JPH04268829A - Data transmitting method - Google Patents

Data transmitting method

Info

Publication number
JPH04268829A
JPH04268829A JP5040291A JP5040291A JPH04268829A JP H04268829 A JPH04268829 A JP H04268829A JP 5040291 A JP5040291 A JP 5040291A JP 5040291 A JP5040291 A JP 5040291A JP H04268829 A JPH04268829 A JP H04268829A
Authority
JP
Japan
Prior art keywords
station
data
slave
pulse
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5040291A
Other languages
Japanese (ja)
Inventor
Yuji Hayashi
雄二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO DENSHI KOGYO KK
Nikko Co Ltd
Nikko KK
Original Assignee
NIKKO DENSHI KOGYO KK
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO DENSHI KOGYO KK, Nikko Co Ltd, Nikko KK filed Critical NIKKO DENSHI KOGYO KK
Priority to JP5040291A priority Critical patent/JPH04268829A/en
Publication of JPH04268829A publication Critical patent/JPH04268829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To make a slave station power-sourceless by supplying power from a master station to the slave station through a transmission line. CONSTITUTION:Plural slave stations (slave transmitting station 6 and slave receiving station 7) are connected to one transmission line 5 connected to the master station 4 to be a main station. A power supply pulse A higher than a data pulse for carrying data in a peak value is sent from the master station 4 to the transmission line 5 at prescribed intervals, and at a slave station side, the charge of the above-mentioned power supply pulse A is accumulated by a capacitor 25, and is made driving power. Besides, at the point of time of the end of the power supply pulse A, both the terminals of the transmission line 5 are turned into a state terminated by characteristic impedance by the reverse bias action of a diode 24 so that a high-speed digital signal can be transmitted, and data is transmitted between the maintain station 4 the slave station as inserting the data between the power supply pulses A.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、親局に接続した一つの
伝送路に複数の子局を接続して親局と子局間でデータ伝
送を行なう方法に関し、特に親局から子局に伝送路を介
して駆動電力をも供給するようにしたデータ伝送方法に
関するものである。
[Industrial Application Field] The present invention relates to a method of connecting a plurality of slave stations to a single transmission line connected to a master station and transmitting data between the master station and the slave stations, and particularly relates to a method for transmitting data between the master station and the slave stations. The present invention relates to a data transmission method in which driving power is also supplied via a transmission path.

【0002】0002

【従来の技術】制御の指令を出す主局となる親局と、各
種センサやアクチュエータ等の小型機器を有する複数の
子局を伝送路で接続し、親局から子局側にデータを伝送
したり、また親局に子局側のデータを収集することが行
なわれている。
[Background Art] A master station that issues control commands and multiple slave stations equipped with small devices such as various sensors and actuators are connected via a transmission path, and data is transmitted from the master station to the slave stations. In addition, the master station collects data from the slave stations.

【0003】0003

【発明が解決しようとする課題】子局側から伝送路にデ
ータを送出するためには、子局側に電源部を備えるか、
または親局から各子局に電力用の配線をする必要がある
が、多数の子局が点在して配置されている場合には、各
子局のそれぞれに電源部を備えると高価なものとなり、
また親局から各子局に電力用供給用の配線を別途すると
なると配線材料も多くなって手間もかかる。
[Problem to be Solved by the Invention] In order to send data from the slave station to the transmission line, it is necessary to either equip the slave station with a power supply section or
Alternatively, it is necessary to run power wiring from the master station to each slave station, but if a large number of slave stations are scattered, it would be expensive to provide a power supply section for each slave station. ,
Furthermore, if separate wiring is required for power supply from the master station to each slave station, a large amount of wiring material is required, which is time-consuming.

