JPH04264367A - Solid macromolecule electrolyte type fuel cell - Google Patents

Solid macromolecule electrolyte type fuel cell

Info

Publication number
JPH04264367A
JPH04264367A JP3023623A JP2362391A JPH04264367A JP H04264367 A JPH04264367 A JP H04264367A JP 3023623 A JP3023623 A JP 3023623A JP 2362391 A JP2362391 A JP 2362391A JP H04264367 A JPH04264367 A JP H04264367A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
pair
cation exchange
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3023623A
Other languages
Japanese (ja)
Inventor
Yasutaka Sakamoto
坂本 康孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3023623A priority Critical patent/JPH04264367A/en
Publication of JPH04264367A publication Critical patent/JPH04264367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce ion conductive resistance and the contact resistance with an electrode to lessen voltage drop to current density by enabling thinning an ion exchange membrane in a solid macromolecule electrolyte type fuel cell. CONSTITUTION:A pair of ion exchange membranes, in which an ion exchange membrane of a solid macromolecule electrolyte type fuel cell is previously applied to and formed on each catalyst layer surface of a pair of electrodes, is made to be mutually integrated as a heat fusion body, and film-thinning and conductive resistance lowering are made possible. The ion exchange membrane is made a positive ion exchange membrane, which is made a membrane in which the solution of a fluororesin system positive ion exchange membrane is applied to an electrode catalyst layer surface to be heated and dried. Moreover the inner peripheral edge of a frame-like insulating sheet 6 is buried in the outer peripheral part of the positive ion exchange membrane in this structure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、固体高分子電解質型
燃料電池のセル構造、特に陽イオン交換膜の薄膜化に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the cell structure of a solid polymer electrolyte fuel cell, and in particular to thinning of a cation exchange membrane.

【0002】0002

【従来の技術】燃料電池はこれに用いる電解質の種類に
より、例えばアルカリ型,固体高分子電解質型,および
りん酸型などの低温動作型の燃料電池と、溶融炭酸塩型
,固体酸化物電解質型等の高温動作型の燃料電池とに大
別される。この内、固体高分子電解質型燃料電池は、固
体高分子電解質膜(イオン交換膜)をアノード,カソー
ド一対の電極で挟持し、これをさらに各電極に反応ガス
を供給するガス通路を有する導電材からなる一対のセパ
レータ間に挟持した構造となっている。固体高分子電解
質膜は、スルホン酸基を持つポリスチレン系の陽イオン
交換膜をカチオン導電性膜として使用したもの、フロロ
カーボンスルホン酸とポリビニリデンフロライドの混合
膜、あるいはフロロカーボンマトリックスにトリフロロ
エチレンをグラフト化したものなどが知られているが、
最近ではパーフロロカーボンスルホン酸膜(米国、デュ
ポン社製、商品名ナフィオン膜)を用いることにより、
燃料電池を長寿命化したもの等が知られている。陽イオ
ン交換膜は分子中にプロトン(水素イオン)交換基を持
ち、飽和状態に含水させることにより常温で20Ω−c
m 以下の比抵抗を示し、プロトン導電性電解質として
機能する。また、飽和含水量は温度によって変化する。 電極基材は触媒層への反応ガスの供給手段および集電体
として機能する。
[Prior Art] Fuel cells vary depending on the type of electrolyte used; for example, there are low-temperature operation type fuel cells such as alkaline type, solid polymer electrolyte type, and phosphoric acid type, and fuel cells of molten carbonate type and solid oxide electrolyte type. It is broadly classified into high-temperature operation type fuel cells such as Among these, solid polymer electrolyte fuel cells are made of a conductive material that has a solid polymer electrolyte membrane (ion exchange membrane) sandwiched between a pair of electrodes, an anode and a cathode, and gas passages that supply reactive gas to each electrode. It has a structure in which it is sandwiched between a pair of separators consisting of. Solid polymer electrolyte membranes include those that use a polystyrene-based cation exchange membrane with sulfonic acid groups as a cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or a fluorocarbon matrix grafted with trifluoroethylene. It is known that the
Recently, by using perfluorocarbon sulfonic acid membrane (manufactured by DuPont, USA, trade name Nafion membrane),
Fuel cells with longer lifespans are known. Cation exchange membranes have proton (hydrogen ion) exchange groups in their molecules, and when hydrated to a saturated state, they can maintain a resistance of 20 Ω-c at room temperature.
It exhibits a specific resistance of less than m and functions as a proton-conducting electrolyte. Also, the saturated water content changes depending on the temperature. The electrode base material functions as a means for supplying reactive gas to the catalyst layer and as a current collector.

