JPH04267068A - Solid electrolyte fuel cell device - Google Patents

Solid electrolyte fuel cell device

Info

Publication number
JPH04267068A
JPH04267068A JP3050489A JP5048991A JPH04267068A JP H04267068 A JPH04267068 A JP H04267068A JP 3050489 A JP3050489 A JP 3050489A JP 5048991 A JP5048991 A JP 5048991A JP H04267068 A JPH04267068 A JP H04267068A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
cell device
polygonal columnar
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050489A
Other languages
Japanese (ja)
Inventor
Ryoichi Okuyama
良一 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3050489A priority Critical patent/JPH04267068A/en
Publication of JPH04267068A publication Critical patent/JPH04267068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2435High-temperature cells with solid electrolytes with monolithic core structure, e.g. honeycombs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To aim at high outputting of a solid electrolyte fuel cell by bonding polygonal-prism type generating part structures A, of which inside is hollow, and polygonal-column type conducting part structures B, of which inside is hollow. CONSTITUTION:A solid electrolyte fuel cell device consists of generating part structures A, in which solid electrolyte film 2 is provided in the surface of a hollow polygonal-prism type fuel electrode 1 and an air electrode 5 is provided in the surface of the described solid electrolyte film 2, and conducting part strucrtures B, in which an air electrode 5 is provided in the surface of a hollow polygonal-prism base material tube 4. The described air electrode 3 and the air electrode 5 are bonded, and while the described polygonal-prism type fuel electrode 1 is bonded with the polygonal-prism type fuel electrode 1 of other generating part structures A. Manufacture of the generating part structure A and the conducting part structure B is facilitated, and they are bonded in order to obtain a sold electrolyte fuel cell device having high outputting property.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体電解質燃料電池装置
に関するもので、さらに詳しく言えば、容易に固体電解
質燃料電池の高出力密度化を図ることができる構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell device, and more specifically, to a structure that can easily increase the output density of a solid oxide fuel cell.

【0002】0002

【従来の技術】固体電解質燃料電池としては、リン酸型
燃料電池、溶融炭酸塩型燃料電池と類似した構造の平板
型、米国のアルゴンヌ国立研究所によって提案されたモ
ノリシック型、日本の電子技術総合研究所によって開発
中の円筒多素子型、米国のウェスティングハウス社によ
って提案された円筒単素子型が知られているが、現在は
高温におけるガスシールの容易さ、スタック構成の容易
さの点でウェスティングハウス社の円筒単素子型が注目
されている。
[Prior Art] Solid electrolyte fuel cells include a phosphoric acid fuel cell, a flat plate type with a structure similar to a molten carbonate fuel cell, a monolithic type proposed by Argonne National Laboratory in the United States, and a Japanese electronics technology complex. The cylindrical multi-element type currently being developed by the Institute, and the cylindrical single element type proposed by Westinghouse Corporation in the United States, are well known, but currently Westing is currently developing a cylindrical multi-element type that is being developed by Westinghouse, Inc. in the United States. Guhaus' cylindrical single element type is attracting attention.

【0003】一方、このような固体電解質燃料電池の高
出力化を図るため、図9のようにハニカム構造にするこ
とが提案されている。
On the other hand, in order to increase the output of such a solid electrolyte fuel cell, it has been proposed to have a honeycomb structure as shown in FIG.

【0004】0004

【発明が解決しようとする課題】上記のようなハニカム
構造にすることは、空気極、燃料極、固体電解質膜の形
成や空気用マニホールド6、燃料用マニホールド7の製
作が困難であるという問題があった。
[Problems to be Solved by the Invention] Creating the honeycomb structure as described above has the problem that it is difficult to form the air electrode, fuel electrode, solid electrolyte membrane, and to manufacture the air manifold 6 and fuel manifold 7. there were.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
、本発明は、中空の多角柱状燃料極と前記燃料極の表面
に設けられた固体電解質膜と前記固体電解質膜の表面に
設けられた空気極とを有する発電部構成体と、少なくと
も導電性金属酸化物を含む中空の多角柱状の導電部構成
体とからなり、前記発電部構成体表面の空気極と前記導
電部構成体表面との間に金属酸化物を介在させて発電部
構成体と導電部構成体とを接合したことを特徴とするも
のである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a hollow polygonal columnar fuel electrode, a solid electrolyte membrane provided on the surface of the fuel electrode, and a solid electrolyte membrane provided on the surface of the solid electrolyte membrane. a hollow polygonal column-shaped conductive part comprising at least a conductive metal oxide; the air electrode on the surface of the power generating part and the conductive part constitute This is characterized in that the power generating part component and the conductive part component are joined with a metal oxide interposed therebetween.

