JPH04264133A - Alkyl-substituted diphenylpolysilane and its production - Google Patents

Alkyl-substituted diphenylpolysilane and its production

Info

Publication number
JPH04264133A
JPH04264133A JP4548091A JP4548091A JPH04264133A JP H04264133 A JPH04264133 A JP H04264133A JP 4548091 A JP4548091 A JP 4548091A JP 4548091 A JP4548091 A JP 4548091A JP H04264133 A JPH04264133 A JP H04264133A
Authority
JP
Japan
Prior art keywords
substituted
alkyl
diphenylpolysilane
absorption
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4548091A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4548091A priority Critical patent/JPH04264133A/en
Publication of JPH04264133A publication Critical patent/JPH04264133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prepare the title polysilane which has a specific structural formula, is sol. in an org. solvent, and is useful for a photoresist, etc., by condensing bis(o-ethylphenyl)dichlorosilane in the presence of metallic sodium. CONSTITUTION:Bis(o-ethylphenyl)dichlorosilane is condensed in the presence of metallic sodium to give the title polysilane of the formula (wherein (n) is a mean degree of polymn.), which is sol. in an org. solvent and has no strong ultraviolet absorption band characteristic of an Si-Si chain near 300-400nm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フォトレジスト、光導
波路材料、シリコンカーバイドの前駆体、半導体、電子
写真感光体、非線型光学材料として、炭素を骨格とする
従来の高分子材料にはないユニークな特徴を持つ新しい
タイプの機能材料である、シリコンを骨格とする可溶性
アルキル置換ジフェニルポリシラン高分子に関する。
[Industrial Application Field] The present invention is applicable to photoresists, optical waveguide materials, silicon carbide precursors, semiconductors, electrophotographic photoreceptors, and nonlinear optical materials, which are not available in conventional polymeric materials with carbon skeletons. This research concerns a soluble alkyl-substituted diphenylpolysilane polymer with a silicon backbone, which is a new type of functional material with unique characteristics.

【0002】0002

【従来の技術】近年シリコンを骨格とする高分子である
可溶性有機ポリシランは、フォトレジスト、シリコンカ
ーバイドの前駆体、半導体、電子写真感光体、非線型光
学材料、光導波路として、炭素を骨格とする従来の高分
子材料にはないユニークな特徴を持つ新しいタイプの機
能性材料として多くの注目を集めている。有機ポリシラ
ンが興味を引いた原因の一つは有機溶剤に溶解し、繊維
や薄膜に容易に加工できるためである。しかしながらこ
れまで知られている有機ポリシランのほとんどは、Si
に有機置換基が2個導入された(SiR1 R2 )(
R1 、R2 は有機置換基)を繰返し単位とする化学
構造である。そのため、例えば、光化学的な開裂反応や
架橋反応を利用したフォトレジストや光導波路のような
数ミクロン程度の厚みの薄膜加工に対して、300から
400nm付近に現われるSi−Si結合に由来する強
い紫外吸収帯による自己吸収のため膜厚を厚くできない
、感度が十分でないなどの理由から、従来の炭素系高分
子材料に比べ特性的に満足のいくものではなかった。膜
厚の厚い有機ポリシランを用いた微細加工を行う上で、
紫外線照射に対して活性なSi−Si結合連鎖構造を有
しながら、かつ300から400nm付近に現われる有
機ポリシランに特有の強い紫外吸収帯を弱めることが必
要である。しかしながら、これまで知られている有機ポ
リシラン化学の常識では、有機ポリシランは300から
400nm付近にはSi−Si連鎖に特有の強い紫外吸
収帯が現われるとされてきた。
[Prior Art] In recent years, soluble organic polysilanes, which are polymers with a silicon skeleton, have been used as photoresists, silicon carbide precursors, semiconductors, electrophotographic photoreceptors, nonlinear optical materials, and optical waveguides. It is attracting a lot of attention as a new type of functional material with unique characteristics not found in conventional polymer materials. One of the reasons why organic polysilanes have attracted interest is that they dissolve in organic solvents and can be easily processed into fibers and thin films. However, most of the organic polysilanes known so far are Si
Two organic substituents were introduced into (SiR1 R2) (
It is a chemical structure in which R1 and R2 are organic substituents) as repeating units. Therefore, for example, when processing thin films of several microns in thickness such as photoresists and optical waveguides using photochemical cleavage reactions and crosslinking reactions, strong ultraviolet Due to self-absorption in the absorption band, it is not possible to increase the film thickness, and the sensitivity is not sufficient, so the characteristics are not satisfactory compared to conventional carbon-based polymer materials. When performing microfabrication using thick organic polysilane,
It is necessary to have a Si-Si bond chain structure that is active against ultraviolet irradiation, and at the same time to weaken the strong ultraviolet absorption band characteristic of organic polysilanes that appears in the vicinity of 300 to 400 nm. However, conventional wisdom regarding organic polysilane chemistry has been that organic polysilanes exhibit a strong ultraviolet absorption band characteristic of Si--Si chains in the vicinity of 300 to 400 nm.

