JPH04271284A - Electrostatic actuator - Google Patents

Electrostatic actuator

Info

Publication number
JPH04271284A
JPH04271284A JP2972891A JP2972891A JPH04271284A JP H04271284 A JPH04271284 A JP H04271284A JP 2972891 A JP2972891 A JP 2972891A JP 2972891 A JP2972891 A JP 2972891A JP H04271284 A JPH04271284 A JP H04271284A
Authority
JP
Japan
Prior art keywords
stator
electrode
mover
electrodes
movable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2972891A
Other languages
Japanese (ja)
Other versions
JP2899120B2 (en
Inventor
Noboru Nishiguchi
登 西口
Toshiro Higuchi
俊郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2972891A priority Critical patent/JP2899120B2/en
Publication of JPH04271284A publication Critical patent/JPH04271284A/en
Application granted granted Critical
Publication of JP2899120B2 publication Critical patent/JP2899120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To provide an electrostatic actuator in which the distance between the stabilizing positions of mover can be set accurately, driving voltage can be controlled easily, and the reference position can be set accurately with high reproducibility. CONSTITUTION:A stator 2 comprises a large number of stator electrodes 21 arranged unilaterally at predetermined intervals. A mover 1 comprises a large number of mover electrodes 11 arranged in the same direction as one stator electrodes 21 at predetermined intervals. A DC power supply 5 is connected through a switch element 4 to the mover electrodes 11 and the stator electrodes 21 thus applying a plural polarity driving voltage onto the mover electrode 11 and the stator electrode 21. The driving voltage has a plurality of phases and produces a Coulomb's force, for moving the mover 1 with respect to the stator 2, between the mover electrode 11 and the stator electrode 21.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固定子と可動子との間
に作用するクーロン力により可動子を移動させる静電ア
クチュエータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic actuator that moves a movable element by Coulomb force acting between a stator and a movable element.

【0002】0002

【従来の技術】従来より、クーロン力を用いた静電アク
チュエータとしては、図12に示すように、多数の固定
子電極21を一方向に配列した固定子2と、固定子電極
21の配列面に対向する誘電体層もしくは高抵抗体層1
5を備えた可動子1と、各固定子電極21に複数相の駆
動電圧を印加する駆動回路とを設けたものがある(特開
昭63−95860号公報、特開平2−285978号
公報参照)。
2. Description of the Related Art Conventionally, as shown in FIG. 12, an electrostatic actuator using Coulomb force has a stator 2 in which a large number of stator electrodes 21 are arranged in one direction, and a surface in which the stator electrodes 21 are arranged. dielectric layer or high resistance layer 1 facing
5 and a drive circuit that applies multiple phase drive voltages to each stator electrode 21 (see Japanese Patent Laid-Open Nos. 63-95860 and 2-285978) ).

【0003】すなわち、固定子電極21に駆動電圧を印
加することによって可動子1の誘電体層もしくは高抵抗
層15に静電誘導された電荷と、固定子電極21の電荷
との間に作用するクーロン力により可動子1が移動する
ものである。ここに、固定子電極21は駆動電圧と同じ
相数になるように接続されている。特開昭63−958
60号公報には、駆動電圧を単極とし、固定子と可動子
との間に吸引力のみを作用させるように駆動電圧の印加
タイミングを設定したものと、駆動電圧を複極とし、固
定子と可動子との間に吸引力および反発力を作用させる
ように駆動電圧の極性および印加タイミングを設定した
ものとが開示されている。また、特開平2−28597
8号公報には、図12(b)に示すように、可動子1が
移動を開始する際には、固定子2と可動子1との対向面
に直交する方向のクーロン力が反発力になるように駆動
電圧の極性を設定したものが開示されている。
That is, by applying a driving voltage to the stator electrode 21, an electric charge that is electrostatically induced in the dielectric layer or high resistance layer 15 of the movable element 1 and the electric charge on the stator electrode 21 acts. The mover 1 is moved by Coulomb force. Here, the stator electrodes 21 are connected so that the number of phases is the same as that of the driving voltage. Japanese Patent Publication No. 63-958
Publication No. 60 discloses a method in which the driving voltage is unipolar and the application timing of the driving voltage is set so that only an attractive force acts between the stator and the movable element, and a method in which the driving voltage is bipolar and the application timing of the driving voltage is set so that only the attractive force acts between the stator and the movable element. It is disclosed that the polarity and application timing of the drive voltage are set so as to cause an attractive force and a repulsive force to act between the movable element and the movable element. Also, JP-A-2-28597
8, as shown in FIG. 12(b), when the mover 1 starts moving, the Coulomb force in the direction perpendicular to the facing surfaces of the stator 2 and the mover 1 becomes a repulsive force. It has been disclosed that the polarity of the driving voltage is set so that

【0004】0004

【発明が解決しようとする課題】ところで、上記両公報
に記載された静電アクチュエータは、可動子1に静電誘
導された電荷と、固定子電極21の電荷との間のクーロ
ン力を利用して可動子1を移動させるものであるから、
可動子1を移動させるために固定子電極21に駆動電圧
を印加すると、可動子1が次の安定位置に移動するまで
の間に可動子1の誘電体層や高抵抗層15の中で電荷の
移動が生じたり、不要な分極が生じたりする場合がある
。このような現象が生じると、可動子1の安定位置の間
の距離が一定せず、乱調や脱調の原因になる。
[Problems to be Solved by the Invention] By the way, the electrostatic actuator described in both of the above-mentioned publications utilizes the Coulomb force between the charges electrostatically induced in the movable element 1 and the charges in the stator electrode 21. Since the mover 1 is moved by
When a driving voltage is applied to the stator electrode 21 to move the movable element 1, electric charges are generated in the dielectric layer and high resistance layer 15 of the movable element 1 until the movable element 1 moves to the next stable position. movement or unnecessary polarization may occur. If such a phenomenon occurs, the distance between the stable positions of the movable element 1 will not be constant, causing disturbance or step-out.

