JPH04265425A - Using limit estimating device for part of gas turbine - Google Patents

Using limit estimating device for part of gas turbine

Info

Publication number
JPH04265425A
JPH04265425A JP2742991A JP2742991A JPH04265425A JP H04265425 A JPH04265425 A JP H04265425A JP 2742991 A JP2742991 A JP 2742991A JP 2742991 A JP2742991 A JP 2742991A JP H04265425 A JPH04265425 A JP H04265425A
Authority
JP
Japan
Prior art keywords
gas turbine
crack
crack occurrence
history
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2742991A
Other languages
Japanese (ja)
Inventor
Itaru Murakami
格 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2742991A priority Critical patent/JPH04265425A/en
Publication of JPH04265425A publication Critical patent/JPH04265425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To estimate the using limit of a specific part by searching a tendency to occur cracking of a part from operating condition of a gas turbine at every periodic inspection, crack generating condition, repairing condition, and using condition of the part. CONSTITUTION:Operating record at every inspection/repairing 1 of a gas turbine is preserved in an operating record data base 5, and using condition 3 of resective parts of the gas turbine are preserved in a part using condition data base 6. In a repairing record data base 7, the inpecting and repairing record 4 is preserved. Operating record and operating environment of individual parts are computed with a part operating record computer 9 from these data bases 5, 6, 7. A tendency to generate crack is extracted with a crack generating tendency computer 10 from the operating record and environment obtained with the computer 9 and the crack generating record stored in a crack generating record data base 8. Based on the obtained generating tendency, estimation of crack generation and judgement of using limit of a part is performed with a crack generation and using limit diagnosis device 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明はガスタービンに発生する
亀裂等を予測するガスタービン部品の使用限界予測装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for predicting the service limits of gas turbine parts, which predicts cracks and the like occurring in gas turbines.

【0003】0003

【従来の技術】一般に、ガスタービンは、高温・高圧の
流体による繰り返し力が作用するため、他の構造物と比
較すると短時間で亀裂が発生し、しかも発生亀裂個数も
多い。したがって、定期点検の度に亀裂が発見され、補
修が行われることが多い。ガスタービンの補修の際は、
損傷部品と予備部品とを交換して補修部品を補修するの
が一般的である。しかし、予備部品は数軸のタービンで
共有しており、特定の部品の運転履歴・運転環境などを
把握することが困難であった。
2. Description of the Related Art In general, gas turbines are subjected to repeated forces from high-temperature, high-pressure fluids, so cracks occur in a shorter time than in other structures, and moreover, a large number of cracks occur. Therefore, cracks are often discovered and repaired during periodic inspections. When repairing a gas turbine,
It is common to repair damaged parts by replacing them with spare parts. However, spare parts are shared by several turbines, making it difficult to understand the operating history and operating environment of specific parts.

【0004】従来、ガスタービン部品の亀裂発生履歴・
補修履歴は、調べようとする部品がどのガスタービンに
使用されたかを調査し、タービン毎の定期点検記録の帳
票と照らし合わせて求めるしかなく、正確で迅速な検索
は不可能であった。このため運転履歴・運転環境の把握
が困難なことと併せて、ガスタービン部品の運転履歴と
亀裂発生の度合いの関係を定量的に把握することが難し
く、部品の亀裂発生傾向管理を行うことができなかった
[0004] Conventionally, the history of crack occurrence in gas turbine parts
Repair history can only be obtained by investigating which gas turbine the part in question was used in and comparing it with the periodic inspection records for each turbine, making it impossible to search accurately and quickly. For this reason, it is difficult to understand the operating history and operating environment, and it is also difficult to quantitatively understand the relationship between the operating history of gas turbine parts and the degree of crack occurrence, making it difficult to manage crack occurrence trends in parts. could not.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ガスタ
ービン部品の亀裂発生傾向を運転状態・運転環境などと
関連づけて、今後の亀裂発生状況の予測を行い、補修履
歴に基づきガスタービン部品の使用限界を求める手法を
開発する必要がある。
[Problem to be Solved by the Invention] However, it is necessary to correlate the tendency of crack occurrence in gas turbine parts with operating conditions, operating environment, etc., to predict future crack occurrence conditions, and to determine the usage limit of gas turbine parts based on the repair history. It is necessary to develop the desired method.