【0006】[0006]

【作用】上記のように、本発明は、多角柱状の導電部構
成体を介して複数の発電部構成体表面の空気極同士を接
合することができるので、導電部構成体中の導電性金属
酸化物によって複数の固体電解質燃料電池を並列に接続
することができる。
[Operation] As described above, in the present invention, since the air electrodes on the surfaces of a plurality of power generation section components can be joined to each other via the polygonal columnar conductive section structure, the conductive metal in the conductive section structure can be The oxide allows multiple solid electrolyte fuel cells to be connected in parallel.

【0007】[0007]

【実施例】図1は、本発明の固体電解質燃料電池装置に
使用する発電部構成体Aの斜視図で、中空の多角柱状燃
料極1としての六角柱状燃料極と前記燃料極1の表面に
設けられた固体電解質膜2と前記固体電解質膜2の表面
に設けられた空気極3とを有している。
[Embodiment] FIG. 1 is a perspective view of a power generating unit component A used in a solid electrolyte fuel cell device of the present invention. It has a solid electrolyte membrane 2 and an air electrode 3 provided on the surface of the solid electrolyte membrane 2.

【0008】図2は、中空の多角柱状燃料極1としての
八角柱状燃料極を用いた発電部構成体Aの斜視図である
FIG. 2 is a perspective view of a power generating unit structure A using an octagonal columnar fuel electrode as the hollow polygonal columnar fuel electrode 1. As shown in FIG.

【0009】図3は、中空の多角柱状燃料極1としての
四角柱状燃料極を用いた発電部構成体Aの斜視図である
FIG. 3 is a perspective view of a power generating unit structure A using a quadrangular columnar fuel electrode as the hollow polygonal columnar fuel electrode 1. As shown in FIG.

【0010】図1〜図3に示した各多角柱状燃料極1は
、ニッケルもしくはコバルトに安定化剤としてのイット
リアを添加してなるNi−ZrO2 サーメットもしく
はCo−ZrO2 サーメットからなる多孔質管である
。 前記固体電解質膜2は、前記多角柱状燃料極1の表面に
安定化剤としてのイットリアを添加したジルコニア粉末
を含むスラリーを塗布またはスプレーした後焼成するこ
とによって形成する。前記空気極3は、前記固体電解質
膜2の表面にストロンチウムをドープしたLaMnO3
 を含むスラリーを塗布またはスプレーすることによっ
て形成する。
Each of the polygonal columnar fuel electrodes 1 shown in FIGS. 1 to 3 is a porous tube made of Ni-ZrO2 cermet or Co-ZrO2 cermet made by adding yttria as a stabilizer to nickel or cobalt. . The solid electrolyte membrane 2 is formed by applying or spraying a slurry containing zirconia powder to which yttria as a stabilizer is added to the surface of the polygonal columnar fuel electrode 1, and then firing the slurry. The air electrode 3 is made of LaMnO3 in which the surface of the solid electrolyte membrane 2 is doped with strontium.
Formed by coating or spraying a slurry containing.

【0011】図4は、本発明の固体電解質燃料電池装置
に使用する多角柱状の導電部構成体Bの斜視図で、中空
の多角柱状基材管4としての六角柱状基材管と前記基材
管4の表面に設けられた空気極5とを有している。
FIG. 4 is a perspective view of a polygonal columnar conductive part structure B used in the solid electrolyte fuel cell device of the present invention, showing a hexagonal columnar base tube as a hollow polygonal columnar base tube 4 and the base material. It has an air electrode 5 provided on the surface of the tube 4.

【0012】図5は、中空の多角柱状基材管4としての
四角柱状基材管を用いた導電部構成体Bの斜視図である
FIG. 5 is a perspective view of a conductive part structure B using a square columnar base tube as the hollow polygonal columnar base tube 4. As shown in FIG.