【0003】図4は陽イオン交換膜を用いた固体高分子
電解質型燃料電池の動作原理を示す説明図であり、燃料
極(アノード)4では供給された水素がプロトンと電子
を生成する電極反応が起こり、生成したプロトンは陽イ
オン交換膜1中を空気極(カソード)5に向かって移動
し、電子は外部回路を通ってカソードに移動し、この時
発電が行われる。一方、カソード5においては、供給さ
れた酸素と陽イオン交換膜1中を移動したプロトンと外
部回路を通った電子とが反応して水を生成する電極反応
が行われる。
FIG. 4 is an explanatory diagram showing the operating principle of a solid polymer electrolyte fuel cell using a cation exchange membrane. At the fuel electrode (anode) 4, an electrode reaction occurs in which supplied hydrogen generates protons and electrons. occurs, and the generated protons move toward the air electrode (cathode) 5 in the cation exchange membrane 1, and the electrons move to the cathode through an external circuit, and power generation occurs at this time. On the other hand, at the cathode 5, an electrode reaction occurs in which the supplied oxygen, protons that have moved through the cation exchange membrane 1, and electrons that have passed through the external circuit react to produce water.

【0004】このような陽イオン交換膜を用いた固体高
分子電解質型燃料電池においては、プロトンがアノード
からカソードに向かって陽イオン交換膜中を移動する際
、水和の状態で移動するためにアノード近傍では含水量
が減少し、陽イオン交換膜が乾いてくるという現象が発
生する。このためにアノード近傍には水を供給して乾燥
を防がないとプロトンの移動が困難になり、セルの内部
抵抗が増して抵抗分極による燃料電池の電圧降下が大き
くなる。このように、固体高分子電解質型燃料電池では
セルの内部抵抗の中でも、陽イオン交換膜のイオン伝導
抵抗が抵抗分極の大半を占め、かつ陽イオン交換膜と電
極(触媒層)との接触抵抗も主要なファクターを占める
In a solid polymer electrolyte fuel cell using such a cation exchange membrane, when protons move through the cation exchange membrane from the anode to the cathode, they move in a hydrated state. A phenomenon occurs in which the water content decreases near the anode and the cation exchange membrane becomes dry. For this reason, unless water is supplied near the anode to prevent drying, it becomes difficult for protons to move, increasing the internal resistance of the cell and increasing the voltage drop in the fuel cell due to resistive polarization. In this way, in solid polymer electrolyte fuel cells, the ion conduction resistance of the cation exchange membrane accounts for most of the resistance polarization among the internal resistance of the cell, and the contact resistance between the cation exchange membrane and the electrode (catalyst layer) is also a major factor.

【0005】[0005]

【発明が解決しようとする課題】このように、燃料電池
の発電特性(I−V特性)に重大な影響を持つ陽イオン
交換膜のイオン伝導抵抗は、一般に陽イオン交換膜の厚
みにより管理されるが、陽イオン交換膜(例えばナフィ
オン膜)を一対の電極間に挟持して使用する従来の固体
高分子電解質型燃料電池においては、主として陽イオン
交換膜の機械的強度の制約により、陽イオン交換膜の厚
みを薄くすることが困難であり、通常0.13mmから
0.25mm程度の厚い陽イオン交換膜が用いられてお
り、イオン伝導抵抗を所望の値にコントロールできない
という問題があった。また、陽イオン交換膜と電極との
界面の接触抵抗もその低減が困難であった。さらに、陽
イオン交換膜は水分量の増加に伴って膨張するので、陽
イオン交換膜の厚みが厚いと寸法変化が大きくなって燃
料電池の形状安定性が低下するとともに、水分の供給量
が増してその安定供給が困難になるなどの不都合が生ず
る。
[Problems to be Solved by the Invention] As described above, the ion conduction resistance of a cation exchange membrane, which has a significant effect on the power generation characteristics (IV characteristics) of a fuel cell, is generally controlled by the thickness of the cation exchange membrane. However, in conventional solid polymer electrolyte fuel cells that use a cation exchange membrane (for example, Nafion membrane) sandwiched between a pair of electrodes, cation It is difficult to reduce the thickness of the exchange membrane, and a thick cation exchange membrane of about 0.13 mm to 0.25 mm is usually used, which poses a problem in that the ion conduction resistance cannot be controlled to a desired value. Furthermore, it has been difficult to reduce the contact resistance at the interface between the cation exchange membrane and the electrode. Furthermore, the cation exchange membrane expands as the amount of water increases, so if the cation exchange membrane is thick, dimensional changes will increase, reducing the shape stability of the fuel cell, and increasing the amount of water supplied. This may cause problems such as difficulty in stably supplying it.