【0004】本発明は上記の点に鑑み、親局から子局に
伝送路を介して電力を供給して子局の無電源化を図るこ
とを目ととしたデータ伝送方法を提供するものである。
[0004] In view of the above points, the present invention provides a data transmission method with the aim of supplying power from a master station to a slave station via a transmission line so that the slave station does not need a power source. be.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するために、親局に接続した一つの伝送路に複数の子
局を接続し、親局から波高値がデータ搬送用のデータパ
ルスより十分に高い電源パルスを所定間隔で伝送路に送
出し、各子局では電源パルスの電荷をダイオード及びコ
ンデンサにより蓄積して子局の駆動電力とし、電源パル
スの終了時点ではダイオードの逆バイアス作用により伝
送路の両端を特性インピーダンスにより終端させた状態
にして高速デジタル信号の伝送を可能とし、前記電源パ
ルス間に伝送するデータをデータパルスとして挿入しな
がら伝送路に送出してデータ伝送を行なうようにしたも
のである
[Means for Solving the Problems] In order to achieve the above object, the present invention connects a plurality of slave stations to one transmission line connected to a master station, and transmits the peak value from the master station to data for data transmission. A power pulse that is sufficiently higher than the power pulse is sent to the transmission line at a predetermined interval, and in each slave station, the charge of the power pulse is accumulated in a diode and a capacitor to serve as driving power for the slave station, and at the end of the power pulse, the diode is reverse biased. Due to this action, both ends of the transmission path are terminated by characteristic impedance, enabling high-speed digital signal transmission, and the data to be transmitted is inserted as a data pulse between the power pulses and sent out to the transmission path, thereby performing data transmission. This is how it was done.

【0006】[0006]

【作用】本発明に係るデータ伝送方法にあっては、親局
からデータパルスより波高値の十分高い電源パルスを所
定間隔で伝送路に送出する。子局では前記電源パルスの
電荷をダイオード、コンデンサにより蓄積して子局の駆
動電力とする。これによって子局の電源装置は不要とな
る。そして前記電源パルスの終了時点ではダイオードの
逆バイアス作用により伝送路の両端を特性インピーダン
スで終端させた状態にして高速デジタル信号の伝送を可
能とさせる。そして親局と子局間のデータ伝送はデータ
パルスを前記電源パルス間に挿入して行なうのである。
In the data transmission method according to the present invention, power pulses having a sufficiently higher peak value than data pulses are sent from the master station to the transmission path at predetermined intervals. In the slave station, the electric charge of the power supply pulse is accumulated by a diode and a capacitor, and is used as driving power for the slave station. This eliminates the need for a power supply device for the slave station. At the end of the power pulse, both ends of the transmission path are terminated with characteristic impedance due to the reverse bias effect of the diode, making it possible to transmit high-speed digital signals. Data transmission between the master station and the slave station is performed by inserting data pulses between the power pulses.

【0007】[0007]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1は本発明に係るデータ伝送方法を採用
した装置全体の概略構成を示したものであって、制御装
置1は通信用シリアルインターフェースであるRS23
2Cインターフェース2を具備しており、該RS232
Cインターフェース2に伝送部3を接続している。
FIG. 1 shows a schematic configuration of the entire apparatus that employs the data transmission method according to the present invention, in which the control device 1 has an RS23 serial interface for communication.
Equipped with 2C interface 2, the RS232
A transmission section 3 is connected to the C interface 2.

【0009】データ伝送部3は主局である親局4にツイ
ストペア線または同軸ケーブルからなる一つの伝送路5
を接続し、該伝送路5には子局となる複数の子送信局6
及び子受信局7を接続し、これら子送信局6及び子受信
局7が一つの伝送路を共有している。
The data transmission unit 3 connects a master station 4, which is a main station, to a single transmission line 5 made of twisted pair wires or coaxial cables.
A plurality of slave transmitting stations 6 are connected to the transmission path 5.
and slave receiving station 7 are connected, and these slave transmitting station 6 and slave receiving station 7 share one transmission path.

