/cm2
の強度で10分間照射したところ、(デルタOD)/O
D=0.02のホールが観測された。この場合の波長選
択光の総エネルギーは、230mJ/cm2である。さ
らにホール幅は約2.2(1/cm)であった。ゲ−ト
光の有無によるホ−ル深さの比は3.9:1,波長選択
光のエネルギ−の比は1:100であるからゲ−ト比は
390となる。このようにエネルギ−移動によるアジド
基の分解反応を利用することにより、今までにない高ゲ
−ト比が実現できた。光吸収中心であるTZTが反応を
起こしていないことは、長時間ホ−ルバ−ニングを起こ
させてもTZTの吸収帯全体の形が変化しないことから
確認できる。また、記録媒体に記録するとアジド基の赤
外領域での吸収が減ることから、反応性部位であるアジ
ド基が反応していることが確認できる。この場合、TZ
Tを入れないとこの反応が起きないことからも、TZT
からアジド基へのエネルギ−移動型反応が起きているこ
とが確かめられる。本実施例では図5に示したエネルギ
−移動によるアジド基の分解について述べたが、同様の
反応を起こす系は多くある。それらを列挙すると図6、
図7、図8、図9、図10、図11、図12、図13の
ようになる。  これら(1)〜(21)の物はいずれ
もアジド基の場合のように高ゲ−ト比型ホ−ルバ−ニン
グメモリ−を実現する材料として用いられる。
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings. [Example 1] A glycidyl azide polymer (GAP, Fig. 1) containing an azide group as a reactive site crosslinked with isocyanate was used as a matrix. Zinc-substituted tetrabenzoporfin (T
ZT, Figure 2) was used. The procedure for preparing the sample will be described in more detail as follows. 50 g of the GAP (more specifically, an oligomer with a molecular weight of 2250) was added with a crosslinking agent trime.
Thylol Propane (TMP, C2H5C
(CH2OH)) 1.6g and catalyst di-n-bu
Add 1 drop of thyltin dilaurate (DBTL, Figure 3) to approximately 1 drop under a vacuum of 0.1 mmHg.
After maintaining the temperature at about 100°C for an hour, it is cooled to room temperature. Next, 18.7 g of IPDI (FIG. 4) was added as an isocyanate curing agent, and the mixture was stirred under a reduced pressure of 0.1 mmHg. At this time, the solution foamed. This was allowed to stand at about 50°C for about 30 minutes to defoam. Thereafter, an appropriate amount of the TZT acetone solution was added and the mixture was left at about 60°C for 3 days to complete the crosslinking reaction and solidify. The optical density (OD) at the absorption peak of the recording medium thus produced was 0.82, and the thickness was approximately 0.5 mm. Next, transfer this recording medium to 20K
After cooling to
and 514.5nm) and argon ion laser
Excitation dye laser light was applied as gate light and wavelength selection light, respectively. The wavelength of the wavelength selection light is approximately 635n
It was m. wavelength-selected light with an intensity of 380 μW/cm2,
Argon ion laser light with an intensity of 8mW/cm2,
The optical density change delta OD when irradiated simultaneously for 10 minutes is
(Delta OD)/OD=0.35. Next, when only wavelength-selected light was irradiated for 10 minutes at an intensity of 380 μW/cm 2 , (delta OD)/OD was 0.02. Therefore, the gate ratio in this case is approximately 18 (≒0.3
5/0.02). The azide group of GAP has a wavelength of 32
It is known that it absorbs light around 0 nm, photodecomposes it, and releases N2. Therefore, the energy E required for photolysis is E=c・h/(320nm)=6.2/
It is 1019J. On the other hand, the energy of the wavelength-selected light −ε1
is ε1=c・h/(625nm)=3.2/1019J
If the wavelength of the gate light is 514.5 nm, its energy ε2 is ε2=c・h/(514.5 nm)
=3.9x1019J. Therefore, ε1+ε2=7
.. 1x1019J, ch/λ1<E≦ch/λ1
It can be seen that the relationship +ch/λ2 holds true. In this example, there is a possibility that the wavelength selective light is too strong and the holes are saturated. In other words, it is expected that the gate ratio will further increase if the irradiation conditions are made appropriate. [Example 2] Since it was confirmed that gating was applied in Example 1, the irradiation conditions were examined using the same recording medium. When the wavelength-selected light of approximately 635 nm was irradiated with an intensity of 38 μW/cm2 and the gate light was irradiated with an intensity of 8 mW/cm2 for 60 seconds, (delta OD)/OD = 0.0.
78 holes were observed. The total energy of the wavelength-selected light in this case is 2.3 mJ/cm2 (=38 μW/cm2
×60 sec). The hole width in this case is approximately 1.
8 (1/cm). Next, as in Example 1, only the approximately 635 nm wavelength selected light was applied at 380 μW/cm2.
When irradiated for 10 minutes at an intensity of (delta OD)/O
A hole with D=0.02 was observed. The total energy of the wavelength-selected light in this case is 230 mJ/cm2. Furthermore, the hole width was approximately 2.2 (1/cm). The ratio of the hole depths with and without the gate light is 3.9:1, and the energy ratio of the wavelength selective light is 1:100, so the gate ratio is 390. In this way, by utilizing the decomposition reaction of the azide group due to energy transfer, an unprecedentedly high gate ratio could be achieved. It can be confirmed that TZT, which is a light absorption center, does not undergo any reaction because the shape of the entire absorption band of TZT does not change even if hole burning is caused for a long time. Furthermore, since the absorption of the azide group in the infrared region decreases when recorded on a recording medium, it can be confirmed that the azide group, which is a reactive site, is reacting. In this case, TZ
Since this reaction does not occur unless T is added, TZT
It is confirmed that an energy transfer type reaction occurs from to the azide group. In this example, the decomposition of the azide group by energy transfer shown in FIG. 5 was described, but there are many systems in which similar reactions occur. Figure 6 lists them.
7, FIG. 8, FIG. 9, FIG. 10, FIG. 11, FIG. 12, and FIG. 13. All of these (1) to (21) are used as materials for realizing high gate ratio hole burning memories, as in the case of azide groups.