【0006】この発明の目的は、イオン交換膜の薄膜化
を可能にすることにより、イオン伝導抵抗および電極と
の接触抵抗を低減し、電流密度に対する電圧降下を減ら
すとともに、イオン交換膜の寸法変化を少なくすること
にある。
The purpose of this invention is to reduce the ion conduction resistance and the contact resistance with the electrode by making the ion exchange membrane thinner, reduce the voltage drop with respect to the current density, and reduce the dimensional change of the ion exchange membrane. The goal is to reduce

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、多孔質で導電性の電極基材と、
その一方の面に形成された触媒活物質を含む触媒層とか
らなる一対の電極と、この一対の電極の前記触媒層間に
密着して挟持されたイオン交換膜との積層体が、枠状絶
縁シートを介在させて、反応ガス通路を有する一対のセ
パレータ間に気密に挟持されたものにおいて、前記イオ
ン交換膜が前記一対の電極それぞれの触媒層の表面にあ
らかじめ塗布形成された一対のイオン交換皮膜の熱融着
体からなるものとする。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a porous and conductive electrode base material,
A laminate of a pair of electrodes consisting of a catalyst layer containing a catalytic active material formed on one surface and an ion exchange membrane tightly sandwiched between the catalyst layers of the pair of electrodes is a frame-shaped insulator. A pair of ion exchange membranes, which are airtightly sandwiched between a pair of separators having reaction gas passages with a sheet interposed therebetween, wherein the ion exchange membrane is pre-coated on the surface of the catalyst layer of each of the pair of electrodes. It shall consist of a heat-fused body.

【0008】また、イオン交換皮膜が陽イオン交換皮膜
であり、この陽イオン交換皮膜がふっ素樹脂系陽イオン
交換膜の溶液を電極の触媒層表面に塗布し加熱乾燥した
ものからなるものとする。
Further, the ion exchange film is a cation exchange film, and the cation exchange film is formed by applying a solution of a fluororesin cation exchange film to the surface of the catalyst layer of the electrode and drying it by heating.

【0009】さらに、枠状絶縁シートの内周縁が陽イオ
ン交換皮膜の熱融着体からなる陽イオン交換膜の層間に
埋設され、前記陽イオン交換膜の周囲に露出した枠状絶
縁シートの外周部分が一対のセパレータ間に気密に挟持
されてなるものとするか、さらにまた、陽イオン交換皮
膜が枠状絶縁シート全体を挟むよう一対の電極の外側に
まで延長され、この延長部分が一対のセパレータ間に挟
持されてなるものとする。
Furthermore, the inner periphery of the frame-shaped insulating sheet is embedded between layers of a cation exchange membrane made of a heat-fused cation exchange membrane, and the outer periphery of the frame-shaped insulating sheet exposed around the cation exchange membrane. The portion may be airtightly sandwiched between a pair of separators, or the cation exchange film may be extended to the outside of the pair of electrodes so as to sandwich the entire frame-shaped insulating sheet, and this extended portion may be sandwiched between the pair of separators. It is assumed that it is sandwiched between separators.

【0010】0010

【作用】この発明の構成において、イオン交換膜を一対
の電極それぞれの触媒層の表面にあらかじめ塗布形成さ
れた一対のイオン交換皮膜を相互に熱融着体として一体
化したことにより、薄膜化したイオン交換膜を電極と一
体化した状態で容易に形成でき、したがってイオン電導
抵抗および電極との接触抵抗が低く、電圧降下の少ない
固体高分子電解質型燃料電池が得られるとともに、薄膜
化されて水膨張による寸法変化も少なく、優れた形態安
定性および水分の補給性能が得られる。
[Operation] In the structure of the present invention, a pair of ion exchange membranes, which have been previously coated on the surface of each catalyst layer of a pair of electrodes, are integrated as a heat-fused body, thereby making the membrane thinner. The ion exchange membrane can be easily formed in a state integrated with the electrode, and therefore a solid polymer electrolyte fuel cell with low ion conduction resistance and contact resistance with the electrode and low voltage drop can be obtained. There is little dimensional change due to expansion, and excellent morphological stability and water replenishment performance are obtained.

【0011】また、陽イオン交換皮膜をふっ素樹脂系陽
イオン交換膜の溶液を電極の触媒層表面に塗布し加熱乾
燥したものとしたことにより、塗布する塗膜の厚みによ
り所望の厚みに薄膜化した陽イオン交換膜を形成できる
とともに、陽イオン交換膜の厚みの自由度を向上させる
機能が得られる。
[0011] Furthermore, by applying a solution of a fluororesin-based cation exchange membrane to the surface of the catalyst layer of the electrode and heating and drying the cation exchange film, the film can be thinned to a desired thickness depending on the thickness of the coating film to be applied. In addition to being able to form a cation exchange membrane with a high temperature, it is also possible to obtain a function of improving the degree of freedom in the thickness of the cation exchange membrane.