【0005】こうした問題を解決するには、誘電体層や
高抵抗層15に電荷の移動度が小さい材料を用いること
が考えられるが、可動子1に電荷が誘導されていない初
期状態から駆動しようとすれば、可動子1に電荷が誘導
されるまでに時間遅れが生じるから、初動時と定常動作
時とで駆動電圧を変えることが必要になり、制御が複雑
になるという問題がある。さらに、可動子1の任意の位
置に電荷を生じさせることができるから、基準位置を再
現性よく設定することができないという問題がある。
[0005] To solve these problems, it is conceivable to use a material with low charge mobility for the dielectric layer or the high resistance layer 15, but it is better to drive the mover 1 from an initial state in which no charge is induced. If this is the case, there will be a time delay before charges are induced in the movable element 1, so it will be necessary to change the drive voltage between the initial operation and the steady operation, resulting in a problem that the control will be complicated. Furthermore, since electric charges can be generated at any position on the movable element 1, there is a problem that the reference position cannot be set with good reproducibility.

【0006】本発明は上記問題点の解決を目的とするも
のであり、可動子の安定位置間の距離が正確に設定でき
るとともに駆動電圧の制御が容易であって、しかも、基
準位置を再現性よく正確に設定できるようにした静電ア
クチュエータを提供しようとするものである。
The present invention aims to solve the above-mentioned problems, and it is possible to accurately set the distance between the stable positions of the movable element, to easily control the drive voltage, and to make the reference position reproducible. It is an object of the present invention to provide an electrostatic actuator that can be set very accurately.

【0007】[0007]

【課題を解決するための手段】請求項1では、上記目的
を達成するために、多数の固定子電極を一方向に所定間
隔で配列したフィルム状の固定子と、絶縁体層を介して
固定子電極に対向して配置される多数の可動子電極を上
記一方向に所定間隔で配列したフィルム状の可動子と、
可動子電極と固定子電極との間に生じるクーロン力によ
り可動子が固定子に対して上記一方向に移動するように
固定子電極および可動子電極に複数相の駆動電圧を印加
する駆動電圧制御手段とを備え、固定子電極と可動子電
極との配列間隔は互いに異なる寸法に設定され、固定子
電極への駆動電圧と可動子電極への駆動電圧とは異なる
相数に設定されているのである。
[Means for Solving the Problem] In claim 1, in order to achieve the above object, there is provided a film-like stator in which a large number of stator electrodes are arranged at predetermined intervals in one direction, and fixed through an insulating layer. a film-shaped mover in which a large number of mover electrodes arranged opposite to the child electrodes are arranged at predetermined intervals in the one direction;
Drive voltage control that applies multi-phase drive voltages to the stator electrodes and mover electrodes so that the mover moves in the above-mentioned one direction relative to the stator due to the Coulomb force generated between the mover electrodes and the stator electrodes. and the arrangement interval of the stator electrode and the movable element electrode is set to different dimensions, and the drive voltage to the stator electrode and the drive voltage to the movable element electrode are set to different phase numbers. be.

【0008】請求項2では、駆動電圧制御手段は、複極
の駆動電圧を出力するとともに各固定子電極および各可
動子電極に印加する各相の駆動電圧の極性の組を順次切
り換えて可動子を固定子に対して移動させるのであって
、各組の駆動電圧の印加を開始した時点で生じるクーロ
ン力の合成成分が、固定子と可動子との対向面に直交す
る方向では反発力になるように各相の駆動電圧の極性が
設定されているのである。
According to a second aspect of the present invention, the drive voltage control means outputs a bipolar drive voltage and sequentially switches the set of polarities of the drive voltage of each phase applied to each stator electrode and each movable element electrode to control the movable element. is moved relative to the stator, and the composite component of the Coulomb force generated at the start of application of each set of drive voltages becomes a repulsive force in the direction perpendicular to the facing surface of the stator and mover. The polarity of the drive voltage for each phase is set as follows.

【0009】請求項3では、固定子および可動子は、そ
れぞれ絶縁基板と絶縁基板の表裏両面を全面に亙って覆
う一対の絶縁体層との間にそれぞれ導電体層を積層した
多層配線板よりなり、絶縁基板の表裏の一面の導電体層
には固定子電極または可動子電極となる導電パターンが
形成され、各導電体層には固定子電極または可動子電極
を各相ごとにまとめて接続する給電ラインが形成されて
いるのである。
In claim 3, the stator and the mover are each a multilayer wiring board in which a conductive layer is laminated between an insulating substrate and a pair of insulating layers that entirely cover both the front and back surfaces of the insulating substrate. A conductive pattern serving as a stator electrode or a movable element electrode is formed on the conductive layer on one side of the front and back sides of the insulating substrate, and a stator electrode or a movable element electrode is grouped together for each phase on each conductive layer. A connecting power supply line is formed.

【0010】請求項4では、各固定子電極および各可動
子電極は、それぞれ直線状の電極素片の一端同士を所定
の角度で連結した形状に形成されている。
According to a fourth aspect of the present invention, each stator electrode and each movable element electrode are each formed in a shape in which one ends of linear electrode pieces are connected to each other at a predetermined angle.

【0011】[0011]

【作用】請求項1の構成によれば、固定子と可動子とに
それぞれ多数の固定子電極と可動子電極とを配列し、固
定子電極と可動子電極とに印加する駆動電圧を制御して
可動子を移動させるので、可動子の安定位置間の距離は
、固定子電極と可動子電極との間隔によって正確に設定
されるのである。また、固定子に固定子電極を設けると
ともに可動子に可動子電極を設けているので、従来のよ
うに、初動時に静電誘導による電荷を可動子に生じさせ
る必要がなく、初動時と定常動作時とで駆動電圧の制御
状態を変更する必要がないのであり、制御が容易になる
のである。しかも、固定子電極および可動子電極がそれ
ぞれ所定の間隔で配列されているので、固定子電極と可
動子電極との位置関係によって固定子に対する可動子の
基準位置を正確に設定できることになる。さらに、固定
子電極と可動子電極との配列間隔を互いに異なる寸法に
設定し、固定子電極への駆動電圧と可動子電極への駆動
電圧とを異なる相数に設定しているので、可動子の安定
位置間の距離を、固定子電極と可動子電極とのいずれか
小さいほうの間隔よりも小さい距離に設定することが可
能になるのである。
According to the structure of claim 1, a large number of stator electrodes and a large number of mover electrodes are arranged on the stator and mover, respectively, and the driving voltages applied to the stator electrode and the mover electrode are controlled. Since the movable element is moved by moving the movable element, the distance between the stable positions of the movable element is accurately set by the interval between the stator electrode and the movable element electrode. In addition, since a stator electrode is provided on the stator and a mover electrode is provided on the mover, there is no need to generate charge on the mover due to electrostatic induction at the time of initial motion, unlike in the conventional case. There is no need to change the drive voltage control state from time to time, and control becomes easier. Furthermore, since the stator electrodes and the movable element electrodes are arranged at predetermined intervals, the reference position of the movable element relative to the stator can be accurately set based on the positional relationship between the stator electrode and the movable element electrode. Furthermore, the arrangement spacing between the stator electrodes and the mover electrodes is set to different dimensions, and the drive voltages to the stator electrodes and the drive voltages to the mover electrodes are set to different numbers of phases. This makes it possible to set the distance between the stable positions of the stator electrode and the movable electrode to be smaller than the smaller distance between the stator electrode and the movable electrode.