【0006】本発明は上記事情に鑑みてなされたもので
、その目的は、定期点検毎のガスタービンの運転状況、
ガスタービン部品の亀裂発生状況、補修状況および使用
状況からガスタービン部品の亀裂発生傾向を求め、亀裂
発生を予知し、使用限界を推定するガスタービン部品の
使用限界予測装置を提供することにある。[発明の構成
The present invention has been made in view of the above circumstances, and its purpose is to check the operating status of a gas turbine at each periodic inspection;
An object of the present invention is to provide a usage limit prediction device for gas turbine parts that determines the crack occurrence tendency of gas turbine parts from the crack occurrence status, repair status, and usage status of the gas turbine parts, predicts crack occurrence, and estimates the usage limit. [Structure of the invention]

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のガスタービン部品の使用限界予測装置は、
ガスタービンの運転履歴を保持する運転履歴データベー
スと、前記ガスタービン部品の使用状況を保持する部品
使用状況データベースと、前記ガスタービン部品の補修
履歴を保持する補修履歴データベースと、前記各データ
ベースから前記ガスタービンの個々の部品の運転履歴を
算出する部品運転履歴演算器と、前記ガスタービンの部
品に生じた亀裂の状態量を格納する亀裂発生履歴データ
ベースと、前記部品運転履歴演算器により算出された個
々の部品の運転履歴と前記亀裂発生履歴データベースか
ら亀裂発生傾向を抽出する亀裂発生傾向演算器と、前記
亀裂発生傾向演算器により得られた亀裂発生傾向とガス
タービン部品の運用予想より前記ガスタービン部品の亀
裂発生寿命を予測し、使用限界を推定する亀裂発生使用
限界診断装置とから構成されたことを特徴とするもので
ある。
[Means for Solving the Problems] In order to achieve the above object, the gas turbine component usage limit prediction device of the present invention has the following features:
an operation history database that holds the operation history of the gas turbine; a parts usage status database that holds the usage status of the gas turbine parts; a repair history database that holds the repair history of the gas turbine parts; a component operation history calculator that calculates the operation history of each individual component of the turbine; a crack occurrence history database that stores state amounts of cracks that have occurred in the gas turbine components; a crack occurrence tendency calculator for extracting a crack occurrence tendency from the operation history of the component and the crack occurrence history database; The present invention is characterized in that it is comprised of a crack occurrence service limit diagnostic device that predicts the crack service life of the product and estimates its service limit.

【0008】[0008]