【0013】図4〜図5に示した各多角柱状基材管4は
、高温時の絶縁性にすぐれたアルミナ製の多孔質管であ
る。前記空気極5は、前記多角柱状基材管4の表面にス
トロンチウムをドープしたLaMnO3 を含むスラリ
ーを塗布またはスプレーすることによって形成する。な
お、この空気極5に代えて、ストロンチウムもしくはカ
ルシウムをドープしたLaMnO3 、LaCoO3 
、CaMnO3 、LaCrO3 のような導電性金属
酸化物を含む多角柱状の導電部構成体Bを用いてもよい
ことは言うまでもない。
Each of the polygonal columnar base tubes 4 shown in FIGS. 4 and 5 is a porous tube made of alumina and has excellent insulation properties at high temperatures. The air electrode 5 is formed by applying or spraying a slurry containing strontium-doped LaMnO3 onto the surface of the polygonal columnar base tube 4. Note that instead of this air electrode 5, strontium or calcium-doped LaMnO3, LaCoO3
It goes without saying that a polygonal conductive part structure B containing a conductive metal oxide such as , CaMnO3, or LaCrO3 may be used.

【0014】図6は、前記発電部構成体Aとして図1に
示した六角柱状燃料極と多角柱状の導電部構成体Bとし
て図4に示した六角柱状基材管とから構成される本発明
の固体電解質燃料電池装置の断面図で、第1の発電部構
成体A1表面の空気極31と第1の導電部構成体B1表
面の空気極51、第2の導電部構成体B2表面の空気極
52、第3の導電部構成体B3表面の空気極53および
第4の導電部構成体B4表面の空気極54とは、ストロ
ンチウムをドープしたLaMnO3 を介して接合され
るとともに、前記第1の発電部構成体A1表面の空気極
31は第2の発電部構成体A2表面の空気極32に接合
され、さらにこの空気極32はストロンチウムをドープ
したLaMnO3 を介して前記第2の導電部構成体B
2表面の空気極52、第4の導電部構成体B4表面の空
気極54に接合される。
FIG. 6 shows an embodiment of the present invention which is composed of the hexagonal columnar fuel electrode shown in FIG. 1 as the power generating part component A and the hexagonal columnar base material tube shown in FIG. 4 as the polygonal conductor part B. This is a cross-sectional view of the solid electrolyte fuel cell device shown in FIG. The pole 52, the air electrode 53 on the surface of the third conductive part structure B3, and the air electrode 54 on the surface of the fourth conductive part structure B4 are bonded to each other via strontium-doped LaMnO3. The air electrode 31 on the surface of the power generating section component A1 is joined to the air electrode 32 on the surface of the second power generating section component A2, and this air electrode 32 is further connected to the second conductive section component via strontium-doped LaMnO3. B
It is joined to the air electrode 52 on the second surface and the air electrode 54 on the surface of the fourth conductive part structure B4.

【0015】図7は、前記発電部構成体Aとして図2に
示した八角柱状燃料極と導電部構成体Bとして図5に示
した四角柱状基材管とから構成される本発明の固体電解
質燃料電池装置の断面図で、基本的な構成は図6のもの
と同じである。
FIG. 7 shows the solid electrolyte of the present invention, which is composed of the octagonal prismatic fuel electrode shown in FIG. 2 as the power generating part component A and the square prismatic base tube shown in FIG. 5 as the conductive part B. This is a sectional view of the fuel cell device, and the basic configuration is the same as that of FIG. 6.

【0016】図8は、前記発電部構成体Aとして図3に
示した四角柱状燃料極と導電部構成体Bとして図5に示
した四角柱状基材管とから構成される本発明の固体電解
質燃料電池装置の断面図で、基本的な構成は図7のもの
と同じである。
FIG. 8 shows the solid electrolyte of the present invention, which is composed of the square prismatic fuel electrode shown in FIG. 3 as the power generation component A and the square prismatic base tube shown in FIG. 5 as the conductive component B. 7 is a cross-sectional view of the fuel cell device, the basic configuration of which is the same as that of FIG. 7.

【0017】従って、図6〜図8の構成のものにおいて
、第1の導電部構成体B1表面の空気極51を第2の導
電部構成体B2表面の空気極52に接合し、第3の導電
部構成体B3表面の空気極53を第4の導電部構成体B
4表面の空気極54に接合するとともに、第1の発電部
構成体A1の燃料極11と第2の発電部構成体A2の燃
料極12とを接続すれば、複数の固体電解質燃料電池が
並列に接続された構造となり、高出力の固体電解質燃料
電池装置が構成できる。
Therefore, in the configurations shown in FIGS. 6 to 8, the air electrode 51 on the surface of the first conductive part structure B1 is joined to the air electrode 52 on the surface of the second conductive part structure B2, and the third The air electrode 53 on the surface of the conductive part structure B3 is connected to the fourth conductive part structure B.
By connecting the fuel electrode 11 of the first power generating unit component A1 and the fuel electrode 12 of the second power generating unit component A2 together with the air electrode 54 on the fourth surface, a plurality of solid electrolyte fuel cells can be connected in parallel. A high-output solid electrolyte fuel cell device can be constructed.