【0003】0003

【発明が解決しようとする課題】本発明の目的は、高感
度なフォトレジスト、導波損失の少ない光導波路材料、
p/n型ドーピング可能な半導体、変換効率の高いシリ
コンカーバイドの前駆体、高感度な電子写真感光体、高
効率な非線型光学材料として期待される、有機溶媒に可
溶でかつ300から400nm付近にはSi−Si連鎖
に特有の強い紫外吸収帯を持たないアルキル置換ジフェ
ニルポリシランを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly sensitive photoresist, an optical waveguide material with low waveguide loss,
A semiconductor capable of p/n doping, a silicon carbide precursor with high conversion efficiency, a highly sensitive electrophotographic photoreceptor, and a highly efficient nonlinear optical material that is soluble in organic solvents and has a wavelength of around 300 to 400 nm. The object of the present invention is to provide an alkyl-substituted diphenylpolysilane that does not have the strong ultraviolet absorption band characteristic of Si--Si chains.

【0004】0004

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は、アルキル置換ジフェニルポリシラ
ンに関する発明であって、下記構造式(化1):
[Means for Solving the Problems] To summarize the present invention, the first invention of the present invention relates to an alkyl-substituted diphenylpolysilane, which has the following structural formula (Formula 1):

【化1
】 (nは重量平均重合度を示す)で表されることを特徴と
する。本発明の第2の発明は、上記構造式(化1)で表
されるアルキル置換ジフェニルポリシランの製造方法に
関する発明であって、ビス(o−エチルフェニル)ジク
ロロシランを金属ナトリウムで縮合させることを特徴と
する。
[Chemical 1
] (n represents the weight average degree of polymerization). A second invention of the present invention relates to a method for producing an alkyl-substituted diphenylpolysilane represented by the above structural formula (Chemical formula 1), which comprises condensing bis(o-ethylphenyl)dichlorosilane with metallic sodium. Features.

【0005】本発明の目的化合物の例としては、単分散
ポリスチレンを基準にしたゲルパーミエーションクロマ
トグラフ法により求めた方法で、nの値が10以上であ
ることを特徴とするアルキル置換ジフェニルポリシラン
、及び単分散ポリスチレンを基準にしたゲルパーミエー
ションクロマトグラフ法により求めた方法でnの値が1
0以上で、かつ29Si−FTNMR(CR−MAS法
)で約10から−40ppmにわたって幅広いピークを
持つことを特徴とするアルキル置換ジフェニルポリシラ
ンが挙げられる。
Examples of the target compounds of the present invention include alkyl-substituted diphenylpolysilanes characterized in that the value of n is 10 or more as determined by gel permeation chromatography using monodisperse polystyrene; and the value of n is 1 as determined by gel permeation chromatography based on monodisperse polystyrene.
Examples include alkyl-substituted diphenylpolysilanes which are characterized by having a range of 0 or more and having a broad peak ranging from about 10 to -40 ppm in 29Si-FTNMR (CR-MAS method).

【0006】本発明方法の原料単量体であるビス(o−
エチルフェニル)ジクロロシランは、下記の反応方程式
(化2)に基づいて合成した。なお、反応操作及び精製
操作は、すべてアルゴンガス雰囲気下、及び室内光をカ
ットして行い目的原料化合物(3)を合成した。
Bis(o-
Ethylphenyl) dichlorosilane was synthesized based on the following reaction equation (Chemical formula 2). Note that the reaction operations and purification operations were all performed under an argon gas atmosphere and with room light cut off to synthesize the target raw material compound (3).