【作用】本発明によれば、ガスタービンの運転履歴・ガ
スタービン部品の亀裂発生状況・補修状況および使用状
況からガスタービン部品の亀裂発生状況および使用限界
を推定することができる。
[Operation] According to the present invention, it is possible to estimate the occurrence of cracks and the usage limit of gas turbine components from the operating history of the gas turbine, the occurrence of cracks in the gas turbine components, the state of repair, and the usage conditions.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明をガスタービン静翼に適用した実施
例の構成図である。図1に示すように、ガスタービンの
点検・補修1する毎の運転履歴2を保存する運転履歴デ
ータベース5と、ガスタービンの各部品の使用状況3を
保存する部品使用状況データベース6と、ガスタービン
部品の点検・補修記録4を保存する補修履歴データベー
ス7および亀裂発生履歴データベース8を備えており、
運転履歴データベース5と部品使用状況データベース6
と補修履歴データベース7とから個々の部品の運転履歴
および運転環境を算出する部品運転履歴演算器9を備え
、部品運転履歴演算器9により算出された運転履歴およ
び運転環境と前記亀裂発生履歴データベース8から亀裂
発生傾向を抽出する亀裂発生傾向演算器10と、前記亀
裂発生傾向演算器10により求められた亀裂発生傾向と
前記部品運転履歴演算器9で求められたガスタービン部
品の運転履歴より推定される運用予想から前記ガスター
ビン部品の亀裂発生を予測し、使用限界を推定する亀裂
発生・使用限界診断装置11により、亀裂発生の予測お
よび使用限界の推定値の出力を行う亀裂発生使用限界診
断装置12とから構成されている。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment in which the present invention is applied to a gas turbine stationary blade. As shown in FIG. 1, there is an operation history database 5 that stores the operation history 2 for each gas turbine inspection/repair 1, a parts usage status database 6 that stores the usage status 3 of each part of the gas turbine, and a gas turbine It is equipped with a repair history database 7 that stores parts inspection and repair records 4 and a crack occurrence history database 8.
Operation history database 5 and parts usage status database 6
and a repair history database 7 to calculate the operating history and operating environment of each individual component. A crack occurrence tendency calculator 10 extracts the crack occurrence tendency from the crack occurrence tendency calculator 10, and the crack occurrence tendency calculated by the crack occurrence tendency calculator 10 and the operation history of the gas turbine component determined by the component operation history calculator 9 are used. A crack occurrence/service limit diagnosis device 11 predicts the occurrence of cracks in the gas turbine components based on operational forecasts and estimates the service limit, and outputs an estimated value of the service limit and predicts the occurrence of cracks. It consists of 12.

【0010】次に、本実施例の作用について説明する。 ガスタービン静翼は図2の模式図に示すように、ガス流
入口側から1段、2段…の順に段落13を形成しており
、補修時にはこの段落ごと取替えることが多いため、こ
の周方向の一群の羽根を群と呼び、ガスタービン静翼は
基本的にこの群毎に管理される。段落13は、セグメン
ト14の集合となっている。セグメント14は図3に示
すように、ガスタービン静翼15は外側サイドウォール
16と内側サイドウォール17に挟まれる形でセグメン
トを構成している。
Next, the operation of this embodiment will be explained. As shown in the schematic diagram in Figure 2, gas turbine stationary blades form stages 13 in the order of 1st stage, 2nd stage, etc. from the gas inlet side, and since these stages are often replaced in their entirety during repair, this circumferential direction A group of blades is called a group, and gas turbine stationary blades are basically managed on a group-by-group basis. Paragraph 13 is a collection of segments 14. As shown in FIG. 3, the segment 14 constitutes a segment in which the gas turbine stationary blade 15 is sandwiched between an outer sidewall 16 and an inner sidewall 17.

【0011】図4は運転履歴データベース5の構成例で
ある。この構成例では、ガスタービンのユニット・号数
・軸番号を軸コード51で表し、コード化している。定
検回数52は運転開始時を0、最初の定期検査時を1と
表す。定検日時53は運転開始または検査の日時を表す
。タービン静翼の運転履歴は運転時間54および停止回
数55で表すが、停止状態によって、静翼の熱応力分布
が大きく異なるため停止回数55は通常停止回数55a
、事故停止回数55bおよび緊急停止回数55cに分け
て保存する。
FIG. 4 shows an example of the structure of the driving history database 5. In this configuration example, the unit, number, and shaft number of the gas turbine are represented by a shaft code 51 and coded. The periodic inspection frequency 52 indicates 0 at the start of operation and 1 at the first periodic inspection. The periodic inspection date and time 53 represents the date and time of the start of operation or inspection. The operation history of the turbine stator blade is expressed by the operating time 54 and the number of stops 55, but since the thermal stress distribution of the stator blade varies greatly depending on the stopped state, the number of stops 55 is usually the number of stops 55a
, the number of accidental stops 55b and the number of emergency stops 55c.