【0012】請求項2の構成によれば、各組の駆動電圧
の印加を開始した時点で生じるクーロン力の合成成分が
、固定子と可動子との対向面に直交する方向では反発力
になるように各相の駆動電圧の極性を設定しているので
、可動子が固定子に対して移動を開始する際に可動子が
固定子から浮上することになり、固定子と可動子との間
に生じる摩擦力が小さくなって、印加電圧に対する駆動
力を大きくすることができるのである。
According to the structure of claim 2, the composite component of the Coulomb force generated at the time when the application of each set of drive voltages is started becomes a repulsive force in a direction perpendicular to the facing surfaces of the stator and mover. Since the polarity of the drive voltage of each phase is set as shown, when the mover starts moving relative to the stator, the mover will float above the stator, and the gap between the stator and mover will be As a result, the frictional force generated in the motor is reduced, and the driving force relative to the applied voltage can be increased.

【0013】請求項3の構成によれば、固定子および可
動子をそれぞれ2層の導電体層を有した多層配線板によ
って形成し、一方の導電体層を固定子電極または可動子
電極とし、各導電体層を固定子電極または可動子電極を
各相ごとに接続する給電ラインとしているので、既製の
多層配線基板の加工技術を用いて精密な加工が可能にな
るのであり、固定子電極および可動子電極のそれぞれの
間隔が正確に設定でき、可動子の移動距離を一層精密に
制御できるようになるのである。さらに、2層の導電体
層を用いて給電ラインを形成しているから、固定子電極
と可動子電極とがそれぞれ複数相であるにもかかわらず
、固定子電極および可動子電極を各相ごとに一括して接
続するのが容易になるのである。
According to the structure of claim 3, the stator and the mover are each formed by a multilayer wiring board having two conductor layers, one of the conductor layers is used as a stator electrode or a mover electrode, Since each conductor layer is used as a power supply line that connects the stator electrode or mover electrode for each phase, precise processing is possible using processing technology for ready-made multilayer wiring boards. The distance between the movable element electrodes can be set accurately, and the moving distance of the movable element can be controlled more precisely. Furthermore, since the power supply line is formed using two conductor layers, even though the stator electrode and mover electrode each have multiple phases, the stator electrode and mover electrode can be connected separately for each phase. This makes it easier to connect all at once.

【0014】請求項4の構成によれば、各固定子電極お
よび各可動子電極を、それぞれ直線状の電極素片の一端
同士を所定の角度で連結した形状に形成しているので、
固定子と可動子との対向面に平行な面内で、可動子の移
動方向に直交する方向において、各電極素片による拮抗
した力が作用することになり、可動子の横振れが少なく
なるのである。
According to the structure of claim 4, each stator electrode and each mover electrode are formed in a shape in which one end of each linear electrode piece is connected to each other at a predetermined angle.
In a plane parallel to the facing surfaces of the stator and mover, and in a direction perpendicular to the moving direction of the mover, counterbalanced forces are applied by each electrode piece, reducing the lateral vibration of the mover. It is.

【0015】[0015]

【実施例】(実施例1)本実施例では、固定子電極を3
相とし可動子電極を4相としているが、これに限定され
るものではなく、相数については各種の組み合わせが可
能である。図2および図5に示すように、可動子1およ
び固定子2は、それぞれ多層配線板3を用いてフィルム
状に形成され、互いに対向するように配置される。多層
配線板3は、絶縁基板31の表裏両面にそれぞれ絶縁体
層32、33を接着材層36、37を介して積層し、絶
縁基板31と各絶縁体層32、33との間にそれぞれ銅
箔よりなる導電体層34、35を挟装したものであって
、全体として200μm程度の厚みのフィルム状に形成
されている。絶縁基板31、絶縁体層32、33には、
ポリイミドやポリエチレンテレフタレートなどが用いら
れる。ただし、摩擦による帯電を避けるために、絶縁基
板31、絶縁体層32、33などには同一材料を用いる
[Example] (Example 1) In this example, the stator electrodes were
Although the movable element electrode has four phases, it is not limited to this, and various combinations of the number of phases are possible. As shown in FIGS. 2 and 5, the movable element 1 and the stator 2 are each formed into a film shape using a multilayer wiring board 3, and are arranged to face each other. The multilayer wiring board 3 has insulator layers 32 and 33 laminated on both the front and back surfaces of an insulating substrate 31 via adhesive layers 36 and 37, and a copper layer between the insulating substrate 31 and each insulator layer 32 and 33, respectively. Conductor layers 34 and 35 made of foil are sandwiched between them, and the film is formed into a film having a total thickness of about 200 μm. The insulating substrate 31 and the insulating layers 32 and 33 include
Polyimide, polyethylene terephthalate, etc. are used. However, in order to avoid charging due to friction, the same material is used for the insulating substrate 31, insulating layers 32, 33, etc.