【0010】前記伝送部3の親局4には図2に示すよう
な波高値が30Vの電源パルスAを発生する電源パルス
発生部8と波高値が10VのデータパルスBを受信する
データパルス受信部9及びデータパルスBを送信するデ
ータパルス送信部10と、パルスを計数するカウンタ部
11と子局の送受信局を設定する送受信設定部12を設
け、これらを駆動する電源部13を設けている。
The master station 4 of the transmission section 3 includes a power pulse generating section 8 for generating a power pulse A having a peak value of 30V as shown in FIG. 2, and a data pulse receiving section for receiving a data pulse B having a peak value of 10V. 9, a data pulse transmitter 10 for transmitting data pulses B, a counter section 11 for counting pulses, and a transmission/reception setting section 12 for setting a transmitting/receiving station of a slave station, and a power supply section 13 for driving these. .

【0011】子送信局6には前記電源パルスAを検出す
る電源パルス検出部14、各子送信局6固有の自局番号
を設定する局番設定部15を設けると共に、パルスを計
数するカウンタ部16、各子送受信局が同一位相、同一
周波数の正確なクロックを発生させるために各子送受信
局共通の発振器17、データパルスBを伝送路5に送り
出すデータパルス送出部18を設けている。
The child transmitting station 6 is provided with a power pulse detection section 14 for detecting the power pulse A, a station number setting section 15 for setting its own station number unique to each child transmitting station 6, and a counter section 16 for counting pulses. , an oscillator 17 common to each child transmitting/receiving station so that each child transmitting/receiving station generates an accurate clock of the same phase and frequency, and a data pulse sending section 18 for sending data pulse B to the transmission line 5 are provided.

【0012】また、子受信局7には前記電源パルスAを
検出する電源パルス検出部19、各子受信局7固有の自
局番号を設定する局番設定部20を設けると共に、前記
データパルスBを受信するデータパルス受信部21、位
相の揃った正確なクロックを発生させる各送受信局共通
の発振器22、パルスを計数するカウンタ部23を設け
ている。
The child receiving station 7 is also provided with a power pulse detection section 19 for detecting the power pulse A, a station number setting section 20 for setting the own station number unique to each child receiving station 7, and a station number setting section 20 for setting the own station number unique to each child receiving station 7. It is provided with a data pulse receiving section 21 for receiving data, an oscillator 22 common to each transmitting/receiving station for generating accurate clocks with the same phase, and a counter section 23 for counting pulses.

【0013】そして子送信局6及び子受信局7と伝送路
5との接続部は図4に示すようにダイオード24とコン
デンサ25を直列に結合した回路により構成し、コンデ
ンサ25の両端には子送信局6及び子受信局7の電力供
給回路(図示せず)を結合している。
The connection between the child transmitting station 6 and the child receiving station 7 and the transmission line 5 is constituted by a circuit in which a diode 24 and a capacitor 25 are connected in series, as shown in FIG. Power supply circuits (not shown) of the transmitting station 6 and slave receiving station 7 are coupled.

【0014】次に、親局4と子送信局6及び子受信局7
との間のデータ伝送について説明する。
Next, the master station 4, the slave transmitting station 6, and the slave receiving station 7
Data transmission between the two will be explained.

【0015】先ず、各子送信局6の局番設定部15及び
子受信局7の局番設定部20にそれぞれの局番を表わす
自局番号を設定すると共に、各子送信局6から一つの伝
送路5にデータをタイミングよく整然と送出するために
、各子送信局6の自局番号に対応させてデータ送出時の
時間差を設定しておく。この設定した局番号とデータ送
出時の時間差とは親局4のにも記憶させておき、各子送
信局6から伝送される複数のデータを時間差を基に分離
して各子送信局6固有のデータを把握することが可能な
ようにしておく。
First, the station number setting section 15 of each child transmitting station 6 and the station number setting section 20 of the child receiving station 7 are set with their own station numbers representing their respective station numbers, and one transmission path 5 is set from each child transmitting station 6. In order to send out data in a well-timed and orderly manner, a time difference at the time of data sending is set in correspondence with the own station number of each child transmitting station 6. The set station number and the time difference at the time of data transmission are also stored in the master station 4, and the multiple data transmitted from each child transmitting station 6 are separated based on the time difference and unique to each child transmitting station 6. Make it possible to understand the data.