【0007】[0007]

【化2】[Case 2]

【0008】(3)は、以下の方法で調製した。テトラ
ヒドロフラン200mlにマグネシウム15gを入れ、
かくはんしながらこれに油浴温度50℃にて、(1)1
02gを添加した。この反応溶液(2)を、SiCl4
 の46gとテトラヒドロフラン100mlの混合溶液
に室温で添加し、そのまま一昼夜反応させた。(3)は
、反応溶液にヘキサンを加え、ヘキサン可溶成分を分別
蒸留することによって、精製した。沸点118.5〜1
21.5℃/0.2mmHg、収量27.5g。
(3) was prepared by the following method. Add 15g of magnesium to 200ml of tetrahydrofuran,
While stirring, add (1) 1 to this at an oil bath temperature of 50°C.
02g was added. This reaction solution (2) was mixed with SiCl4
The mixture was added to a mixed solution of 46 g of and 100 ml of tetrahydrofuran at room temperature, and the mixture was allowed to react overnight. (3) was purified by adding hexane to the reaction solution and fractionally distilling the hexane-soluble components. Boiling point 118.5-1
21.5°C/0.2mmHg, yield 27.5g.

【0009】[0009]

【実施例】以下、本発明を実施例及び応用例により更に
具体的に説明するが、本発明はこれらに限定されない。
[Examples] The present invention will be explained in more detail below with reference to Examples and Application Examples, but the present invention is not limited thereto.

【0010】実施例1 反応容器内を十分に脱水脱気し、アルゴンガス置換した
後、ビス(o−エチルフェニル)ジクロロシラン(3)
6.0gとトルエン35mlをフラスコに入れた。油浴
温度110℃において金属ナトリウム分散液(トルエン
30%)5.0gを一度に添加し、添加後更に約3時間
反応させた。反応混合溶液を加圧ろ過し、メチルアルコ
ールにろ液を加えた。生じた油状生成物を更にエチルア
ルコール/メチルアルコール/水の混合溶媒から分別沈
殿で精製した。沈殿を遠心分離機で回収し、60℃で真
空乾燥した。収量は0.15gでジクロロジフェニルシ
ラン単量体を基準にした収率で3.2%であった。単分
散ポリスチレンを基準にしたゲルパーミエーションクロ
マトグラフ法により求めた重量平均重合度が16.8、
分散度(=重量平均重合度/数平均重合度)が2.5の
単峰性の高分子が得られ、重合度は105から5の範囲
にわたっていた。得られたアルキル置換ジフェニルポリ
シランはスピンコート法や溶媒キャスト法で容易に薄膜
を形成することができた。
Example 1 After thoroughly dehydrating and deaerating the inside of the reaction vessel and purging with argon gas, bis(o-ethylphenyl)dichlorosilane (3) was added.
6.0 g and 35 ml of toluene were placed in a flask. At an oil bath temperature of 110° C., 5.0 g of a metal sodium dispersion (toluene 30%) was added at once, and the reaction was continued for about 3 hours after the addition. The reaction mixture solution was filtered under pressure, and the filtrate was added to methyl alcohol. The resulting oily product was further purified by fractional precipitation from a mixed solvent of ethyl alcohol/methyl alcohol/water. The precipitate was collected using a centrifuge and vacuum dried at 60°C. The yield was 0.15 g, which was a yield of 3.2% based on dichlorodiphenylsilane monomer. The weight average degree of polymerization determined by gel permeation chromatography based on monodisperse polystyrene is 16.8,
A monomodal polymer with a degree of dispersion (=weight average degree of polymerization/number average degree of polymerization) of 2.5 was obtained, and the degree of polymerization ranged from 105 to 5. The obtained alkyl-substituted diphenylpolysilane could be easily formed into a thin film by spin coating or solvent casting.