【0012】図5は部品使用状況データベース6の構成
例である。この構成例では、ガスタービン静翼の各群に
番号をつけ、段落番号と群番号を組み合わせた群コード
62により静翼の群を同定する。ガスタービン静翼は主
に群単位で管理されるため、群管理型のデータベース6
aを基本とするが、異物による損傷など特定の静翼だけ
が交換されることもあるため、この場合には羽根管理型
のデータベース6bを併用する。軸管理型のデータベー
ス6aのうち軸コード61および定検回数63は運転履
歴データベース5のものと同様のコードである。この場
合、定検回数63がnであるということは、n回目の定
検までの間に群が軸に据付けられていたことを示す。羽
根管理型のデータベース6bは軸管理型のデータベース
6aと併用されるもので、群のうち更新された羽根の番
号64とその更新日時65を格納する。なお、本例では
ガス流上流側からみて、最も右側にある静翼を同定して
いる。
FIG. 5 shows an example of the structure of the parts usage status database 6. In this configuration example, each group of gas turbine stator blades is numbered, and the group of stator blades is identified by a group code 62 that is a combination of a paragraph number and a group number. Since gas turbine stationary blades are mainly managed in groups, a group management type database 6
a is used as a basis, but since only a specific stator blade may be replaced due to damage caused by foreign matter, in this case, a blade management type database 6b is also used. In the shaft management type database 6a, the shaft code 61 and the number of regular inspections 63 are the same codes as those in the driving history database 5. In this case, the fact that the number of regular inspections 63 is n indicates that the group was installed on the shaft before the nth regular inspection. The blade management type database 6b is used together with the shaft management type database 6a, and stores the number 64 of the blade updated in the group and the update date and time 65. Note that in this example, the stationary blade located on the far right side when viewed from the upstream side of the gas flow is identified.

【0013】図6は補修履歴データベース7および亀裂
発生履歴データベース8の構成図である。この構成図で
は補修履歴データベース7と亀裂発生履歴データベース
8を統合して一つのデータベースとしている。亀裂発生
検査は軸毎に行われるため、本データベース例でも軸コ
ード81、段落82で亀裂が発生した段落を指定する。 定検回数83を保存することにより群の同定が可能であ
る。羽根番号84は部品使用状況データベース6で定義
されたものと同様である。亀裂発生位置85は図7のよ
うに予め亀裂の起こるコードにしたがって記述される。 また静翼の表側部分はA番台、裏側部分はB番台、貫通
部分はC番台とし、さらに例えば表側の区分A6にはコ
ード41〜49を付しており、また表側区分A7にはコ
ード51〜59を付している。
FIG. 6 is a configuration diagram of the repair history database 7 and the crack occurrence history database 8. In this configuration diagram, the repair history database 7 and the crack occurrence history database 8 are integrated into one database. Since crack occurrence inspection is performed for each axis, in this database example as well, axis code 81 and paragraph 82 specify the paragraph in which a crack has occurred. Groups can be identified by storing the number of regular inspections 83. The blade number 84 is the same as that defined in the parts usage status database 6. The crack occurrence position 85 is described in advance according to the code where the crack occurs, as shown in FIG. Furthermore, the front side part of the stationary blade is numbered A, the back side part is numbered B, and the penetrating part is numbered C. For example, the front section A6 is assigned codes 41 to 49, and the front section A7 is assigned codes 51 to 49. 59 is attached.

【0014】しかしながら、実際の検査記録は図8に示
すように必ずしも全ての亀裂の長さが記述されているわ
けではないため、本実施例では亀裂長さが判っているも
のを大亀裂判らないものを小亀裂と定義し、大小亀裂の
別を大亀裂/小亀裂コード86で記述する。亀裂長さ/
個数コード87の項目には大亀裂の場合は亀裂長さを小
亀裂の場合は亀裂個数を記述する。また、亀裂が補修さ
れたか補修されずにそのまま使用されているかを補修度
/データベースの補修済みコード71として入力する。
However, as shown in FIG. 8, actual inspection records do not necessarily record the lengths of all cracks, so in this example, cracks whose lengths are known are not identified as major cracks. A small crack is defined as a small crack, and the distinction between large and small cracks is described by a large crack/small crack code 86. Crack length/
In the item number code 87, the crack length is written in the case of a large crack, and the number of cracks is written in the case of a small crack. Further, whether the crack has been repaired or is being used as is without being repaired is input as the repaired code 71 of the repair degree/database.