【0016】可動子1となる多層配線板3の導電体層3
4には、図3に示すように、直線帯状に形成した多数の
可動子電極11を、互いに平行になるように一定間隔p
1 で配列した導電パターンが形成されている。各相の
可動子電極11は循環的に配列され、各相をA〜D相と
すれば、ABCDAB・・・という順に配列される。ま
た、各相の可動子電極11は、導電体層34により形成
された給電ライン12に対して、各相ごとにまとめて接
続される。ここに、4相のうちの2相の給電ライン12
は可動子電極11と同じ導電体層34に形成され、残り
の2相の給電ライン12は他の導電体層35に形成され
る。導電体層35に形成された給電ライン12と可動子
電極11とを接続するには、可動子電極11の一端部に
設けたランド13の中心に穿孔したスルーホール14を
用いてめっきスルーホール法などの周知の方法を適用す
る。
Conductor layer 3 of multilayer wiring board 3 serving as mover 1
4, as shown in FIG.
1 conductive pattern is formed. The mover electrodes 11 of each phase are arranged cyclically, and if each phase is designated as A to D, they are arranged in the order ABCDAB... Further, the mover electrodes 11 of each phase are collectively connected to the power supply line 12 formed by the conductor layer 34 for each phase. Here, the power supply line 12 of two of the four phases
are formed on the same conductor layer 34 as the movable element electrode 11, and the remaining two-phase power supply lines 12 are formed on another conductor layer 35. To connect the power supply line 12 formed on the conductor layer 35 and the movable element electrode 11, a plating through hole method is used to connect the power supply line 12 formed on the conductor layer 35 and the movable element electrode 11 using a through hole 14 bored in the center of the land 13 provided at one end of the movable element electrode 11. Apply well-known methods such as

【0017】固定子2は、可動子1と同様の構成であっ
て、図4に示すように、多層配線板30の導電体層34
に直線帯状の多数の固定子電極21を一定間隔p2 で
配列した導電パターンを有している。各層の固定子電極
21は循環的に配列され、各相をE〜Gとすれば、EF
GEF・・・という順に配列されるのである。また、各
層の固定子電極21は、給電ライン22に対して、各相
ごとにまとめて接続される。ここに、3相のうちの2相
の給電ライン22は固定子電極21と同じ導電体層34
に形成され、残りの1相の給電ライン22は他の導電体
層35に形成される。導電体層35に形成された給電ラ
イン22と、固定子電極21との接続は、可動子1の場
合と同様であって、図5に示すように、固定子電極21
の両端部に設けたランド23の中心にそれぞれ穿孔した
スルーホール24を用いて、めっきスルーホール法など
の周知の方法を適用する。このようにして、導電体層3
5には同相の給電ライン32が2本形成されることにな
る。
The stator 2 has the same structure as the movable element 1, and as shown in FIG.
It has a conductive pattern in which a large number of linear strip-shaped stator electrodes 21 are arranged at regular intervals p2. The stator electrodes 21 of each layer are arranged cyclically, and if each phase is E to G, then EF
They are arranged in the order of GEF... Further, the stator electrodes 21 of each layer are collectively connected to the power supply line 22 for each phase. Here, the power supply lines 22 of two of the three phases are connected to the same conductor layer 34 as the stator electrode 21.
The remaining one-phase power supply line 22 is formed on another conductive layer 35. The connection between the power supply line 22 formed on the conductor layer 35 and the stator electrode 21 is the same as in the case of the movable element 1, and as shown in FIG.
A well-known method such as a plating through hole method is applied using through holes 24 formed at the centers of lands 23 provided at both ends of the plate. In this way, the conductor layer 3
5, two in-phase power supply lines 32 are formed.

【0018】可動子電極11と固定子電極21とは、(
可動子電極の相数×可動子電極の間隔)=(固定子電極
の相数×固定子電極の間隔)という関係が成立するよう
に配列されている。すなわち、4×p1 =3×p2 
=uになっている。また、固定子電極21の幅は、可動
子電極11の幅よりも大きく設定されており、上記寸法
uの間で、いずれか一つの可動子電極11と固定子電極
21との中心同士が対向している状態で、他のいずれか
の固定子電極21に可動子電極11の半分程度の面が対
向できるように設定されている。
The mover electrode 11 and the stator electrode 21 are (
The arrangement is such that the following relationship holds true: number of phases of mover electrodes x distance between mover electrodes) = (number of phases of stator electrodes x distance between stator electrodes). That is, 4 x p1 = 3 x p2
= u. Further, the width of the stator electrode 21 is set larger than the width of the movable electrode 11, and the centers of any one of the movable electrodes 11 and the stator electrode 21 are opposite to each other within the above dimension u. The movable element electrode 11 is set so that about half of its surface faces one of the other stator electrodes 21 while the movable element electrode 11 is being moved.

【0019】可動子1の各給電ライン12および固定子
2の各給電ライン22には、図1に示すように、リレー
接点等からなるスイッチ要素4を介して直流電源5が接
続される。直流電源5は、+V、0、−Vの3種類の電
圧を出力し、スイッチ要素4は、各給電ライン22に対
して直流電源5の3種類の出力電圧を駆動電圧として選
択的に印加する。また、スイッチ要素4の切り換えは、
切換制御部6によって制御される。したがって、各給電
ライン12、22には、+V、0、−Vのいずれかの電
圧が選択的に印加される。換言すれば、各可動子電極1
1および各固定子電極21には、複極の駆動電圧が印加
されるのであって、スイッチ要素4、直流電源5、切換
制御部6によって駆動電圧制御手段が構成されるのであ
る。駆動電圧は、可動子電極11および固定子電極21
の各相ごとに制御される。
As shown in FIG. 1, a DC power source 5 is connected to each power supply line 12 of the mover 1 and each power supply line 22 of the stator 2 via a switch element 4 consisting of a relay contact or the like. The DC power supply 5 outputs three types of voltages, +V, 0, and -V, and the switch element 4 selectively applies the three types of output voltages of the DC power supply 5 as drive voltages to each power supply line 22. . Moreover, the switching of the switch element 4 is as follows.
It is controlled by the switching control section 6. Therefore, a voltage of +V, 0, or -V is selectively applied to each power supply line 12, 22. In other words, each mover electrode 1
1 and each stator electrode 21, a bipolar drive voltage is applied, and the switch element 4, the DC power supply 5, and the switching control section 6 constitute a drive voltage control means. The driving voltage is applied to the mover electrode 11 and the stator electrode 21.
is controlled for each phase.