【0011】溶媒キャスト法で作製した、実施例1で得
られたアルキル置換ジフェニルポリシラン薄膜のFT−
IR吸収スペクトルを図1に示す。帰属は以下の通りで
ある。芳香族C−H伸縮振動3052cm−1、脂肪族
C−H伸縮振動2966、2932、2872cm−1
、Si−H伸縮振動2122cm−1、芳香族C=C伸
縮振動1588、1562cm−1、脂肪族C−H変角
振動1462cm−1、Si−フェニル振動1128、
1072、756cm−1、Si−Si伸縮振動434
cm−1。またSi−0−Siに特徴的な1000〜1
100cm−1付近の幅広い強い吸収は認められない。 なお、図1において横軸は波数(cm−1)、縦軸は吸
光度を示し、基板はKBrである。
FT-FT of the alkyl-substituted diphenylpolysilane thin film obtained in Example 1 prepared by solvent casting method.
The IR absorption spectrum is shown in FIG. The attribution is as follows. Aromatic C-H stretching vibration 3052 cm-1, aliphatic C-H stretching vibration 2966, 2932, 2872 cm-1
, Si-H stretching vibration 2122cm-1, aromatic C=C stretching vibration 1588, 1562cm-1, aliphatic C-H bending vibration 1462cm-1, Si-phenyl vibration 1128,
1072, 756 cm-1, Si-Si stretching vibration 434
cm-1. In addition, 1000 to 1, which is characteristic of Si-0-Si,
No broad strong absorption near 100 cm-1 is observed. In FIG. 1, the horizontal axis represents wave number (cm-1), the vertical axis represents absorbance, and the substrate is KBr.

【0012】実施例1で得られたアルキル置換ジフェニ
ルポリシラン固体の13C−FTNMR(CP−MAS
法)を図2と13C−FTNMR(プロトンノイズデカ
ップル法、溶媒CDCl3 )を図3にそれぞれ示す。 主なピークとして、約125から150ppmにかけて
芳香環炭素に基づく6本のピーク(150.4、137
.4、135.7、129.3、127.8、124.
9ppm)(固体は4本)並びに15から30ppmに
かけて脂肪族炭素に基づく2本のピーク(29.1、1
4.6から14.9ppm)が観測される。これから脂
肪族炭素とシリコンが結合した構造は認められない。な
お、図2及び図3において横軸の単位はppmである。 また図2中、ssbはスピニングサイドバンドを指し、
ノイズである。
13C-FTNMR (CP-MAS) of the alkyl-substituted diphenylpolysilane solid obtained in Example 1
2 and 13C-FTNMR (proton noise decoupling method, solvent CDCl3) are shown in FIG. 2 and 3, respectively. The main peaks include six peaks based on aromatic ring carbon (150.4, 137 ppm) from about 125 to 150 ppm.
.. 4, 135.7, 129.3, 127.8, 124.
9 ppm) (4 solids) and two peaks based on aliphatic carbon from 15 to 30 ppm (29.1, 1
4.6 to 14.9 ppm) is observed. From this, no structure in which aliphatic carbon and silicon are bonded is recognized. In addition, in FIG. 2 and FIG. 3, the unit of the horizontal axis is ppm. In addition, in FIG. 2, ssb refers to the spinning sideband,
It's noise.