【0016】また、親局4は各子受信局7への複数のデ
ータを一つの伝送路5に順次送出するので、データの混
同が生じないようにするために、各子受信局7の局番号
に対応させたデータ送出時の時間差を設定しておく。更
に、各子受信局7にも前記設定した時間差の自局番号に
対応するものを自局のデータ取り込み時の時間差として
記憶させておき、親局4から伝送される複数のデータの
中から時間差を基に自局のデータを取り出すことが可能
なようにしておく。
Furthermore, since the master station 4 sequentially sends a plurality of data to each child receiving station 7 to one transmission line 5, in order to prevent data from being mixed up, each child receiving station 7 is Set the time difference when sending data corresponding to the number. Furthermore, each child receiving station 7 also stores the time difference corresponding to the own station number of the set time difference as the time difference at the time of data acquisition of the own station, and selects the time difference from among the plurality of data transmitted from the master station 4. Make it possible to retrieve your own station's data based on .

【0017】そして、親局4から伝送路5に図3に示す
ような波高値が30VでデータパルスBの波高値より十
分高くした電源パルスAを所定間隔をおきながら送出す
る。各子送信局6及び子受信局7では電源パルスAが立
ち上がり始めて伝送路5の電位がデータパルスBの電位
より十分高くなると、ダイオード24の電位の方向が順
バイアスとなり、電源パルスAの電荷がダイオード24
を通してコンデンサ25に流入し、電源パルスAから得
られる電荷の蓄積を開始する。電源パルスAは図3に示
すように電荷を取り込まれてコンデンサ25を充電し、
この電源パルスAが立ち下がる終了時点では図4におけ
るダイオード24が逆バイアスになって電荷の流入が停
止し、伝送路5はコンデンサ25の影響を無視できるよ
うになり、伝送路5の両端を特性インピーダンスで終端
した状態にして高速デジタル信号の伝送を可能とする。 そしてコンデンサ25に蓄積された電荷は子送信局6及
び子受信局7の駆動電力として利用される。
Then, a power pulse A having a peak value of 30V, which is sufficiently higher than the peak value of the data pulse B, as shown in FIG. 3, is sent from the master station 4 to the transmission path 5 at predetermined intervals. In each child transmitting station 6 and child receiving station 7, when the power pulse A begins to rise and the potential of the transmission line 5 becomes sufficiently higher than the potential of the data pulse B, the direction of the potential of the diode 24 becomes forward biased, and the charge of the power pulse A increases. diode 24
through the capacitor 25 and begins to accumulate the charge obtained from the power supply pulse A. As shown in FIG. 3, the power supply pulse A takes charge and charges the capacitor 25.
At the end of the fall of the power supply pulse A, the diode 24 in FIG. 4 becomes reverse biased and the inflow of charge stops, and the influence of the capacitor 25 on the transmission line 5 can be ignored, and the characteristics of both ends of the transmission line 5 are reduced. Enables high-speed digital signal transmission by terminating with impedance. The charge accumulated in the capacitor 25 is used as driving power for the child transmitting station 6 and the child receiving station 7.

【0018】次に、子送信局6から親局4にデータ送信
を行なう手順を説明する。
Next, a procedure for transmitting data from slave transmitting station 6 to master station 4 will be explained.