【0012】さらに、枠状絶縁シートの内周縁を陽イオ
ン交換膜の層間に埋設し、露出した枠状絶縁シートの外
周部分を一対のセパレータ間に気密に挟持するか、ある
いは陽イオン交換皮膜を枠状絶縁シート全体広げ、延長
部分を一対のセパレータ間に挟持するよう構成すること
により、陽イオン交換膜と一対の電極とが一体化した単
セル部分をセパレータ内に気密に収納してアノードガス
とカソードガスのガスシールを行う機能と、異なる電位
のセパレータ間および電極間を電気的に絶縁する機能と
を同時かつ容易に得ることができる。
Furthermore, the inner periphery of the frame-shaped insulating sheet is buried between layers of the cation exchange membrane, and the exposed outer periphery of the frame-shaped insulating sheet is airtightly sandwiched between a pair of separators, or the cation exchange membrane is buried between the layers of the cation exchange membrane. By expanding the entire frame-shaped insulating sheet and configuring the extended portion to be sandwiched between a pair of separators, a single cell portion in which a cation exchange membrane and a pair of electrodes are integrated is hermetically housed within the separator, and the anode gas is It is possible to simultaneously and easily obtain the function of gas sealing the cathode gas and the function of electrically insulating between the separators and the electrodes at different potentials.

【0013】[0013]

【実施例】以下、この発明を実施例に基づいて説明する
。図1はこの発明の実施例になる固体高分子電解質型燃
料電池を模式化して示す断面図である。図において、ア
ノード4およびカソード5はいずれも厚み0.4mm程
度のカーボンペーパを多孔質の電極基板3とし、白金を
20%担持したカーボン粉末とポリテトラフルオロエチ
レンの懸濁液との混合液を電極基板3の一方の面にスポ
イトで所定量滴下し、24時間真空乾燥した後、360
°C で15分間焼成し、厚み100μm程度の触媒層
3を形成したものを用いた。また、陽イオン交換膜1は
ふっ素樹脂系陽イオン交換膜の溶液を触媒層3の表面に
刷毛塗りし、80°C1時間乾燥する作業を2回繰り返
して行い、重量1mg / cm 2,厚み10μm 
の陽イオン交換皮膜1A,1Bをそれぞれの電極につい
て形成し、両電極4,5を陽イオン交換皮膜同士が接触
するよう重ね合わせ、200°C で5分間ヒートプレ
スして陽イオン交換皮膜を相互に熱融着することにより
、一体化した厚みがほぼ20μm の陽イオン交換膜1
を形成した。なお、ヒートプレスを行うに際して陽イオ
ン交換皮膜間に額縁状のポリテトラフルオロエチレンの
シートを挟んでヒートプレスし、シートの内周縁側が陽
イオン交換膜1の層間に埋設されて一体化した枠状絶縁
シート6を形成した。
EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a sectional view schematically showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention. In the figure, an anode 4 and a cathode 5 each have a porous electrode substrate 3 made of carbon paper with a thickness of about 0.4 mm, and a mixture of carbon powder carrying 20% platinum and a suspension of polytetrafluoroethylene. A predetermined amount was dropped onto one surface of the electrode substrate 3 using a dropper, and after vacuum drying for 24 hours,
A catalyst layer 3 having a thickness of about 100 μm was formed by firing at °C for 15 minutes. In addition, the cation exchange membrane 1 was prepared by applying a solution of a fluororesin cation exchange membrane to the surface of the catalyst layer 3 with a brush and drying it at 80°C for 1 hour twice, resulting in a weight of 1 mg/cm 2 and a thickness of 10 μm.
Cation exchange films 1A and 1B are formed on each electrode, and both electrodes 4 and 5 are stacked so that the cation exchange films are in contact with each other, and heat pressed at 200°C for 5 minutes to bond the cation exchange films to each other. The cation exchange membrane 1 has an integrated thickness of approximately 20 μm by heat-sealing it to the
was formed. In addition, when performing heat pressing, a frame-shaped polytetrafluoroethylene sheet is sandwiched between the cation exchange membranes, and the inner peripheral edge of the sheet is embedded between the layers of the cation exchange membrane 1 to form an integrated frame. A shaped insulating sheet 6 was formed.