【0013】実施例1で得られたアルキル置換ジフェニ
ルポリシラン固体の29Si−FTNMR(CP−MA
S法)を図4に示す。幅広いピークが約10から−40
ppmにかけて存在し、更に約3.8、10.3、16
.5ppm付近に3本のピークを有する。幅広いピーク
が10から−40ppmにかけて存在することは、本発
明で得られたアルキル置換ジフェニルポリシランのSi
主鎖構造が、フェニルのオルト位に導入されたエチル基
の立体障害のため、かなり乱れていることを示す。また
、3.8、10.3、16.5ppm付近に現われる大
きなピークは、オールトランス構造を取るとされている
可溶性のビス(p−ブチルフェニル)ポリシランの−2
8ppmという値に比べ、約32〜11ppmだけ低磁
場シフトしている。この原因として、Si−Si結合角
が標準的な109.54°からかなり小さくなることに
よる角度歪みか、もしくは、ゴーシュ構造をとることに
よる立体効果が低磁場方向に働いたものとした解釈が可
能である。事実、一連のパーメチルシクロシラン系〔S
i(CH3 )〕n(n=4、5、6)において、nが
6、5、4と小さくなるにつれ、−41.8、−42.
12、−27.6ppmと変化し、特に角度歪みが大き
な〔Si(CH3 )〕4 は、他のシクロシランより
も約15ppmだけ低磁場シフトすることが知られてい
る〔参考:1981年スプリンガー(springer
) 社発行、P.ディール、E.フラック、R.コスフ
ェルト(P.Diehl 、E.Fluck 、R.K
osfeld )編、NMR17、第90〜91頁〕。 また、メチルフェニルポリシランやメチルフェニルシク
ロヘキサシランにおいては、アイソタクチック構造(メ
ソ−メソ)はシンジオクタチック構造(ラセミ−ラセミ
)に比べて、約2から5ppmだけ低磁場シフトするこ
とが最近明らかになっている。アイソタクチック構造は
一種のゴーシュ構造に対応し、シンジオタクチック構造
は一種のトランス構造に対応する。一般に、ゴーシュ配
置にあるシリコンは、トランス配置にあるシリコンに比
べ、低磁場シフトを引起こすことは以前から知られてい
るが、その原因については明らかでない(参考:上記引
用文献)。本発明のポリシランが平均重合度が少なくと
も10はあるような系で、Si−Si連鎖の結合角が、
シクロテトラシランのように結合角が約90°近く歪ん
でいるとは考えられない。したがって、3.8、10.
3、16.5ppm付近に現われるシリコンピークシフ
トの原因は、本発明で得られたアルキル置換ジフェニル
ポリシランのSi主鎖構造が、結合角歪みよりは、フェ
ニルのオルト位のエチル基の立体障害の影響でトランス
型主鎖構造をとることができず、ゴーシュ型配置構造を
とっているためと推測される。
29Si-FTNMR (CP-MA) of the alkyl-substituted diphenylpolysilane solid obtained in Example 1
S method) is shown in FIG. Broad peak from about 10 to -40
ppm, and about 3.8, 10.3, 16
.. It has three peaks around 5 ppm. The presence of a broad peak from 10 to -40 ppm indicates that the Si of the alkyl-substituted diphenylpolysilane obtained in the present invention is
The main chain structure is shown to be highly disordered due to steric hindrance of the ethyl group introduced at the ortho position of the phenyl. In addition, the large peaks appearing around 3.8, 10.3, and 16.5 ppm are the -2
Compared to the value of 8 ppm, there is a downfield shift of about 32-11 ppm. The cause of this can be interpreted as angular distortion due to the Si-Si bond angle becoming considerably smaller than the standard 109.54°, or steric effect due to the gauche structure acting in the direction of the lower magnetic field. It is. In fact, a series of permethylcyclosilanes [S
i(CH3)]n (n=4, 5, 6), as n becomes smaller as 6, 5, 4, -41.8, -42.
It is known that [Si(CH3)]4, which has a particularly large angular distortion, shifts down the magnetic field by about 15 ppm compared to other cyclosilanes [Reference: 1981 Springer
) Published by P. Diehl, E. Flack, R. Kosfeld (P.Diehl, E.Fluck, R.K.
Osfeld), NMR 17, pp. 90-91]. Furthermore, in methylphenylpolysilane and methylphenylcyclohexasilane, it has recently been revealed that the isotactic structure (meso-meso) is shifted down the magnetic field by about 2 to 5 ppm compared to the syndiotactic structure (racemic-racemic). It has become. The isotactic structure corresponds to a type of gauche structure, and the syndiotactic structure corresponds to a type of trans structure. In general, it has been known for some time that silicon in the gauche configuration causes a lower magnetic field shift compared to silicon in the transformer configuration, but the cause is not clear (reference: cited document above). The polysilane of the present invention is a system in which the average degree of polymerization is at least 10, and the bond angle of the Si-Si chain is
It is unlikely that the bond angle is distorted by nearly 90° as in cyclotetrasilane. Therefore, 3.8, 10.
3. The cause of the silicon peak shift that appears around 16.5 ppm is that the Si main chain structure of the alkyl-substituted diphenylpolysilane obtained in the present invention is affected by steric hindrance of the ethyl group at the ortho position of phenyl, rather than bond angle distortion. This is presumed to be due to the fact that it cannot adopt a trans-type main chain structure and adopts a gauche-type configuration.