【0019】各子送信局6は電源パルス検出部14によ
り電源パルスAの終了時点を検出し、全子送信局6の発
振器17を同時に発振させて同一位相、同一周波数のク
ロックを発生させ、各局の発振器17のクロックを正確
に同期させる。そして、このクロックパルスに基づいて
予め設定した自局番号に対応した時間差をカウンタ部1
6で計数し、各子送信局6毎に設定された時間差経過後
に親局4に送出するデータをデータパルスBとしてデー
タパルス送出部18を介して伝送路5に送出する。図2
は電源パルスA間にデータパルスBを挿入した状態を示
す伝送波形図であり、3台の子送信局6から時間差を持
たせて伝送路5にデータパルスBを送出したものであり
、子送信局6の自局番号(1)のものが(1)の部分に
、自局番号(2)のものが(2)の部分に、自局番号(
3)のものが(3)の部分に嵌め込まれて伝送されてい
る状態を示している。なお、(0)の部分はデータの安
定期間として確保されている。
Each slave transmitting station 6 detects the end point of the power pulse A by the power pulse detector 14, and causes the oscillators 17 of all slave transmitting stations 6 to oscillate simultaneously to generate clocks of the same phase and frequency. The clocks of the oscillators 17 are accurately synchronized. Then, based on this clock pulse, the counter section 1 calculates the time difference corresponding to the preset own station number.
6, and the data to be sent to the master station 4 after a time difference set for each child transmitting station 6 has elapsed is sent to the transmission path 5 as a data pulse B via the data pulse sending unit 18. Figure 2
is a transmission waveform diagram showing a state in which data pulse B is inserted between power pulses A, data pulse B is sent from three slave transmitting stations 6 to transmission line 5 with a time difference, and slave transmitter The own station number (1) of station 6 is in the (1) part, the own station number (2) is in the (2) part, and the own station number (
3) is inserted into the part (3) and is being transmitted. Note that the part (0) is secured as a data stability period.

【0020】そして、親局4ではデータパルス受信部9
により各子送信局6から送出したデータパルスBを受信
すると、電源パルスAに同期させながら予め記憶してい
る各子送信局6の局番号に対応する時間差を基にデータ
パルスBを各子送信局6毎にそれぞれ分離しながら、カ
ウンタ部11によりデータパルスBを一定時間計数し、
これによって各送信局6のデータを読み取るのである。 そして、この読み取ったデータをRS232Cインター
フェース2を経由して制御装置1に送り込むのである。
[0020] Then, in the master station 4, a data pulse receiving section 9
When the data pulse B transmitted from each child transmitting station 6 is received, the data pulse B is transmitted to each child based on the time difference corresponding to the station number of each child transmitting station 6, which is stored in advance while synchronizing with the power pulse A. The data pulses B are counted for a certain period of time by the counter section 11 while being separated for each station 6,
This allows data from each transmitting station 6 to be read. This read data is then sent to the control device 1 via the RS232C interface 2.

【0021】続いて、親局4から子受信局7へデータ送
信を行なう手順について説明する。
Next, a procedure for transmitting data from the master station 4 to the slave receiving station 7 will be explained.

【0022】制御装置1からデータがRS232Cイン
ターフェース2を経由して親局4に出力されると、親局
4では電源パルスAに同期したクロックパルスに基づき
、予め各子受信局7毎に設定したデータ送出時の時間差
をカウンタ部11で計数する。そして各子受信局7毎に
設定した時間が経過すれば、各子受信局7に送信するデ
ータをデータパルス送信部10を介してデータパルスB
として伝送路5に順次送出する。この伝送は、前記子送
信局6から親局4に送信する時と同様に、図2のように
電源パルスA間に送信データを時間差を持たせて挿入し
て行なうものであり、子受信局7の自局番号(1)への
データが(1)の部分に、子受信局7の自局番号(2)
へのデータが(2)の部分に、子受信局7の自局番号(
3)へのデータが(3)の部分に嵌め込まれて伝送され
る。なお、(0)の位置は前記と同様にデータの安定期
間として確保されている。
When data is output from the control device 1 to the master station 4 via the RS232C interface 2, the master station 4 uses a clock pulse synchronized with the power pulse A, which is set in advance for each child receiving station 7. A counter section 11 counts the time difference at the time of data transmission. Then, when the time set for each child receiving station 7 has elapsed, the data to be transmitted to each child receiving station 7 is sent to the data pulse B via the data pulse transmitter 10.
The data are sequentially sent out to the transmission path 5 as the data. This transmission is performed by inserting the transmission data with a time difference between the power pulses A as shown in FIG. The data for the own station number (1) of 7 is in the part (1), and the own station number (2) of the slave receiving station 7 is included in the part (1).
The data to (2) contains the own station number of the slave receiving station 7 (
The data for 3) is inserted into part (3) and transmitted. Note that the position (0) is secured as a data stable period as described above.