【0014】上述のように陽イオン交換膜1に電極4,
5および枠状絶縁シート6が結合して一体化した燃料電
池の単セル部分は、陽イオン交換膜の外側に露出した枠
状絶縁シート6の外周部分が、カーボンの焼結体等から
なる一対のセパレータ7間に挟持され、それぞれの電極
電位に保持されるセパレータ7,7間が電気的に絶縁さ
れるとともに、セパレータ間の気密が保持される。また
、セパレータ7はアノードガス通路8およびカソードガ
ス通路9を備え、アノードガス8Aおよびカソードガス
9Aをそれぞれの通路を介してアノード4およびカソー
ド5に供給することにより電極反応が行われるが、両ガ
ス通路間のガスシールも枠状絶縁シート6により保持さ
れる。
As described above, the cation exchange membrane 1 is provided with the electrodes 4,
5 and a frame-shaped insulating sheet 6 are combined to form an integrated single cell part of the fuel cell, in which the outer periphery of the frame-shaped insulating sheet 6 exposed outside the cation exchange membrane is a pair made of a sintered body of carbon or the like. The separators 7, which are held between the separators 7 and held at their respective electrode potentials, are electrically insulated, and airtightness between the separators is maintained. Further, the separator 7 includes an anode gas passage 8 and a cathode gas passage 9, and an electrode reaction is performed by supplying anode gas 8A and cathode gas 9A to the anode 4 and cathode 5 through the respective passages. A gas seal between the passages is also maintained by the frame-shaped insulating sheet 6.

【0015】図2は実施例になる固体高分子電解質型燃
料電池の出力電圧−電流特性(I−V特性)を従来例の
それと比較して示す特性線図であり、実施例では陽イオ
ン交換膜1の厚みが従来例のそれの1/10程度に薄膜
化されたことによりイオン電導抵抗が大幅に減り、かつ
電極と陽イオン交換膜が相互に一体化して両者間の接触
抵抗も大幅に減少するので、電流密度に対する電位降下
が減少し、出力電圧Vを一定とすれば大きな出力電流を
得られる発電特性の優れた固体高分子電解質型燃料電池
を得ることができる。また、薄膜化により水膨張による
寸法変化が減り、燃料電池の形態安定性が増すとともに
、水の補給量も減ってその供給が容易化される。さらに
、陽イオン交換膜溶液の濃度や塗り重ね回数の選択の仕
方により、陽イオン交換皮膜1A,1Bの厚みの自由度
が向上するので、目的に応じて所望の厚みの陽イオン交
換膜を容易に形成できる利点が得られる。
FIG. 2 is a characteristic diagram showing the output voltage-current characteristics (IV characteristics) of a solid polymer electrolyte fuel cell according to an example in comparison with that of a conventional example. The thickness of the membrane 1 has been reduced to about 1/10 of that of the conventional example, which greatly reduces the ion conduction resistance, and since the electrode and cation exchange membrane are integrated with each other, the contact resistance between them has also been significantly reduced. Therefore, the potential drop with respect to the current density is reduced, and a solid polymer electrolyte fuel cell with excellent power generation characteristics that can obtain a large output current when the output voltage V is kept constant can be obtained. Furthermore, by making the film thinner, dimensional changes due to water expansion are reduced, increasing the morphological stability of the fuel cell, and the amount of water to be replenished is also reduced, making its supply easier. Furthermore, the degree of freedom in determining the thickness of the cation exchange membranes 1A and 1B can be improved by selecting the concentration of the cation exchange membrane solution and the number of times of recoating, making it easy to form a cation exchange membrane with the desired thickness depending on the purpose. This provides the advantage of being able to form

【0016】図3はこの発明の異なる実施例を模式化し
て示す断面図であり、陽イオン交換膜11を枠状絶縁シ
ート6のほぼ全面を覆うよう拡張し、一対のセパレータ
7,7間に挟持するよう構成した点が前述の実施例と異
なっており、3層構造となった絶縁兼シール部により、
異なる電位の電極間およびセパレータ間の電気的絶縁お
よびガスシールをより確実に行える利点が得られる。ま
た、陽イオン交換皮膜11A,11Bの面積の拡張方法
としては、方形の電極4,5をそれぞれの外周縁に密着
して包囲する額縁状で厚みが電極のそれと等しい治具を
用い、溶液の塗布面を触媒層の表面積と治具の表面積と
の和に相当する面積に拡張し、陽イオン交換膜の溶液を
治具の表面にまで渡って塗布し、乾燥処理することによ
り形成することができる。その際溶液の塗布面となる部
分に皮膜との剥離が容易なアルミニウム箔等を用い、陽
イオン交換皮膜の熱融着に際し、治具を電極同様に熱圧
板として利用するよう構成すれば、薄い陽イオン交換皮
膜を損傷することなく一体化した単セル部分を形成する
ことができる。
FIG. 3 is a cross-sectional view schematically showing a different embodiment of the present invention, in which the cation exchange membrane 11 is expanded to cover almost the entire surface of the frame-shaped insulating sheet 6, and the cation exchange membrane 11 is expanded to cover almost the entire surface of the frame-shaped insulating sheet 6. It differs from the previous embodiment in that it is configured to be sandwiched, and the insulating and sealing part has a three-layer structure.
This provides the advantage of more reliable electrical insulation and gas sealing between electrodes and separators at different potentials. In addition, as a method for expanding the area of the cation exchange films 11A and 11B, a frame-shaped jig having a thickness equal to that of the electrodes is used to tightly surround the rectangular electrodes 4 and 5 on their respective outer peripheries, and the solution is It can be formed by expanding the coating surface to an area equivalent to the sum of the surface area of the catalyst layer and the surface area of the jig, applying the cation exchange membrane solution to the surface of the jig, and drying it. can. At that time, if you use aluminum foil, etc. that is easy to peel off from the film on the surface to which the solution is applied, and configure the jig to be used as a hot pressure plate in the same way as the electrode when thermally bonding the cation exchange film, it is possible to make a thin film. An integrated single cell portion can be formed without damaging the cation exchange film.