【0014】実施例1で得られたアルキル置換ジフェニ
ルポリシランのUV吸収スペクトルを図5に示す(溶媒
:テトラヒドロフラン、室温)。通常の有機ポリシラン
に見られるような300から400nm帯での強い特性
吸収は認められず、約270nm付近の肩に幅広く、吸
収係数約4000(単位Siモノマー)−1(1)−1
のSi−Si連鎖に由来する吸収が弱く認められる。こ
れは、本発明で得られたアルキル置換ジフェニルポリシ
ランのSi主鎖構造が、オルト位のエチル基の影響でゴ
ーシュ型配置構造をとっているため、通常の有機ポリシ
ランに見られるような300から400nm帯の強いエ
キシトン吸収が消失したことによるものと推測される。
FIG. 5 shows the UV absorption spectrum of the alkyl-substituted diphenylpolysilane obtained in Example 1 (solvent: tetrahydrofuran, room temperature). There is no strong characteristic absorption in the 300 to 400 nm band as seen in ordinary organic polysilanes, and there is a broad shoulder around about 270 nm, with an absorption coefficient of about 4000 (unit: Si monomer) -1 (1) -1
A weak absorption originating from the Si-Si chain is observed. This is because the Si main chain structure of the alkyl-substituted diphenylpolysilane obtained in the present invention has a gauche type arrangement structure due to the influence of the ethyl group at the ortho position. This is presumed to be due to the disappearance of the strong exciton absorption in the band.

【0015】応用例1 得られたアルキル置換ジフェニルポリシランが、250
〜350nmにわたって、図5に示すように幅広い吸収
を有することから、キセノン、重水素、水銀などを封入
した紫外光源あるいは窒素レーザーやエキシマレーザー
などの強力光源による微細加工が容易になることが期待
される。事実、得られたアルキル置換ジフェニルポリシ
ラン薄膜(厚み約0.3ミクロン)に波長254nmの
水銀ランプ(出力6W)を照射すると約10分位でヘプ
タンなどの非極性溶媒に対して不溶化を起こし、いわゆ
るネガ型パターン特性を示す。また、アルキル置換ジフ
ェニルポリシラン厚膜(厚み約10ミクロン)に波長3
65nmの水銀ランプ(出力6W)を照射すると同様に
約60分で不溶化を起こした。
Application Example 1 The obtained alkyl-substituted diphenylpolysilane was
Since it has a wide absorption range of ~350 nm as shown in Figure 5, it is expected that microfabrication will become easier using an ultraviolet light source filled with xenon, deuterium, mercury, etc., or a powerful light source such as a nitrogen laser or excimer laser. Ru. In fact, when the obtained alkyl-substituted diphenylpolysilane thin film (about 0.3 microns thick) is irradiated with a mercury lamp with a wavelength of 254 nm (output 6 W), it becomes insolubilized in nonpolar solvents such as heptane in about 10 minutes, and the so-called Shows negative pattern characteristics. In addition, wavelength 3
When irradiated with a 65 nm mercury lamp (output 6 W), insolubilization similarly occurred in about 60 minutes.