【0020】各相の駆動電圧の印加パターンにはいろい
ろな形式が考えられるが、たとえば図6に示すような駆
動電圧を与えれば、可動子電極11および固定子電極2
1の極性を図7のように変化させて、可動子1を固定子
2に対して移動させることができる。ここで、ABCD
は可動子電極11の各相を示し、EFGは固定子電極2
1の各相を示す。この駆動電圧の印加パターンでは、可
動子電極11および固定子電極21のうち中心同士が対
向しているものに+Vを印加し、+Vを印加した可動子
電極11および固定子電極21に対して図7における左
隣の可動子電極11および固定子電極21に−Vを印加
する(図7(a)参照)。このように駆動電圧を印加す
れば、−Vを印加された可動子電極11と固定子電極2
1とは中心がずれているために、反発力によって中心の
距離を広げる向きに可動子1を移動させる。また、可動
子1がu/12だけ移動すると、初めに+Vを印加され
た可動子電極11および固定子電極21の右隣の可動子
電極11および固定子電極21の中心同士が対向するこ
とになるから(図7(b)参照)、この時点で駆動電圧
を切り換えるようにすれば(図7(c)参照)、図7(
a)と同じ形に戻り、以後同様にして可動子1を移動さ
せることができるのである。要するに、各相の駆動電圧
の組を{(A,B,C,D),(E,F,G)}とすれ
ば、可動子1がu/12進むごとに、{(−V,+V,
0,0),(−V,+V,0)}→{(0,−V,+V
,0),(0,−V,+V)}というように、1相分だ
け駆動電圧を偏位させるようにするのである。可動子1
を逆向きに移動させる場合には、{(0,+V,−V,
0),(0,+V,−V)}→{(+V,−V,0,0
),(+V,−V,0)}というように、初動の向きを
逆にするように極性を設定するとともに駆動電圧を偏位
させる向きを逆にすればよい。
Various patterns can be considered for the application pattern of the drive voltage for each phase. For example, if a drive voltage as shown in FIG. 6 is applied, the movable electrode 11 and the stator electrode 2
The movable element 1 can be moved relative to the stator 2 by changing the polarity of the movable element 1 as shown in FIG. Here, ABCD
indicates each phase of the mover electrode 11, and EFG indicates the stator electrode 2.
Each phase of 1 is shown. In this drive voltage application pattern, +V is applied to the mover electrode 11 and stator electrode 21 whose centers are facing each other, and the figure -V is applied to the movable element electrode 11 and the stator electrode 21 on the left side at 7 (see FIG. 7(a)). By applying the driving voltage in this way, the movable electrode 11 and the stator electrode 2 to which −V is applied
Since the center is offset from 1, the repulsive force causes the mover 1 to move in a direction that increases the distance between the centers. Furthermore, when the mover 1 moves by u/12, the centers of the mover electrode 11 and stator electrode 21 on the right side of the mover electrode 11 and stator electrode 21 to which +V was initially applied will face each other. Therefore, if the drive voltage is switched at this point (see FIG. 7(c)), the result will be as shown in FIG. 7(b).
It returns to the same shape as in a), and thereafter the movable element 1 can be moved in the same manner. In short, if the set of drive voltages for each phase is {(A, B, C, D), (E, F, G)}, then every time mover 1 advances by u/12, {(-V, +V ,
0, 0), (-V, +V, 0)} → {(0, -V, +V
, 0), (0, -V, +V)}, the drive voltage is shifted by one phase. Mover 1
When moving in the opposite direction, {(0, +V, -V,
0), (0, +V, -V)} → {(+V, -V, 0, 0
), (+V, -V, 0)}, the polarity may be set so that the direction of the initial motion is reversed, and the direction in which the drive voltage is deflected may be reversed.

【0021】上述した駆動電圧の印加パターンによれば
、可動子1の移動が開始されるときには、クーロン力の
合力について可動子1と固定子2との対向面に直交する
方向の成分が反発力になるから、可動子1が固定子2か
ら浮き上がることになり、可動子1と固定子2との間の
摩擦力を軽減された状態で可動子1が移動することにな
る。その結果、摩擦力による駆動力の損失が少なく、印
加電圧の大きさに対して駆動力を大きくすることができ
るのである。
According to the drive voltage application pattern described above, when the mover 1 starts moving, the component of the resultant force of the Coulomb force in the direction perpendicular to the facing surfaces of the mover 1 and the stator 2 becomes a repulsive force. Therefore, the movable element 1 rises from the stator 2, and the movable element 1 moves while the frictional force between the movable element 1 and the stator 2 is reduced. As a result, there is less loss of driving force due to frictional force, and the driving force can be increased relative to the magnitude of the applied voltage.

【0022】(実施例2)実施例1では、可動子1の移
動時に主として反発力が作用するように駆動電圧の印加
パターンを設定していたが、本実施例では、図8に示す
ように、固定子電極21に印加する駆動電圧の印加パタ
ーンを実施例1とは異なるように設定したことによって
、可動子1の移動時に主として吸引力が作用するように
しているものである。他の構成は実施例1と同様である
(Embodiment 2) In Embodiment 1, the driving voltage application pattern was set so that the repulsive force mainly acts when the mover 1 moves, but in this embodiment, as shown in FIG. By setting the application pattern of the driving voltage applied to the stator electrode 21 to be different from that in the first embodiment, the attractive force is mainly applied when the movable element 1 moves. The other configurations are the same as in the first embodiment.

【0023】(実施例3)本実施例は、駆動電圧の印加
パターンを図9のように設定したものである。この印加
パターンでは、可動子1の駆動時に対向する可動子電極
11と固定子電極21との間の電位差が2Vになるよう
に設定しているのであって、可動子1の駆動時に主とし
て反発力が作用する。同じ動作は、複極とする代わりに
、+2Vと0、または、0と−2Vという組み合わせで
も可能である。他の構成は実施例1と同様であるから説
明を省略する。
(Embodiment 3) In this embodiment, the driving voltage application pattern is set as shown in FIG. In this application pattern, the potential difference between the movable element electrode 11 and the stator electrode 21 facing each other when the movable element 1 is driven is set to be 2V, and the repulsive force is mainly generated when the movable element 1 is driven. acts. The same operation is possible with a combination of +2V and 0 or 0 and -2V instead of bipolar. The other configurations are the same as those in the first embodiment, so their explanation will be omitted.