【0015】部品運転履歴演算器9では上記各データベ
ースから特定の羽根の運転履歴や運転環境を求める。図
9には一例として羽根の総起動停止回数を求めるフロー
チャートを示す。すなわち、この例では第1ステップ1
01として群を求め、第2ステップ102では部品使用
状況データベースを検索し、リストを作成する。第3ス
テップ103では定検日でリストをソートとする。その
結果第4ステップ104では羽根を更新するか否かを判
断し、YESであれば、第5ステップ105では使用状
況リストから羽根更新前の分を削除する。NOであれば
、第6ステッブ106でリスト分を取り出す。第7ステ
ッブ107では停止回数を取得し、足し合わせる。そし
てリスト分が終了するまで繰返し、第8ステップ108
でリスト分が終了すると、第9ステップ109で総停止
回数を出力する。これにより一連の操作は終了する。 なお、運転履歴としては、この外に総運転時間補修後の
起動停止回数などを求める。
The component operation history calculator 9 obtains the operation history and operating environment of a particular blade from the above-mentioned databases. FIG. 9 shows, as an example, a flowchart for determining the total number of times the blades are started and stopped. That is, in this example, the first step 1
01 to find the group, and in the second step 102, the parts usage status database is searched and a list is created. In the third step 103, the list is sorted by regular inspection date. As a result, in the fourth step 104, it is determined whether or not to update the blades, and if YES, in the fifth step 105, the blades before the blade update are deleted from the usage status list. If NO, in the sixth step 106, the list is taken out. In the seventh step 107, the number of stops is obtained and added up. Then, repeat until the list is completed, and the eighth step 108
When the list is completed, the total number of stops is output in a ninth step 109. This completes the series of operations. In addition to this, the total operating time and the number of starts and stops after repair are calculated as the operating history.

【0016】亀裂発生傾向演算器10では、部品運転履
歴演算器9により求められた運転履歴や運転環境および
亀裂発生履歴データベース8に格納されている亀裂発生
履歴から亀裂発生傾向を抽出する。亀裂発生傾向はガス
タービン静翼の運転履歴および運転環境と亀裂発生状況
との関係で表されるが、運転履歴を表す指標として運転
時間・起動停止回数などが挙げられ、運転環境を表す指
標として、軸番号・羽根の位置・亀裂発生位置などが挙
げられる。また、亀裂の発生状況を表す指標として、亀
裂個数・最大亀裂長さなどが挙げられる。図10に起動
停止回数と最大亀裂長さの相関関係を、図11に羽根の
位置と亀裂個数の相関を示す。亀裂発生傾向演算器10
はこの関係を抽出して近似し、近似パラメータを算出す
る。
The crack occurrence tendency calculator 10 extracts the crack occurrence tendency from the operating history and operating environment determined by the component operation history calculator 9 and the crack occurrence history stored in the crack occurrence history database 8. The crack occurrence tendency is expressed by the relationship between the operating history of the gas turbine stator vane, the operating environment, and the crack occurrence situation.Operating hours and the number of starts and stops are used as indicators of the operating history, and as indicators of the operating environment. , shaft number, blade position, crack occurrence position, etc. In addition, the number of cracks, maximum crack length, etc. can be cited as indicators of the occurrence status of cracks. FIG. 10 shows the correlation between the number of starts and stops and the maximum crack length, and FIG. 11 shows the correlation between the blade position and the number of cracks. Crack occurrence tendency calculator 10
extracts and approximates this relationship, and calculates approximate parameters.