【0017】[0017]

【発明の効果】この発明は前述のように、イオン交換膜
を一対の電極それぞれの触媒層の表面にあらかじめ塗布
形成された一対のイオン交換皮膜を、相互に熱融着して
一体化した構造とするよう構成した。その結果、イオン
交換膜があらかじめ電極と一体化した状態で補強される
ので、既製の陽イオン交換膜を電極間に挟んだ構造の従
来の固体高分子電解質型燃料電池では困難であったイオ
ン交換膜の薄膜化が可能となり、イオン交換膜の厚みが
従来のそれの1/10程度に薄膜化され、かつ電極表面
にイオン交換膜が強固に結合した固体高分子電解質型燃
料電池が得られる。したがって、イオン電導抵抗および
電極との接触抵抗が下がり,出力電流に対する電圧降下
も大幅に減少するので、優れた発電性能を有し、かつ薄
膜化されて水膨張による寸法変化も減るので形態安定性
に優れ、水分の補給が容易化された固体高分子電解質型
燃料電池を提供することができる。
Effects of the Invention As described above, the present invention has a structure in which a pair of ion exchange membranes, which are pre-coated on the surface of the catalyst layer of each of a pair of electrodes, are thermally fused to each other and integrated. It was configured so that As a result, the ion exchange membrane is reinforced while being integrated with the electrodes, so ion exchange is difficult with conventional solid polymer electrolyte fuel cells, which have a structure in which a ready-made cation exchange membrane is sandwiched between the electrodes. The membrane can be made thinner, the thickness of the ion exchange membrane can be reduced to about 1/10 of that of conventional membranes, and a solid polymer electrolyte fuel cell can be obtained in which the ion exchange membrane is firmly bonded to the electrode surface. Therefore, the ion conduction resistance and the contact resistance with the electrode are reduced, and the voltage drop with respect to the output current is also significantly reduced, resulting in excellent power generation performance.The thin film also reduces dimensional changes due to water expansion, resulting in stable form. It is possible to provide a solid polymer electrolyte fuel cell that has excellent water replenishment properties and facilitates water replenishment.

【0018】また、陽イオン交換皮膜をふっ素樹脂系陽
イオン交換膜の溶液を電極の触媒層表面に塗布し加熱乾
燥したものとするよう構成すれば、塗布する塗膜の厚み
により所望の厚みの陽イオン交換膜を形成できるので、
要求性能に好適な厚みの陽イオン交換膜を備えた固体高
分子電解質型燃料電池を提供することができる。
Furthermore, if the cation exchange film is constructed by applying a solution of a fluororesin cation exchange membrane to the surface of the catalyst layer of the electrode and heating and drying it, the desired thickness can be obtained depending on the thickness of the coating film to be applied. Because it can form a cation exchange membrane,
A solid polymer electrolyte fuel cell equipped with a cation exchange membrane having a thickness suitable for required performance can be provided.

【0019】さらに、枠状絶縁シートの内周縁を陽イオ
ン交換膜の層間に埋設し、露出した枠状絶縁シートの外
周部分を一対のセパレータ間に気密に挟持するか、ある
いは陽イオン交換皮膜を枠状絶縁シート全体広げ、延長
部分を一対のセパレータ間に挟持するよう構成するよう
構成したことにより、陽イオン交換膜と一対の電極とが
一体化した単セル部分をセパレータ内に気密に収納して
アノードガスとカソードガスのガスシールを行う機能と
、導電材からなるセパレータ間および電極間を電気的に
絶縁する機能とを同時かつ簡単に得ることが可能となり
、優れたガスシール性能および絶縁性能を有する簡素化
された構造の固体高分子電解質型燃料電池を提供するこ
とができる。
Furthermore, the inner periphery of the frame-shaped insulating sheet is buried between the layers of the cation exchange membrane, and the exposed outer periphery of the frame-shaped insulating sheet is airtightly sandwiched between a pair of separators, or the cation exchange membrane is By expanding the entire frame-shaped insulating sheet and configuring the extended portion to be sandwiched between a pair of separators, a single cell portion in which a cation exchange membrane and a pair of electrodes are integrated can be airtightly housed within the separator. It is now possible to simultaneously and easily obtain the function of gas sealing between anode gas and cathode gas and the function of electrically insulating between separators and electrodes made of conductive material, resulting in excellent gas sealing performance and insulation performance. A solid polymer electrolyte fuel cell having a simplified structure can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例になる固体高分子電解質型燃
料電池を模式化して示す断面図
[Fig. 1] A cross-sectional view schematically showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】実施例になる固体高分子電解質型燃料電池のI
−V特性を従来技術のそれと比較して示す特性線図
[Figure 2] I of a solid polymer electrolyte fuel cell as an example
-Characteristic diagram showing V characteristics compared with those of conventional technology