【0024】(実施例4)上記各実施例では、駆動電圧
の波形を矩形状の波形としていたが、この場合には、可
動子1の移動開始直後の加速度と停止直前の減速度が大
きくなり、乱調や脱調の原因になることがある。そこで
、本実施例では、各極性の駆動電圧の波形を、図10の
ように、正弦波の半サイクルの波形としているのである
。このようにすれば、加速と減速とが滑らかになり、乱
調や脱調が起こりにくくなるのである。他の構成は実施
例1と同様であるから説明を省略する。
(Embodiment 4) In each of the above embodiments, the waveform of the drive voltage was a rectangular waveform, but in this case, the acceleration immediately after the movable element 1 starts moving and the deceleration immediately before stopping become large. , may cause disturbance or loss of synchronization. Therefore, in this embodiment, the waveform of the driving voltage of each polarity is a half-cycle waveform of a sine wave, as shown in FIG. If this is done, acceleration and deceleration will be smooth, and out-of-step or out-of-step will be less likely to occur. The other configurations are the same as those in the first embodiment, so their explanation will be omitted.

【0025】(実施例5)上記各実施例では、可動子電
極11および固定子電極21が直線状に形成されていた
が、本実施例では、図11に示すように、可動子電極1
1および固定子電極21を、直線状の電極素片7の一端
同士を所定の角度をなすように連結した略V形に形成し
ている。
(Embodiment 5) In each of the above embodiments, the movable electrode 11 and the stator electrode 21 were formed in a straight line, but in this embodiment, as shown in FIG.
1 and stator electrode 21 are formed into a substantially V-shape in which one ends of linear electrode pieces 7 are connected to form a predetermined angle.

【0026】可動子電極11および固定子電極21をこ
のような形状に形成すれば、可動子1の移動方向に直交
する方向に、互いに拮抗する分力が作用するようになり
、可動子1の横振れが防止されるのである。他の構成は
実施例1と同様であるから説明を省略する。
If the movable element electrode 11 and the stator electrode 21 are formed in such a shape, mutually opposing force components will act in a direction perpendicular to the moving direction of the movable element 1, and the movable element 1 will be This prevents sideways vibration. The other configurations are the same as those in the first embodiment, so their explanation will be omitted.

【0027】[0027]

【発明の効果】上述のように、請求項1の構成によれば
、固定子と可動子とにそれぞれ多数の固定子電極と可動
子電極とを配列し、固定子電極と可動子電極とに印加す
る駆動電圧を制御して可動子を移動させるので、可動子
の安定位置間の距離は、固定子電極と可動子電極との間
隔によって正確に設定されるのである。また、固定子に
固定子電極を設けるとともに可動子に可動子電極を設け
ているので、従来のように、初動時に静電誘導による電
荷を可動子に生じさせる必要がなく、初動時と定常動作
時とで駆動電圧の制御状態を変更する必要がないのであ
り、制御が容易になるという利点がある。しかも、固定
子電極および可動子電極がそれぞれ所定の間隔で配列さ
れているので、固定子電極と可動子電極との位置関係に
よって固定子に対する可動子の基準位置を正確に設定で
きることになる。さらに、固定子電極と可動子電極との
配列間隔を互いに異なる寸法に設定し、固定子電極への
駆動電圧と可動子電極への駆動電圧とを異なる相数に設
定しているので、可動子の安定位置間の距離を、固定子
電極と可動子電極とのいずれか小さいほうの間隔よりも
小さい距離に設定することが可能になるという効果を奏
するのである。
As described above, according to the structure of claim 1, a large number of stator electrodes and a large number of mover electrodes are arranged on the stator and mover, respectively, and the stator electrode and the mover electrode are arranged in large numbers. Since the movable element is moved by controlling the applied driving voltage, the distance between the stable positions of the movable element is accurately set by the interval between the stator electrode and the movable element electrode. In addition, since a stator electrode is provided on the stator and a mover electrode is provided on the mover, there is no need to generate charge on the mover due to electrostatic induction at the time of initial motion, unlike in the conventional case. There is no need to change the control state of the drive voltage from time to time, and there is an advantage that control becomes easier. Furthermore, since the stator electrodes and the movable element electrodes are arranged at predetermined intervals, the reference position of the movable element relative to the stator can be accurately set based on the positional relationship between the stator electrode and the movable element electrode. Furthermore, the arrangement spacing between the stator electrodes and the mover electrodes is set to different dimensions, and the drive voltages to the stator electrodes and the drive voltages to the mover electrodes are set to different numbers of phases. This has the effect that it is possible to set the distance between the stable positions of the stator electrode and the mover electrode to a distance that is smaller than the smaller one of the movable electrodes.

【0028】請求項2の構成によれば、各組の駆動電圧
の印加を開始した時点で生じるクーロン力の合成成分が
、固定子と可動子との対向面に直交する方向では反発力
になるように各相の駆動電圧の極性を設定しているので
、可動子が固定子に対して移動を開始する際に可動子が
固定子から浮上することになり、固定子と可動子との間
に生じる摩擦力が小さくなって、印加電圧に対する駆動
力を大きくすることができるという利点がある。
According to the structure of claim 2, the composite component of the Coulomb force generated at the time when the application of each set of drive voltages is started becomes a repulsive force in the direction perpendicular to the facing surfaces of the stator and mover. Since the polarity of the drive voltage of each phase is set as shown, when the mover starts moving relative to the stator, the mover will float above the stator, and the gap between the stator and mover will be This has the advantage that the frictional force generated in this case is reduced, making it possible to increase the driving force with respect to the applied voltage.