【0017】本実施例では亀裂発生傾向として、次の各
関係を求める。 (1)総起動停止回数−最大亀裂長さ、亀裂個数(2)
補修後停止回数、総運転時間−最大亀裂長さ、亀裂個数 (3)羽根位置−亀裂個数 (4)亀裂発生位置−最大亀裂長さ、亀裂個数(5)使
用軸−亀裂個数。
In this embodiment, the following relationships are determined as the crack occurrence tendency. (1) Total number of starts and stops - maximum crack length, number of cracks (2)
Number of stops after repair, total operating time - maximum crack length, number of cracks (3) blade position - number of cracks (4) position of crack occurrence - maximum crack length, number of cracks (5) shaft used - number of cracks.

【0018】このようにして求められた亀裂発生傾向を
もとに亀裂発生・使用限界診断装置11ではガスタービ
ン部品の亀裂発生の予測と、使用限界の判定を行う。ガ
スタービン部品の運転履歴は前述のように部品運転履歴
演算器9により求めることができ、次回定検時までの運
転状態がその軸の過去の運転履歴と同様であると仮定す
ることによって、このガスタービン部品の次回定検時の
運転履歴を推定できる。また、以前と異なる運用形態で
用いられる場合は使用者がその形態を入力することによ
って、次回定検時の運転履歴を推定できる。亀裂発生・
使用限界診断装置11は、この運転履歴と前述の亀裂発
生傾向から次回定検時のガスタービン部品の亀裂発生状
況を推定する。また、亀裂発生・使用限界診断装置11
は予想亀裂が予め定められた限界亀裂寸法を越えたり、
限界補修回数を上回る時期を予測し、使用限界の推定を
行う。図12はガスタービン部品の亀裂予想使用限界推
定例を示すものて、次々回定検には使用限界に達するこ
とが推定される。
Based on the crack occurrence tendency determined in this way, the crack occurrence/service limit diagnosis device 11 predicts the occurrence of cracks in gas turbine components and determines the service limit. The operating history of the gas turbine component can be obtained by the component operating history calculator 9 as described above, and this can be calculated by assuming that the operating state up to the next periodic inspection is the same as the past operating history of the shaft. It is possible to estimate the operating history of gas turbine parts at the time of the next periodic inspection. In addition, if the system is used in a different operating mode than before, the user can input the operating mode to estimate the driving history at the next periodic inspection. Cracks occur/
The service limit diagnosis device 11 estimates the crack occurrence status of the gas turbine components at the next periodic inspection based on this operating history and the above-mentioned crack occurrence tendency. In addition, crack occurrence/use limit diagnosis device 11
If the predicted crack exceeds the predetermined critical crack size,
Predict the time when the number of repairs will exceed the limit and estimate the service limit. FIG. 12 shows an example of estimating the expected use limit of cracks in gas turbine parts, and it is estimated that the use limit will be reached during regular inspections one after another.

【0019】上記のようにして亀裂発生予測値および推
定使用限界が求められる。なお、ガスタービン静翼のみ
でなく亀裂が頻発する他のガスタービン部品につ5ても
同様に適用できる。
[0019] As described above, the crack occurrence prediction value and estimated service limit are determined. Note that the present invention can be applied not only to gas turbine stationary blades but also to other gas turbine parts where cracks frequently occur.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
従来不可能であったガスタービン部品の運転履歴、亀裂
発生状況の管理、亀裂発生の傾向管理を行い、ガスター
ビン部品の亀裂発生状況および使用限界を推定するガス
タービン部品の使用限界予測装置を提供できる。
[Effects of the Invention] As explained above, according to the present invention,
We provide a service limit prediction device for gas turbine components that manages the operating history, crack occurrence status, and crack occurrence trends of gas turbine components, which was previously impossible, and estimates the crack occurrence status and service limits of gas turbine components. can.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明が適用されるガスタービン静翼の模式図
FIG. 2 is a schematic diagram of a gas turbine stationary blade to which the present invention is applied.