【図
3】この発明の異なる実施例を模式化して示す断面図
[Fig. 3] Cross-sectional view schematically showing different embodiments of the present invention

【図4】固体高分子電解質型燃料電池の動作原理を示す
説明図
[Figure 4] Explanatory diagram showing the operating principle of a solid polymer electrolyte fuel cell

【符号の説明】[Explanation of symbols]

1    陽イオン交換膜 2    触媒層 3    電極基板 4    燃料極(アノード) 5    空気極(カソード) 6    枠状絶縁シート 7    セパレータ 8    アノードガス通路 9    カソードガス通路 11    陽イオン交換膜 11A  陽イオン交換皮膜 11B  陽イオン交換皮膜 1 Cation exchange membrane 2 Catalyst layer 3 Electrode substrate 4 Fuel electrode (anode) 5 Air electrode (cathode) 6 Frame-shaped insulation sheet 7 Separator 8 Anode gas passage 9 Cathode gas passage 11 Cation exchange membrane 11A Cation exchange film 11B Cation exchange film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多孔質で導電性の電極基材と、その一方の
面に形成された触媒活物質を含む触媒層とからなる一対
の電極と、この一対の電極の前記触媒層間に密着して挟
持されたイオン交換膜との積層体が、枠状絶縁シートを
介在させて、反応ガス通路を有する一対のセパレータ間
に気密に挟持されたものにおいて、前記イオン交換膜が
前記一対の電極それぞれの触媒層の表面にあらかじめ塗
布形成された一対のイオン交換皮膜の熱融着体からなる
ことを特徴とする固体高分子電解質型燃料電池。
Claims: 1. A pair of electrodes comprising a porous and conductive electrode base material and a catalyst layer containing a catalytic active material formed on one surface of the electrode base material; A laminate including an ion exchange membrane sandwiched between the electrodes is airtightly sandwiched between a pair of separators each having a reaction gas passage with a frame-shaped insulating sheet interposed therebetween, wherein the ion exchange membrane is sandwiched between each of the pair of electrodes. 1. A solid polymer electrolyte fuel cell comprising a heat-fused body of a pair of ion exchange films pre-coated on the surface of a catalyst layer.
【請求項2】イオン交換皮膜が陽イオン交換皮膜であり
、この陽イオン交換皮膜がふっ素樹脂系イオン交換膜の
溶液を電極の触媒層表面に塗布し加熱乾燥したものから
なることを特徴とする請求項1記載の固体高分子電解質
型燃料電池。
2. The ion exchange film is a cation exchange film, and the cation exchange film is characterized in that the cation exchange film is made by applying a solution of a fluororesin-based ion exchange film to the surface of the catalyst layer of the electrode and drying it by heating. The solid polymer electrolyte fuel cell according to claim 1.
【請求項3】枠状絶縁シートの内周縁が陽イオン交換皮
膜の熱融着体からなる陽イオン交換膜の層間に埋設され
、前記陽イオン交換膜の周囲に露出した前記枠状絶縁シ
ートの外周部分が一対のセパレータ間に気密に挟持され
てなることを特徴とする請求項1記載の固体高分子電解
質型燃料電池。
3. An inner peripheral edge of the frame-shaped insulating sheet is embedded between layers of a cation-exchange membrane made of a heat-fused cation-exchange membrane, and the frame-shaped insulating sheet is exposed around the cation-exchange membrane. 2. The solid polymer electrolyte fuel cell according to claim 1, wherein the outer peripheral portion is airtightly sandwiched between a pair of separators.
【請求項4】陽イオン交換皮膜が枠状絶縁シート全体を
挟むよう一対の電極の外側にまで延長され、この延長部
分が一対のセパレータ間に気密に挟持されてなることを
特徴とする請求項1または請求項3のいずれかに記載の
固体高分子電解質型燃料電池。
Claim 4: A claim characterized in that the cation exchange film extends to the outside of the pair of electrodes so as to sandwich the entire frame-shaped insulating sheet, and this extended portion is airtightly sandwiched between the pair of separators. 4. A solid polymer electrolyte fuel cell according to claim 1 or claim 3.
JP3023623A 1991-02-19 1991-02-19 Solid macromolecule electrolyte type fuel cell Pending JPH04264367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023623A JPH04264367A (en) 1991-02-19 1991-02-19 Solid macromolecule electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023623A JPH04264367A (en) 1991-02-19 1991-02-19 Solid macromolecule electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH04264367A true JPH04264367A (en) 1992-09-21