【0023】各子受信局7では親局4からのパルス信号
を受信すると、電源パルス検出部19により電源パルス
Aの終了時点を検出し、各子受信局7の発振器22を同
時に発振させて同一位相、同一周波数のクロックを発生
させ、それぞれの発振器22のクロックを正確に同期さ
せる。そして、子受信局7に記憶しているデータ取り込
み時間を電源パルスAの終了時点よりクロックパルスに
基づいてカウンタ部23で計数し、データ取り込み時間
となればデータパルス受信部21によりデータパルスB
の複数のデータの中から自局のデータの読み取りを開始
し、データパルスBを一定時間計数することにより親局
4から送信されるデータを得るのである。
When each child receiving station 7 receives a pulse signal from the master station 4, the power pulse detection unit 19 detects the end point of the power pulse A, and causes the oscillators 22 of each child receiving station 7 to oscillate at the same time. Clocks with the same phase and frequency are generated, and the clocks of the respective oscillators 22 are accurately synchronized. Then, the data acquisition time stored in the slave receiving station 7 is counted by the counter unit 23 based on the clock pulse from the end of the power pulse A, and when the data acquisition time has come, the data pulse reception unit 21 uses the data pulse B
The data to be transmitted from the master station 4 is obtained by starting reading the data of the own station from among the plurality of data of the base station 4 and counting data pulses B for a certain period of time.

【0024】なお、上記実施例においては子送信局6、
子受信局7をそれぞれ別個に設けた例をあげたが、送受
信を兼ねた子局としても良い。また、図5は、図4に示
す伝送路の接続形式を変形した他の実施例を示す図であ
るが、図4に示す伝送路の接続形式とは伝送速度の差異
はあるものの、このような接続形式を採用しても本発明
の本質が変わるものではなく、本発明の要旨を逸脱しな
い範囲内での種々の変更は本発明に含まれることは勿論
である。
[0024] In the above embodiment, the slave transmitting station 6,
Although an example has been given in which the slave receiving stations 7 are provided separately, the slave stations may also serve as transmitting and receiving stations. Furthermore, FIG. 5 is a diagram showing another embodiment in which the connection format of the transmission line shown in FIG. 4 is modified. Even if a different connection type is adopted, the essence of the present invention does not change, and it goes without saying that the present invention includes various modifications without departing from the gist of the present invention.

【0025】[0025]

【発明の効果】以上のように本発明に係るデータ伝送方
法によれば、主局となる親局4に接続した一つの伝送路
5に子局を接続し、親局4から伝送路5上に送出される
電源パルスAの電荷を子局で蓄積して子局の駆動電力と
するので、子局側に電源装置を具備する必要がなく、ま
た親局4からの電力供給用の配線を別途設ける必要もな
くて配線にかかる手間、コスト等も低減することができ
る。
As described above, according to the data transmission method according to the present invention, a slave station is connected to one transmission line 5 connected to the master station 4 serving as the main station, and a slave station is connected to the transmission line 5 from the master station 4. Since the charge of the power pulse A sent to the slave station is accumulated in the slave station and used as driving power for the slave station, there is no need to equip the slave station with a power supply device, and wiring for power supply from the master station 4 is not required. There is no need to provide it separately, and the effort and cost required for wiring can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法の一実施例を示す全体構成図である
FIG. 1 is an overall configuration diagram showing an embodiment of the method of the present invention.

【図2】電源パルスとデータパルスの関係を示す伝送波
形図である。
FIG. 2 is a transmission waveform diagram showing the relationship between power pulses and data pulses.

【図3】電源パルスの伝送波形図である。FIG. 3 is a transmission waveform diagram of power pulses.

【図4】伝送路と子送信局及び子受信局の接続部を示す
説明図である。
FIG. 4 is an explanatory diagram showing a connection section between a transmission path, a child transmitting station, and a child receiving station.

【図5】伝送路と子送信局及び子受信局の接続の他の実
施例を示す説明図である。
FIG. 5 is an explanatory diagram showing another example of connection between a transmission path, a child transmitting station, and a child receiving station.