【0016】アルキル置換ジフェニルポリシラン薄膜の
光反応を空気中室温で、紫外吸収スペクトルとFT−I
Rを用いて追跡した。実施例1で合成されたアルキル置
換ジフェニルポリシラン薄膜の紫外線照射に伴うUV吸
収スペクトルの経時変化を図6に、FT−IR吸収スペ
クトルの経時変化を図7に表す(波長:254nm、出
力6W、空気中、室温)。図8は、実施例1で合成され
たアルキル置換ジフェニルポリシラン薄膜の紫外線照射
前後におけるFT−IR吸収スペクトルの差スペクトル
を表す(波長:254nm、出力6W、空気中、室温、
時間60分)。図6からは、紫外吸収スペクトルからは
、光照射時間と共に、235〜350nmにわたるSi
−Si連鎖に由来する幅広い吸収帯が少し消失し、フェ
ニル基の存在に由来する250〜300nm付近の微細
構造を持つ吸収帯のみとなった。図7及び図8からは、
アルキル置換ジフェニルポリシランに由来する2122
cm−1のSi−H伸縮振動並びに472cm−1付近
のSi−Si結合に由来する伸縮振動が弱くなった。そ
れに対して、ポリシロキサン構造が生成することによっ
てSi主鎖上の電子が局在することに由来する2155
cm−1付近のSi−H伸縮振動、1000〜1100
cm−1付近のSi−O−Si結合に由来するブロード
伸縮振動、ケトン構造に由来する1720cm−1付近
のブロードな吸収、そして、Si−OH結合会合体に由
来する3400、860cm−1付近の幅広い吸収が出
現した。更に、1100〜1000cm−1に同定のつ
かない一連の強いシャープな吸収帯が現われ、Si−C
H2 −Si、Si−(CH2 )2 −Si構造、あ
るいはSi−フェニル−Siなどの構造が生成している
可能性がある。これらのことから、アルキル置換ジフェ
ニルポリシラン膜は、光照射により速やかに、主鎖のS
i−Si結合が主としてSi−OHやSi−O−Si結
合に変化し、一部のSi−Si結合はSi−CH2 −
Si、Si−(CH2 )2 −Si構造、あるいはS
i−フェニル−Siといった構造に光異性化を起こして
いる可能性がある。これまで知られている有機ポリシラ
ンは光照射で主鎖のSi−Si結合がSi−O−Si結
合に変化し溶媒に対する溶解度が向上するため、いわゆ
るポジ型のパターン化特性を示す。本発明で示された高
分子量アルキル置換ジフェニルポリシランは逆にネガ型
パターン化特性を示す。
The photoreaction of alkyl-substituted diphenylpolysilane thin films was measured in air at room temperature using ultraviolet absorption spectra and FT-I.
It was tracked using R. Figure 6 shows the change over time in the UV absorption spectrum of the alkyl-substituted diphenylpolysilane thin film synthesized in Example 1 due to ultraviolet irradiation, and Figure 7 shows the change over time in the FT-IR absorption spectrum (wavelength: 254 nm, output 6 W, air medium, room temperature). FIG. 8 shows the difference spectrum of the FT-IR absorption spectrum before and after UV irradiation of the alkyl-substituted diphenylpolysilane thin film synthesized in Example 1 (wavelength: 254 nm, output 6 W, in air, room temperature,
time 60 minutes). From FIG. 6, the ultraviolet absorption spectrum shows that Si
The broad absorption band derived from the -Si chain disappeared a little, and only an absorption band with a fine structure around 250 to 300 nm derived from the presence of the phenyl group remained. From FIGS. 7 and 8,
2122 derived from alkyl-substituted diphenylpolysilane
The Si-H stretching vibration at cm-1 and the stretching vibration originating from the Si-Si bond near 472 cm-1 became weaker. On the other hand, the 2155
Si-H stretching vibration near cm-1, 1000-1100
Broad stretching vibrations originating from the Si-O-Si bond near cm-1, broad absorption near 1720 cm-1 originating from the ketone structure, and near 3400 and 860 cm-1 originating from the Si-OH bond association. A wide range of absorption emerged. Furthermore, a series of strong and sharp absorption bands that cannot be identified appear between 1100 and 1000 cm-1, and Si-C
There is a possibility that a structure such as H2-Si, Si-(CH2)2-Si structure, or Si-phenyl-Si is generated. From these facts, the alkyl-substituted diphenylpolysilane film can be rapidly converted to S in the main chain by light irradiation.
i-Si bonds mainly change to Si-OH and Si-O-Si bonds, and some Si-Si bonds change to Si-CH2 -
Si, Si-(CH2)2-Si structure, or S
There is a possibility that photoisomerization occurs in a structure such as i-phenyl-Si. Conventionally known organic polysilanes exhibit so-called positive patterning characteristics because the Si--Si bonds in the main chain change to Si--O--Si bonds upon irradiation with light, improving their solubility in solvents. The high molecular weight alkyl-substituted diphenylpolysilanes shown in this invention, on the contrary, exhibit negative patterning properties.