Family

ID=12115728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023623A Pending JPH04264367A (en) 1991-02-19 1991-02-19 Solid macromolecule electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH04264367A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474857A (en) * 1993-08-06 1995-12-12 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
US5723173A (en) * 1995-01-26 1998-03-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing solid polymer electrolyte fuel cell
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2007149393A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Fuel cell, fuel cell system, and manufacturing method of fuel cell
JP2008509525A (en) * 2004-08-03 2008-03-27 ゴア エンタープライズ ホールディングス,インコーポレイティド Fuel cell assembly with structural film
JP2008130416A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Manufacturing method of membrane electrode assembly
JP2009080974A (en) * 2007-09-25 2009-04-16 Toyota Motor Corp Fuel cell
JP2011077060A (en) * 2011-01-20 2011-04-14 Toyota Motor Corp Method for manufacturing membrane electrode assembly
JP2011187436A (en) * 2010-03-10 2011-09-22 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, method of manufacturing the same, fuel cell system, and stack for fuel cell
WO2011158286A1 (en) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell
JP2012069407A (en) * 2010-09-24 2012-04-05 Aquafairy Kk Fuel battery
JP2012074285A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly
US8637210B2 (en) 2008-07-22 2014-01-28 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
US11258075B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474857A (en) * 1993-08-06 1995-12-12 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
US5723173A (en) * 1995-01-26 1998-03-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing solid polymer electrolyte fuel cell
DE19602629C2 (en) * 1995-01-26 2000-09-28 Matsushita Electric Ind Co Ltd Method for producing a fuel cell with a polymer solid electrolyte
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
CN100338805C (en) * 2001-01-19 2007-09-19 松下电器产业株式会社 Method for manufacturing fuel cell electrolyte film-electrode bond
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
JP2008509525A (en) * 2004-08-03 2008-03-27 ゴア エンタープライズ ホールディングス,インコーポレイティド Fuel cell assembly with structural film
JP2007149393A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Fuel cell, fuel cell system, and manufacturing method of fuel cell
JP2008130416A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Manufacturing method of membrane electrode assembly
JP2009080974A (en) * 2007-09-25 2009-04-16 Toyota Motor Corp Fuel cell
US8637210B2 (en) 2008-07-22 2014-01-28 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
JP2011187436A (en) * 2010-03-10 2011-09-22 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, method of manufacturing the same, fuel cell system, and stack for fuel cell
US8735017B2 (en) 2010-03-10 2014-05-27 Samsung Sdi Co., Ltd Membrane-electrode assembly for fuel cell, method of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
WO2011158286A1 (en) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell
JP5505500B2 (en) * 2010-06-15 2014-05-28 トヨタ自動車株式会社 Fuel cell and fuel cell manufacturing method
US8877406B2 (en) 2010-06-15 2014-11-04 Toyota Jidosha Kabushiki Kaisha Fuel cell, and method of manufacturing a fuel cell
JP2012069407A (en) * 2010-09-24 2012-04-05 Aquafairy Kk Fuel battery
JP2012074285A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly
JP2011077060A (en) * 2011-01-20 2011-04-14 Toyota Motor Corp Method for manufacturing membrane electrode assembly
US11258075B2 (en) 2016-12-09 2022-02-22 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst

Similar Documents

Publication Publication Date Title
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JPH04264367A (en) Solid macromolecule electrolyte type fuel cell
US6383556B2 (en) Method for forming a membrane electrode diffusion assembly for use in an ion exchange membrane fuel cell
JP3805495B2 (en) Polymer electrolyte fuel cell
JP2002289230A (en) Polymer electrolyte fuel cell
JP2002542590A (en) Membrane electrode unit for self-humidifying fuel cell, manufacturing method and fuel cell
JP3079742B2 (en) Solid polymer electrolyte fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP2001319663A (en) Solid polymer type fuel cell and its manufacturing method
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
JP2001015127A (en) Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
WO2008096887A1 (en) Membrane-electrode assembly and fuel cell comprising the same
JP4766014B2 (en) Manufacturing method of membrane electrode assembly
JP2003331852A (en) Membrane-electrode assembly for fuel cell and its manufacturing method
JPH10289722A (en) Solid macromolecular type fuel cell and manufacture therefor
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JP2002208414A (en) Method of manufacturing solid polymer electrolyte fuel cell
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JP2005209403A (en) Electrode formation method for fuel cell
JP3991283B2 (en) Storage method of polymer electrolyte membrane electrode assembly
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2000277130A (en) Method for producing solid polymer type fuel cell and electrolyte film