【符号の説明】[Explanation of symbols]

1      制御装置 3      伝送部 4      親局 5      伝送路 6      子送信局(子局) 7      子受信局(子局) 1 Control device 3 Transmission section 4      Master station 5 Transmission line 6 Child transmitting station (child station) 7. Child receiving station (slave station)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】親局に接続した一つの伝送路に複数の子局
を接続し、親局から波高値がデータ搬送用のデータパル
スより十分に高い電源パルスを所定間隔で伝送路に送出
し、各子局では電源パルスの電荷をダイオード及びコン
デンサにより蓄積して子局の駆動電力とし、電源パルス
の終了時点ではダイオードの逆バイアス作用により伝送
路の両端を特性インピーダンスにより終端させた状態に
して高速デジタル信号の伝送を可能とし、前記電源パル
ス間に伝送するデータをデータパルスとして挿入しなが
ら伝送路に送出してデータ伝送を行なうようにしたこと
特徴とするデータ伝送方法。
Claim 1: A plurality of slave stations are connected to one transmission line connected to a master station, and the master station sends power pulses whose peak value is sufficiently higher than the data pulse for data transmission to the transmission line at predetermined intervals. In each slave station, the electric charge of the power pulse is accumulated by a diode and a capacitor to serve as driving power for the slave station, and at the end of the power pulse, both ends of the transmission path are terminated with characteristic impedance due to the reverse bias effect of the diode. 1. A data transmission method, which enables high-speed digital signal transmission, and performs data transmission by inserting data to be transmitted as data pulses between the power pulses and transmitting the data to a transmission path.
JP5040291A 1991-02-22 1991-02-22 Data transmitting method Pending JPH04268829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5040291A JPH04268829A (en) 1991-02-22 1991-02-22 Data transmitting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5040291A JPH04268829A (en) 1991-02-22 1991-02-22 Data transmitting method

Publications (1)

Publication Number Publication Date
JPH04268829A true JPH04268829A (en) 1992-09-24

Family

ID=12857875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5040291A Pending JPH04268829A (en) 1991-02-22 1991-02-22 Data transmitting method

Country Status (1)

Country Link
JP (1) JPH04268829A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468043A (en) * 1987-09-08 1989-03-14 Makuro Eng Kk Two-wire type information transmission equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468043A (en) * 1987-09-08 1989-03-14 Makuro Eng Kk Two-wire type information transmission equipment

Similar Documents

Publication Publication Date Title
US4241444A (en) Arrangement for time-division multiplex PWM data transmission
CN101646986B (en) USB based synchronization and timing system
KR830008578A (en) 2-wire bus system including clock and data wires for interconnecting multiple stations (relay stations)
US4361838A (en) Remote meter reading arrangement
KR960036362A (en) Telemeter Telecontrol System
JPH04268829A (en) Data transmitting method
GB1573765A (en) Time division multiplex transmission system
EP0261596B1 (en) System for transmitting and receiving data in a time-division multiplex mode applicable to a vehicle
US5623515A (en) Data communication system for reducing a risk of transmission errors
JP2750956B2 (en) Analog multiplex transmission method
JPH04268896A (en) Analog multiplex transmission method
SU1553999A1 (en) Device for telemetering
JP2570183B2 (en) Serial communication circuit
JPH04268897A (en) Analog multiplex transmission method
JPH07154867A (en) Data transmitter
SU1328942A1 (en) Syncro generator
SU1081597A1 (en) Synchronizing device for geoelectric prospecting
JPS59111445A (en) Data transmission system
SU1113906A1 (en) Device for synchronizing fields of television receiver
SU1238259A1 (en) Device for reception of discrete information
KR100435558B1 (en) Data carrier detection circuit, especially using a series of pulses with several bytes to detect a start point
SU934516A1 (en) Device for monitoring operating time of machines
SU1088052A1 (en) Device for transmitting and receiving telecontrol signals
SU1693734A1 (en) Device for receiving and transferring digital binary information
SU1453435A1 (en) Signal transceiver