【発明の効果】請求項1〜4に示した方式によるエネル
ギ−移動型のホ−ルバ−ニングを試みたところ、高ゲ−
ト比が実現できた。今まで知られているのは電子移動型
の反応で50程度のゲ−ト比が最高であったが、本発明
の方式により、ゲ−ト比約400を実現した。
Effects of the Invention: When energy transfer type hole burning was attempted using the methods set forth in claims 1 to 4, high-gauge hole burning was achieved.
We were able to achieve this ratio. What has been known so far is an electron transfer type reaction in which the maximum gate ratio is about 50, but the method of the present invention has achieved a gate ratio of about 400.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】グリシジルアジドポリマ−(GAP)の構造式
を示す図である。
FIG. 1 is a diagram showing the structural formula of glycidyl azide polymer (GAP).

【図2】亜鉛置換型テトラベンゾポルフィン(TZT)
の構造式を示す図である。
[Figure 2] Zinc-substituted tetrabenzoporfin (TZT)
FIG.

【図3】DBTLの構造式を示す図である。FIG. 3 is a diagram showing the structural formula of DBTL.

【図4】IPDIの構造式を示す図である。FIG. 4 is a diagram showing the structural formula of IPDI.

【図5】アジド基の分解反応を示す図である。FIG. 5 is a diagram showing a decomposition reaction of an azide group.

【図6】エネルギ−移動反応を起こす系を示す図である
FIG. 6 is a diagram showing a system that causes an energy transfer reaction.

【図7】エネルギ−移動反応を起こす系を示す図である
FIG. 7 is a diagram showing a system that causes an energy transfer reaction.

【図8】エネルギ−移動反応を起こす系を示す図である
FIG. 8 is a diagram showing a system that causes an energy transfer reaction.

【図9】エネルギ−移動反応を起こす系を示す図である
FIG. 9 is a diagram showing a system that causes an energy transfer reaction.

【図10】エネルギ−移動反応を起こす系を示す図であ
る。
FIG. 10 is a diagram showing a system that causes an energy transfer reaction.

【図11】エネルギ−移動反応を起こす系を示す図であ
る。
FIG. 11 is a diagram showing a system that causes an energy transfer reaction.

【図12】エネルギ−移動反応を起こす系を示す図であ
る。
FIG. 12 is a diagram showing a system that causes an energy transfer reaction.

【図13】エネルギ−移動反応を起こす系を示す図であ
る。
FIG. 13 is a diagram showing a system that causes an energy transfer reaction.