【0018】上記実施例において、発電部構成体A、多
角柱状の導電部構成体Bの一端が閉塞されたものを用い
、これらを交互に積層すれば図9のようなハニカム構造
の装置が構成できる。
In the above embodiment, the power generating part component A and the polygonal columnar conductive part component B with one end closed are used, and if these are stacked alternately, a honeycomb structured device as shown in FIG. 9 can be constructed. can.

【0019】さらに、本発明においては、単位体積当た
りの有効電極面積を大きくするためには、発電部構成体
A、導電部構成体Bの口径を小さくすることが望ましい
が、生産性や取扱いやすさを考慮すると、発電部構成体
A、導電部構成体Bの口径は2mm〜10mm、長さは
5cm〜30cmとすることが望ましく、また接合によ
る応力集中を緩和するため、多角柱の頂点部分にアール
を設けることが望ましい。
Furthermore, in the present invention, in order to increase the effective electrode area per unit volume, it is desirable to reduce the diameters of the power generating part component A and the conductive part component B, but productivity and ease of handling In consideration of the It is desirable to provide a radius.

【0020】こうして得られた固体電解質燃料電池装置
を作動温度である700℃から1000℃に昇温し、発
電部構成体Aの中空部に燃料としてのメタンを、導電部
構成体Bの中空部に空気を供給し、多角柱状燃料極1と
空気極5とを外部回路に接続すると、メタンによって多
角柱状燃料極1中のニッケルが水蒸気改質触媒の作用を
して水素と一酸化炭素とを生成する。一方、空気中の酸
素は空気極3,5中を拡散し、空気極5で外部回路から
電子を取り込んで酸素イオンとなり、固体電解質膜2中
を拡散して多角柱状燃料極1と固体電解質膜2との界面
で前記水素および一酸化炭素と反応して水蒸気および二
酸化炭素を生成するとともに、外部回路に電子を放出す
る。従って外部回路には空気極5,3を正極、多角柱状
燃料極1を負極とした起電力が生じ、電池としての作用
がなされることになる。
The temperature of the thus obtained solid electrolyte fuel cell device is raised from the operating temperature of 700° C. to 1000° C., and methane as a fuel is introduced into the hollow portion of the power generating portion component A into the hollow portion of the conductive portion component B. When air is supplied to the fuel electrode 1 and the air electrode 5 is connected to an external circuit, the nickel in the polygonal fuel electrode 1 acts as a steam reforming catalyst due to methane, converting hydrogen and carbon monoxide. generate. On the other hand, oxygen in the air diffuses through the air electrodes 3 and 5, takes in electrons from an external circuit at the air electrode 5, becomes oxygen ions, diffuses through the solid electrolyte membrane 2, and connects the polygonal columnar fuel electrode 1 to the solid electrolyte membrane. At the interface with 2, it reacts with the hydrogen and carbon monoxide to generate water vapor and carbon dioxide, and also releases electrons to the external circuit. Therefore, an electromotive force is generated in the external circuit with the air electrodes 5 and 3 as positive electrodes and the polygonal columnar fuel electrode 1 as a negative electrode, and the battery functions as a battery.

【0021】[0021]

【発明の効果】上記した如く、本発明は製造が容易な発
電部構成体Aと導電部構成体Bとを順次接合することに
より、高出力の固体電解質燃料電池装置が構成できる。
As described above, according to the present invention, a high-output solid electrolyte fuel cell device can be constructed by sequentially joining the power generating part component A and the conductive part component B, which are easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の固体電解質燃料電池装置に使用する発
電部構成体の斜視図である。
FIG. 1 is a perspective view of a power generation component used in a solid electrolyte fuel cell device of the present invention.

【図2】本発明の固体電解質燃料電池装置に使用する発
電部構成体の斜視図である。
FIG. 2 is a perspective view of a power generation component used in the solid electrolyte fuel cell device of the present invention.

【図3】本発明の固体電解質燃料電池装置に使用する発
電部構成体の斜視図である。
FIG. 3 is a perspective view of a power generation component used in the solid electrolyte fuel cell device of the present invention.