【0029】請求項3の構成によれば、固定子および可
動子をそれぞれ2層の導電体層を有した多層配線板によ
って形成し、一方の導電体層を固定子電極または可動子
電極とし、各導電体層を固定子電極または可動子電極を
各相ごとに接続する給電ラインとしているので、既製の
多層配線基板の加工技術を用いて精密な加工が可能にな
るのであり、固定子電極および可動子電極のそれぞれの
間隔が正確に設定でき、可動子の移動距離を一層精密に
制御できるようになるのである。さらに、2層の導電体
層を用いて給電ラインを形成しているから、固定子電極
と可動子電極とがそれぞれ複数相であるにもかかわらず
、固定子電極および可動子電極を各相ごとに一括して接
続するのが容易になるという効果がある。
According to the structure of claim 3, the stator and the mover are each formed by a multilayer wiring board having two conductor layers, one of the conductor layers is used as a stator electrode or a mover electrode, Since each conductor layer is used as a power supply line that connects the stator electrode or mover electrode for each phase, precise processing is possible using processing technology for ready-made multilayer wiring boards. The distance between the movable element electrodes can be set accurately, and the moving distance of the movable element can be controlled more precisely. Furthermore, since the power supply line is formed using two conductor layers, even though the stator electrode and mover electrode each have multiple phases, the stator electrode and mover electrode can be connected separately for each phase. This has the effect of making it easier to connect all at once.

【0030】請求項4の構成によれば、各固定子電極お
よび各可動子電極を、それぞれ直線状の電極素片の一端
同士を所定の角度で連結した形状に形成しているので、
固定子と可動子との対向面に平行な面内で、可動子の移
動方向に直交する方向において、各電極素片による拮抗
した力が作用することになり、可動子の横振れが少なく
なるのである。
According to the structure of claim 4, each stator electrode and each mover electrode are formed in a shape in which one end of each linear electrode piece is connected to each other at a predetermined angle.
In a plane parallel to the facing surfaces of the stator and mover, and in a direction perpendicular to the moving direction of the mover, counterbalanced forces are applied by each electrode piece, reducing the lateral vibration of the mover. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment.

【図2】実施例の要部断面図である。FIG. 2 is a sectional view of a main part of the embodiment.

【図3】実施例に用いる可動子を示す平面図である。FIG. 3 is a plan view showing a movable element used in the example.

【図4】実施例に用いる固定子を示す平面図である。FIG. 4 is a plan view showing a stator used in the example.

【図5】実施例に用いる可動子の要部断面図である。FIG. 5 is a sectional view of a main part of a movable element used in an example.

【図6】実施例1の駆動電圧の印加パターンを示す動作
説明図である。
FIG. 6 is an operation explanatory diagram showing a drive voltage application pattern in Example 1;

【図7】実施例1の動作説明図である。FIG. 7 is an explanatory diagram of the operation of the first embodiment.

【図8】実施例2の駆動電圧の印加パターンを示す動作
説明図である。
FIG. 8 is an operation explanatory diagram showing a drive voltage application pattern in Example 2;

【図9】実施例3の駆動電圧の印加パターンを示す動作
説明図である。
FIG. 9 is an operation explanatory diagram showing a drive voltage application pattern in Example 3;

【図10】実施例4の駆動電圧の印加パターンを示す動
作説明図である。
FIG. 10 is an operation explanatory diagram showing a driving voltage application pattern in Example 4;

【図11】実施例5に用いる固定子を示す平面図である
FIG. 11 is a plan view showing a stator used in Example 5.

【図12】従来例の動作説明図である。FIG. 12 is an explanatory diagram of the operation of a conventional example.

【符号の説明】[Explanation of symbols]

1  可動子 2  固定子 3  多層配線板 4  スイッチ要素 5  直流電源 6  切換制御部 7  電極素片 11  可動子電極 12  給電ライン 21  固定子電極 22  給電ライン 31  絶縁基板 32  絶縁体層 33  絶縁体層 34  導電体層 35  導電体層 1 Movable element 2 Stator 3 Multilayer wiring board 4 Switch element 5 DC power supply 6 Switching control section 7 Electrode piece 11 Mover electrode 12 Power supply line 21 Stator electrode 22 Power supply line 31 Insulating substrate 32 Insulator layer 33 Insulator layer 34 Conductor layer 35 Conductor layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  多数の固定子電極を一方向に所定間隔
で配列したフィルム状の固定子と、絶縁体層を介して固
定子電極に対向して配置される多数の可動子電極を上記
一方向に所定間隔で配列したフィルム状の可動子と、可
動子電極と固定子電極との間に生じるクーロン力により
可動子が固定子に対して上記一方向に移動するように固
定子電極および可動子電極に複数相の駆動電圧を印加す
る駆動電圧制御手段とを備え、固定子電極と可動子電極
との配列間隔は互いに異なる寸法に設定され、固定子電
極への駆動電圧と可動子電極への駆動電圧とは異なる相
数に設定されて成ることを特徴とする静電アクチュエー
タ。
1. A film-like stator in which a large number of stator electrodes are arranged at predetermined intervals in one direction, and a large number of mover electrodes arranged opposite to the stator electrodes with an insulating layer interposed therebetween. Film-shaped movers are arranged at predetermined intervals in the direction, and the stator electrodes and movable elements are arranged so that the mover moves in one direction relative to the stator due to the Coulomb force generated between the mover electrodes and the stator electrodes. drive voltage control means for applying drive voltages of multiple phases to the child electrodes, the array intervals between the stator electrodes and the mover electrodes are set to different dimensions, and the drive voltage to the stator electrodes and the drive voltage to the mover electrodes are set to different dimensions. An electrostatic actuator characterized in that the number of phases is set to be different from the driving voltage of the electrostatic actuator.
【請求項2】  駆動電圧制御手段は、複極の駆動電圧
を出力するとともに各固定子電極および各可動子電極に
印加する各相の駆動電圧の極性の組を順次切り換えて可
動子を固定子に対して移動させるのであって、各組の駆
動電圧の印加を開始した時点で生じるクーロン力の合成
成分が、固定子と可動子との対向面に直交する方向では
反発力になるように各相の駆動電圧の極性が設定されて
成ることを特徴とする請求項1記載の静電アクチュエー
タ。
2. The drive voltage control means outputs a bipolar drive voltage and sequentially switches polarity sets of drive voltages of each phase applied to each stator electrode and each movable element electrode to control the movable element from the stator. The components of the Coulomb force generated at the start of the application of each set of drive voltages are repulsive forces in the direction perpendicular to the facing surfaces of the stator and mover. 2. The electrostatic actuator according to claim 1, wherein the polarities of the driving voltages of the phases are set.
【請求項3】  固定子および可動子は、それぞれ絶縁
基板と絶縁基板の表裏両面を全面に亙って覆う一対の絶
縁体層との間にそれぞれ導電体層を積層した多層配線板
よりなり、絶縁基板の表裏の一面の導電体層に固定子電
極または可動子電極となる導電パターンが形成され、各
導電体層には固定子電極または可動子電極を各相ごとに
まとめて接続する給電ラインが形成されて成ることを特
徴とする請求項1記載の静電アクチュエータ。
3. The stator and the mover are each made of a multilayer wiring board in which a conductive layer is laminated between an insulating substrate and a pair of insulating layers that completely cover both the front and back surfaces of the insulating substrate, A conductive pattern serving as a stator electrode or a movable element electrode is formed on the conductive layer on one side of the front and back sides of the insulating substrate, and a power supply line that connects the stator electrode or the movable element electrode for each phase is formed on each conductive layer. 2. The electrostatic actuator according to claim 1, wherein the electrostatic actuator is formed of:
【請求項4】  各固定子電極および各可動子電極は、
それぞれ直線状の電極素片の一端同士を所定の角度で連
結した形状に形成されて成ることを特徴とする請求項1
記載の静電アクチュエータ。
4. Each stator electrode and each mover electrode are
Claim 1 characterized in that each of the electrode pieces is formed in a shape in which one ends of each linear electrode element are connected to each other at a predetermined angle.
The electrostatic actuator described.
JP2972891A 1991-02-25 1991-02-25 Electrostatic actuator Expired - Lifetime JP2899120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2972891A JP2899120B2 (en) 1991-02-25 1991-02-25 Electrostatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2972891A JP2899120B2 (en) 1991-02-25 1991-02-25 Electrostatic actuator