【図3】図2のガスタービン静翼のセグメントの構成図
FIG. 3 is a configuration diagram of a segment of the gas turbine stationary blade in FIG. 2;

【図4】図1の運転履歴データベースの構成図。FIG. 4 is a configuration diagram of the driving history database in FIG. 1.

【図5】図1の部品使用状況データベースの構成図。FIG. 5 is a configuration diagram of the parts usage status database in FIG. 1.

【図6】図1の補修履歴データベースおよび亀裂発生履
歴データベースの構成図。
FIG. 6 is a configuration diagram of a repair history database and a crack occurrence history database in FIG. 1;

【図7】図6の亀裂発生位置コードを説明するための図
FIG. 7 is a diagram for explaining the crack occurrence position code in FIG. 6;

【図8】ガスタービン点検記録例を示す図。FIG. 8 is a diagram showing an example of a gas turbine inspection record.

【図9】本発明の羽根の総起動停止回数を求めるフロー
チャート。
FIG. 9 is a flowchart for determining the total number of times the blade is started and stopped according to the present invention.

【図10】起動停止回数と最大亀裂長さの相関関係を示
す図。
FIG. 10 is a diagram showing the correlation between the number of times of starting and stopping and the maximum crack length.

【図11】羽根の位置と亀裂個数の相関を示す図。FIG. 11 is a diagram showing the correlation between the position of the blade and the number of cracks.

【図12】本発明によるガスタービン部品の亀裂予想使
用限界推定例を示す図。
FIG. 12 is a diagram illustrating an example of estimating the usage limit for predicting cracks in gas turbine components according to the present invention.

【符号の説明】[Explanation of symbols]

5…運転履歴データベース、6…部品使用状況データベ
ース、7…補修履歴データベース、8…亀裂発生履歴デ
ータベース、9…部品運転履歴演算器、10…亀裂発生
傾向演算器、11…亀裂発生・使用限界診断装置、12
…亀裂発生使用限界診断装置。
5... Operation history database, 6... Parts usage status database, 7... Repair history database, 8... Crack occurrence history database, 9... Parts operation history calculator, 10... Crack occurrence tendency calculator, 11... Crack occurrence/use limit diagnosis device, 12
...Crack occurrence usage limit diagnosis device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンの運転履歴を保持する運転履
歴データベースと、前記ガスタービン部品の使用状況を
保持する部品使用状況データベースと、前記ガスタービ
ン部品の補修履歴を保持する補修履歴データベースと、
前記各データベースから前記ガスタービンの個々の部品
の運転履歴を算出する部品運転履歴演算器と、前記ガス
タービンの部品に生じた亀裂の状態量を格納する亀裂発
生履歴データベースと、前記部品運転履歴演算器により
算出された個々の部品の運転履歴と前記亀裂発生履歴デ
ータベースから亀裂発生傾向を抽出する亀裂発生傾向演
算器と、前記亀裂発生傾向演算器により得られた亀裂発
生傾向とガスタービン部品の運用予想より前記ガスター
ビン部品の亀裂発生寿命を予測し、使用限界を推定する
亀裂発生使用限界診断装置とから構成されたことを特徴
とするガスタービン部品の使用限界予測装置。
1. An operation history database that holds the operation history of a gas turbine, a parts usage status database that holds the usage status of the gas turbine parts, and a repair history database that holds the repair history of the gas turbine parts.
a component operation history calculator that calculates the operation history of each individual component of the gas turbine from each of the databases; a crack occurrence history database that stores state amounts of cracks occurring in the gas turbine components; and a component operation history calculator a crack occurrence tendency calculator that extracts crack occurrence trends from the operation history of individual parts calculated by the device and the crack occurrence history database; and a crack occurrence tendency obtained by the crack occurrence tendency calculator and the operation of the gas turbine parts. A service limit prediction device for a gas turbine component, comprising a crack occurrence service limit diagnosis device that predicts the crack occurrence life of the gas turbine component based on predictions and estimates the service limit.
JP2742991A 1991-02-21 1991-02-21 Using limit estimating device for part of gas turbine Pending JPH04265425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2742991A JPH04265425A (en) 1991-02-21 1991-02-21 Using limit estimating device for part of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2742991A JPH04265425A (en) 1991-02-21 1991-02-21 Using limit estimating device for part of gas turbine