【図4】本発明の固体電解質燃料電池装置に使用する導
電部構成体の斜視図である。
FIG. 4 is a perspective view of a conductive part structure used in the solid electrolyte fuel cell device of the present invention.

【図5】本発明の固体電解質燃料電池装置に使用する導
電部構成体の斜視図である。
FIG. 5 is a perspective view of a conductive part structure used in the solid electrolyte fuel cell device of the present invention.

【図6】本発明の固体電解質燃料電池装置の断面図であ
る。
FIG. 6 is a sectional view of the solid electrolyte fuel cell device of the present invention.

【図7】本発明の固体電解質燃料電池装置の断面図であ
る。
FIG. 7 is a sectional view of the solid electrolyte fuel cell device of the present invention.

【図8】本発明の固体電解質燃料電池装置の断面図であ
る。
FIG. 8 is a sectional view of the solid electrolyte fuel cell device of the present invention.

【図9】ハニカム構造の固体電解質燃料電池装置の原理
図である。
FIG. 9 is a principle diagram of a solid electrolyte fuel cell device with a honeycomb structure.

【符号の説明】[Explanation of symbols]

A  発電部構成体 B  導電部構成体 1  多角柱状燃料極 2  固体電解質膜 3  空気極 4  多角柱状基材管 5  空気極 A Power generation part components B Conductive part structure 1 Polygonal columnar fuel electrode 2 Solid electrolyte membrane 3 Air electrode 4 Polygonal columnar base material tube 5 Air electrode

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  中空の多角柱状燃料極と前記燃料極の
表面に設けられた固体電解質膜と前記固体電解質膜の表
面に設けられた空気極とを有する発電部構成体と、少な
くとも導電性金属酸化物を含む中空の多角柱状の導電部
構成体とからなり、前記発電部構成体表面の空気極と前
記導電部構成体表面との間に金属酸化物を介在させて発
電部構成体と導電部構成体とを接合したことを特徴とす
る固体電解質燃料電池装置。
1. A power generation component comprising a hollow polygonal columnar fuel electrode, a solid electrolyte membrane provided on the surface of the fuel electrode, and an air electrode provided on the surface of the solid electrolyte membrane, and at least a conductive metal a hollow polygonal columnar conductive part structure containing an oxide, and a metal oxide is interposed between the air electrode on the surface of the power generation part structure and the surface of the conductive part structure to form a conductive part between the power generation part structure and the conductive part structure. A solid electrolyte fuel cell device characterized in that parts and components are joined.
【請求項2】  多角柱状燃料極は、Ni−ZrO2 
サーメット、Co−ZrO2 サーメットであることを
特徴とする請求項第1項記載の固体電解質燃料電池装置
[Claim 2] The polygonal columnar fuel electrode is made of Ni-ZrO2
2. The solid electrolyte fuel cell device according to claim 1, wherein the solid electrolyte fuel cell device is a cermet or a Co-ZrO2 cermet.
【請求項3】  導電部構成体は、中空の多角柱状基材
管と前記基材管の表面に設けられた空気極とを有するこ
とを特徴とする請求項第1項記載の固体電解質燃料電池
装置。
3. The solid oxide fuel cell according to claim 1, wherein the conductive part structure has a hollow polygonal columnar base tube and an air electrode provided on the surface of the base tube. Device.
【請求項4】  固体電解質膜は、安定化剤としてのイ
ットリア、カルシア、スカンジア、イッテルビア、ネオ
ジア、ガドリニアを添加した立方晶ジルコニア、正方晶
ジルコニア、部分安定化ジルコニアの単独物もしくは複
数種の混合物からなることを特徴とする請求項第1項記
載の固体電解質燃料電池装置。
4. The solid electrolyte membrane is made of a single substance or a mixture of cubic zirconia, tetragonal zirconia, and partially stabilized zirconia to which yttria, calcia, scandia, ytterbia, neodia, and gadolinia are added as stabilizers. The solid electrolyte fuel cell device according to claim 1, characterized in that:
【請求項5】  導電性金属酸化物、空気極および空気
極間に介在させる金属酸化物は、ストロンチウムもしく
はカルシウムドープしたLaMnO3 、LaCoO3
 、CaMnO3 、LaCrO3 であることを特徴
とする請求項第1項記載の固体電解質燃料電池装置。
5. The conductive metal oxide, the air electrode, and the metal oxide interposed between the air electrodes are strontium- or calcium-doped LaMnO3, LaCoO3.
, CaMnO3, and LaCrO3, the solid electrolyte fuel cell device according to claim 1.
【請求項6】  多角柱状の導電部構成体は、ジルコニ
ア、アルミナ、マグネシアからなることを特徴とする請
求項第1項記載の固体電解質燃料電池装置。
6. The solid electrolyte fuel cell device according to claim 1, wherein the polygonal columnar conductive part structure is made of zirconia, alumina, and magnesia.
【請求項7】  多角柱状燃料極と多角柱状の導電部構
成体とが六角柱であることを特徴とする請求項第1項記
載の固体電解質燃料電池装置。
7. The solid electrolyte fuel cell device according to claim 1, wherein the polygonal columnar fuel electrode and the polygonal columnar conductive portion structure are hexagonal columns.
【請求項8】  多角柱状燃料極と多角柱状の導電部構
成体とが四角柱であることを特徴とする請求項第1項記
載の固体電解質燃料電池装置。
8. The solid electrolyte fuel cell device according to claim 1, wherein the polygonal columnar fuel electrode and the polygonal columnar conductive portion structure are square prisms.
【請求項9】  多角柱状燃料極が八角柱、多角柱状の
導電部構成体が四角柱であることを特徴とする請求項第
1項記載の固体電解質燃料電池装置。
9. The solid oxide fuel cell device according to claim 1, wherein the polygonal columnar fuel electrode is an octagonal column, and the polygonal columnar conductive part structure is a square column.
JP3050489A 1991-02-21 1991-02-21 Solid electrolyte fuel cell device Pending JPH04267068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050489A JPH04267068A (en) 1991-02-21 1991-02-21 Solid electrolyte fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050489A JPH04267068A (en) 1991-02-21 1991-02-21 Solid electrolyte fuel cell device