Publications (2)

Publication Number Publication Date
JPH04271284A true JPH04271284A (en) 1992-09-28
JP2899120B2 JP2899120B2 (en) 1999-06-02

Family

ID=12284165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2972891A Expired - Lifetime JP2899120B2 (en) 1991-02-25 1991-02-25 Electrostatic actuator

Country Status (1)

Country Link
JP (1) JP2899120B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194147A (en) * 1993-12-28 1995-07-28 Kanagawa Kagaku Gijutsu Akad Electrostatic motor
JPH0876700A (en) * 1994-09-06 1996-03-22 Toshiba Corp Movable film type display device
JPH08186987A (en) * 1994-12-29 1996-07-16 Asmo Co Ltd Electrostatic actuator
EP0744821A2 (en) * 1995-05-26 1996-11-27 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US5818148A (en) * 1996-03-07 1998-10-06 Sumitomo Electric Industries, Ltd. Electromechanical switch
US7166951B2 (en) * 2001-11-20 2007-01-23 Kabushiki Kaisha Toshiba Electrostatic actuator and method of driving the same
US7868516B2 (en) * 2006-05-18 2011-01-11 Alps Electric Co., Ltd. Electrostatic actuator having electrodes with deformation patterns having larger pitches from the center
JP2011205786A (en) * 2010-03-25 2011-10-13 Dainippon Printing Co Ltd Four-wire electrostatic actuator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194147A (en) * 1993-12-28 1995-07-28 Kanagawa Kagaku Gijutsu Akad Electrostatic motor
JPH0876700A (en) * 1994-09-06 1996-03-22 Toshiba Corp Movable film type display device
JPH08186987A (en) * 1994-12-29 1996-07-16 Asmo Co Ltd Electrostatic actuator
EP0744821A2 (en) * 1995-05-26 1996-11-27 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
EP0744821A3 (en) * 1995-05-26 1996-12-04 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US5869916A (en) * 1995-05-26 1999-02-09 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US5818148A (en) * 1996-03-07 1998-10-06 Sumitomo Electric Industries, Ltd. Electromechanical switch
US7166951B2 (en) * 2001-11-20 2007-01-23 Kabushiki Kaisha Toshiba Electrostatic actuator and method of driving the same
US7868516B2 (en) * 2006-05-18 2011-01-11 Alps Electric Co., Ltd. Electrostatic actuator having electrodes with deformation patterns having larger pitches from the center
JP2011205786A (en) * 2010-03-25 2011-10-13 Dainippon Printing Co Ltd Four-wire electrostatic actuator

Also Published As

Publication number Publication date
JP2899120B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP2899133B2 (en) Electrostatic actuator
US5239222A (en) Electrostatic actuator using films
US7372186B2 (en) Electrostatic motor with clearance maintaining structure
JPH08266071A (en) Multiaxis drive equipment
JPH04271284A (en) Electrostatic actuator
US5461272A (en) Planar micro-actuator
JPH04112683A (en) Electrostatic actuator
JPH02285978A (en) Electrostatic actuator using film
JP2928752B2 (en) Electrostatic actuator and driving method thereof
JP3095642B2 (en) Electrostatic actuator and driving method thereof
JP2972001B2 (en) Electrostatic actuator
JP2979569B2 (en) Electrostatic actuator
JP2923974B2 (en) Electrostatic actuator
JPS63136978A (en) Electrostatic actuator
JPH04281371A (en) Electrode pattern for electrostatic actuator
JP2009284574A (en) Two-phase driven static actuator
JP4335660B2 (en) Electrostatic actuator
JPH0880064A (en) Electrostatic actuator
JPH06153535A (en) Electrostatic film actuator
JPH09163762A (en) Electrostatic actuator
JPH08186989A (en) Electrostatic actuator
JPH06113563A (en) Electrostatic actuator
JPH04236179A (en) Electrostatic actuator
JP3183319B2 (en) Electrostatic actuator
JPH0965667A (en) Electrostatic actuator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

EXPY Cancellation because of completion of term