【符号の説明】[Explanation of symbols]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】記録媒体が多数の光吸収中心とその周囲を
囲む光吸収の少ない部分より成り、ホ−ルバ−ニング現
象と呼ばれる、光照射による光吸収スペクトル中の局所
的光吸収減少を記録に利用する光記録方法であるホ−ル
バ−ニングメモリ−において、上記記録媒体が光吸収中
心とは異なる反応性部位を含み、光吸収中心が2光子吸
収によって励起された後にその励起エネルギ−の少なく
とも一部を反応性部位が受け取って化学反応を起こすこ
とにより記録が行われることを特徴とするエネルギ−移
動型のホ−ルバ−ニングメモリ−。
Claim 1: A recording medium is composed of a large number of light absorption centers and surrounding areas with low light absorption, and records a local decrease in light absorption in the light absorption spectrum due to light irradiation, which is called a hole burning phenomenon. In hole burning memory, which is an optical recording method used for An energy transfer type hole burning memory characterized in that recording is performed by a reactive site receiving at least a portion of the energy and causing a chemical reaction.
【請求項2】記録媒体が多数の光吸収中心とその周囲を
囲む光吸収の少ない部分より成り、ホ−ルバ−ニング現
象と呼ばれる、光照射による光吸収スペクトル中の局所
的光吸収減少を記録に利用する光記録方法であるホ−ル
バ−ニングメモリ−において、上記光吸収中心が化学反
応を起こさず、その近傍にある反応性部位が化学反応を
起こすことによって記録が行われることを特徴とするホ
−ルバ−ニングメモリ−。
[Claim 2] The recording medium is composed of a large number of light absorption centers and surrounding areas with low light absorption, and records a local light absorption decrease in the light absorption spectrum due to light irradiation, which is called a hole burning phenomenon. In hole burning memory, which is an optical recording method used for Hole burning memory.
【請求項3】上記反応性部位が、高分子の一部であるこ
とを特徴とする請求項1または請求項2記載のホ−ルバ
−ニングメモリ−。
3. The hole burning memory according to claim 1 or 2, wherein the reactive site is a part of a polymer.
【請求項4】記録媒体が多数の光吸収中心とその周囲を
囲む光吸収の少ない部分より成り、ホ−ルバ−ニング現
象と呼ばれる、光照射による光吸収スペクトル中の局所
的光吸収減少を記録に利用する光記録方法であるホ−ル
バ−ニングメモリ−において、上記記録媒体がアジド基
を含むことを特徴とするホ−ルバ−ニングメモリ−。
4. The recording medium is composed of a large number of light absorption centers and surrounding areas with low light absorption, and records a local light absorption decrease in the light absorption spectrum due to light irradiation, which is called a hole burning phenomenon. 1. A hole burning memory, which is an optical recording method used in a hole burning memory, characterized in that the recording medium contains an azide group.
JP3032613A 1991-02-27 1991-02-27 Hole burning memory Pending JPH04271342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032613A JPH04271342A (en) 1991-02-27 1991-02-27 Hole burning memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032613A JPH04271342A (en) 1991-02-27 1991-02-27 Hole burning memory

Publications (1)

Publication Number Publication Date
JPH04271342A true JPH04271342A (en) 1992-09-28

Family

ID=12363704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032613A Pending JPH04271342A (en) 1991-02-27 1991-02-27 Hole burning memory

Country Status (1)

Country Link
JP (1) JPH04271342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486437A (en) * 1993-04-08 1996-01-23 Sony Corporation Optical recording method
US9452989B2 (en) 2012-05-24 2016-09-27 University Of Utah Research Foundation Compounds, sensors, methods, and systems for detecting gamma radiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486437A (en) * 1993-04-08 1996-01-23 Sony Corporation Optical recording method
US9452989B2 (en) 2012-05-24 2016-09-27 University Of Utah Research Foundation Compounds, sensors, methods, and systems for detecting gamma radiation

Similar Documents

Publication Publication Date Title
EP0279600A1 (en) Marking
JPS61154031A (en) Formation of submicron structural body on surface of substrate
Ihlein et al. Ordered porous materials as media for the organization of matter on the nanoscale
US5051337A (en) Optical recording material
JPH04271342A (en) Hole burning memory
US4622284A (en) Process of using metal azide recording media with laser
Wortmann et al. A novel sensitized photochromic organic glass for holographic optical storage
EP0396943A3 (en) Optical storage medium and storage process
Kocher et al. ‘Latent’ultraviolet light absorbers
Machida et al. Photon-gated photochemical hole burning by two-color sensitization in an azide polymer matrix
JPH05273691A (en) Optical recording material
KR20070048100A (en) Compositions, systems, and methods for imaging
JPH07201071A (en) Optical recording medium
JP3131956B2 (en) Transparent recording medium
US5139926A (en) Permanent yellow imaged light modulating film
JPH05204102A (en) Photomemory element and recording method therefor
JP2910069B2 (en) WDM recording media
US5158862A (en) Processless imaging to maximize blue light absorption of an image
US5149616A (en) Processless imaging to maximize blue light absorption of an image
WO2024005139A1 (en) Method for producing optical element
JP2881797B2 (en) Materials for hole burning memory
JPH0367251B2 (en)
Ushamani et al. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly (vinyl chloride) films
JP2979571B2 (en) WDM recording media
EP0509450B1 (en) Optical recording medium