Publications (1)

Publication Number Publication Date
JPH04267068A true JPH04267068A (en) 1992-09-22

Family

ID=12860338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050489A Pending JPH04267068A (en) 1991-02-21 1991-02-21 Solid electrolyte fuel cell device

Country Status (1)

Country Link
JP (1) JPH04267068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019397C2 (en) * 2001-11-19 2003-06-13 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel.
JPWO2005001980A1 (en) * 2003-06-30 2006-11-30 株式会社ジャパンエナジー Fuel cell with reformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019397C2 (en) * 2001-11-19 2003-06-13 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel.
US7041410B2 (en) 2001-11-19 2006-05-09 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel
EP1313162A3 (en) * 2001-11-19 2006-11-29 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel
JPWO2005001980A1 (en) * 2003-06-30 2006-11-30 株式会社ジャパンエナジー Fuel cell with reformer
JP4676882B2 (en) * 2003-06-30 2011-04-27 Jx日鉱日石エネルギー株式会社 Fuel cell with reformer

Similar Documents

Publication Publication Date Title
RU2310952C2 (en) Tubular cell (alternatives), tubular-cell battery with current passage over generating line, and method for its manufacture
WO2012008386A1 (en) Fuel cell structural body
JPH03241670A (en) Solid electrolyte type fuel cell
JP5208905B2 (en) Solid oxide fuel cell and solid oxide fuel cell bundle
JP2008047545A (en) Solid oxide fuel cell having gas channel
JP4686123B2 (en) Solid oxide fuel cell submodule and solid oxide fuel cell module using the same
JPH0536417A (en) Hollow thin plate type solid electrolytic fuel cell
WO2012008385A1 (en) Fuel cell structural body
JP2014132518A (en) Stack structure of fuel battery
JP2013012397A (en) Solid oxide fuel cell and fuel cell module
JP2004335277A (en) Solid oxide fuel cell
JPH11297344A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JP2758520B2 (en) Single cell of solid oxide fuel cell and power generator using the same
JPH04262372A (en) Fuel cell device with solid electrolyte
JP5362605B2 (en) Solid oxide fuel cell
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JP7197747B2 (en) Cells, cell stacking equipment, modules and module housing equipment
JPH02276166A (en) Solid electrolyte fuel cell
JPH04272662A (en) Solid electrolyte fuel cell device
JPH04267068A (en) Solid electrolyte fuel cell device
JPH04272661A (en) Solid electrolyte fuel cell device
KR102123714B1 (en) Planar type solid oxide fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH0794191A (en) Air electrode for electrochemical battery having electrolyte made of high-temperature solid oxide