Publications (1)

Publication Number Publication Date
JPH04265425A true JPH04265425A (en) 1992-09-21

Family

ID=12220873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2742991A Pending JPH04265425A (en) 1991-02-21 1991-02-21 Using limit estimating device for part of gas turbine

Country Status (1)

Country Link
JP (1) JPH04265425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288180A (en) * 2001-03-23 2002-10-04 West Japan Railway Co Tunnel database system
JP2005069229A (en) * 2003-08-22 2005-03-17 General Electric Co <Ge> Method and apparatus for recoding and retrieving maintenance, performance and repair data of turbine engine component
JP2005214161A (en) * 2004-02-02 2005-08-11 Chugoku Electric Power Co Inc:The Method for replacing stationary blade for gas turbine, stationary blade replacement assisting system, stationary blade replacement assisting program for loading stationary blade replacement assisting system on computer, computer readable record medium recording stationary blade replacement assisting program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288180A (en) * 2001-03-23 2002-10-04 West Japan Railway Co Tunnel database system
JP2005069229A (en) * 2003-08-22 2005-03-17 General Electric Co <Ge> Method and apparatus for recoding and retrieving maintenance, performance and repair data of turbine engine component
JP2005214161A (en) * 2004-02-02 2005-08-11 Chugoku Electric Power Co Inc:The Method for replacing stationary blade for gas turbine, stationary blade replacement assisting system, stationary blade replacement assisting program for loading stationary blade replacement assisting system on computer, computer readable record medium recording stationary blade replacement assisting program

Similar Documents

Publication Publication Date Title
JP5844978B2 (en) System and method for monitoring a gas turbine
US20220083040A1 (en) Methods and apparatus to generate a predictive asset health quantifier of a turbine engine
EP3483686B1 (en) Methods and apparatus for prognostic health monitoring of a turbine engine
US9797328B2 (en) Equipment health monitoring method and system and engine
JP5916069B2 (en) System and method for hybrid risk modeling of turbomachines
US6343251B1 (en) Method and system for monitoring the operation of and predicting part life consumption for turbomachinery
Wang et al. On the application of a model of condition-based maintenance
US6226597B1 (en) Method of maintaining components subject to fatigue failure
Carazas et al. Availability analysis of gas turbines used in power plants
EP3483800A1 (en) Methods and apparatus to generate an asset health quantifier of a turbine engine
CN107667280B (en) Scheduled inspection and predicted end-of-life of machine components
KR102119661B1 (en) A method to predict health index transition and residual life for turbomachinery
JP4078671B2 (en) Plant maintenance management method
US9563198B2 (en) Method and system to model risk of unplanned outages of power generation machine
JP3392526B2 (en) Equipment maintenance management support equipment
Mu¨ ller et al. Probabilistic engine maintenance modeling for varying environmental and operating conditions
Doel TEMPER: A gas-path analysis tool for commercial jet engines
JPH04265425A (en) Using limit estimating device for part of gas turbine
US20150323422A1 (en) System and method for evaluating opportunities to extend operating durations
JP2954613B2 (en) Plant life diagnosis support equipment
KR102364272B1 (en) System and Method for managing operation history of gas turbine parts
JP2003295937A (en) Plant monitoring device and plant monitoring method
JP2000097815A (en) Plant remaining life management device
EP4216012A1 (en) Gas turbine engine condition monitoring and management
JP2723383B2 (en) Method and apparatus for diagnosing life of plant equipment