【0017】[0017]

【発明の効果】以上説明したように、ビス(o−エチル
フェニル)ジクロロシランを金属ナトリウムで脱塩素縮
重合することによって、少なくとも重量平均重合度10
以上の薄膜形成能に優れたアルキル置換ジフェニルポリ
シランを提供することができる。本発明で得られたアル
キル置換ジフェニルポリシランは、フェニルのオルト位
にエチル基を導入することでその立体障害の影響で、通
常の有機ポリシランに見られるような300から400
nm帯の強い吸収帯が消失した紫外吸収スペクトルを与
えることができる。本発明で得られた高分子量アルキル
置換ジフェニルポリシランは、高感度なフォトレジスト
、導波損失の少ない光導波路材料、p/n型制御可能な
半導体、変換効率の高いシリコンカーバイドの前駆体、
高感度な電子写真感光体、高効率な非線型光学材料とし
て、幅広い分野の応用が期待される。特に波長300〜
400nmにSi−Si連鎖に基づく弱い吸収帯が存在
するため、微細加工用レジスト材料として増感材のいら
ない高分子厚膜のパターン化に適している。
Effects of the Invention As explained above, by dechlorinating and polycondensing bis(o-ethylphenyl)dichlorosilane with metallic sodium, the weight average degree of polymerization is at least 10.
It is possible to provide an alkyl-substituted diphenylpolysilane having excellent thin film-forming ability as described above. The alkyl-substituted diphenylpolysilane obtained in the present invention has a 300 to 400
It is possible to provide an ultraviolet absorption spectrum in which the strong absorption band in the nm band has disappeared. The high molecular weight alkyl-substituted diphenylpolysilane obtained in the present invention can be used as a highly sensitive photoresist, an optical waveguide material with low waveguide loss, a semiconductor capable of controlling p/n type, a silicon carbide precursor with high conversion efficiency,
It is expected to be applied in a wide range of fields as a highly sensitive electrophotographic photoreceptor and a highly efficient nonlinear optical material. Especially wavelength 300 ~
Since a weak absorption band based on Si-Si chains exists at 400 nm, it is suitable as a resist material for microfabrication for patterning thick polymer films that do not require a sensitizer.

【図面に簡単な説明】[Brief explanation on the drawing]

【図1】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシランのFT−IR吸収スペクトルを表す
図である(基板:KBr)。
FIG. 1 is a diagram showing the FT-IR absorption spectrum of alkyl-substituted diphenylpolysilane synthesized in Example 1 of the present invention (substrate: KBr).

【図2】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシランの13C−FTNMRスペクトルを
表す図である(CP−MAS法)。
FIG. 2 is a diagram showing a 13C-FTNMR spectrum of the alkyl-substituted diphenylpolysilane synthesized in Example 1 of the present invention (CP-MAS method).

【図3】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシランの13C−FTNMRスペクトルを
表す図である(プロトンノイズデカップル法、溶媒CD
Cl3 )。
FIG. 3 is a diagram showing the 13C-FTNMR spectrum of the alkyl-substituted diphenylpolysilane synthesized in Example 1 of the present invention (proton noise decoupling method, solvent CD
Cl3).

【図4】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシランの29Si−FTNMRスペクトル
を表す図である(CP−MAS法)。
FIG. 4 is a diagram showing a 29Si-FTNMR spectrum of the alkyl-substituted diphenylpolysilane synthesized in Example 1 of the present invention (CP-MAS method).

【図5】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシランのUV吸収スペクトルを表す図であ
る(溶媒:テトラヒドロフラン、室温)。
FIG. 5 is a diagram showing the UV absorption spectrum of the alkyl-substituted diphenylpolysilane synthesized in Example 1 of the present invention (solvent: tetrahydrofuran, room temperature).

【図6】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシラン薄膜の紫外線照射に伴うUV吸収ス
ペクトルの経時変化を表す図である(波長:254nm
、出力6W、空気中、室温)。
FIG. 6 is a diagram showing the change over time in the UV absorption spectrum of the alkyl-substituted diphenylpolysilane thin film synthesized in Example 1 of the present invention upon irradiation with ultraviolet light (wavelength: 254 nm).
, output 6W, in air, room temperature).

【図7】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシラン薄膜の紫外線照射に伴うFT−IR
吸収スペクトルの経時変化を表す図である(波長:25
4nm、出力6W、空気中、室温)。
FIG. 7: FT-IR of the alkyl-substituted diphenylpolysilane thin film synthesized in Example 1 of the present invention upon UV irradiation.
It is a diagram showing the change in absorption spectrum over time (wavelength: 25
4nm, output 6W, in air, room temperature).

【図8】本発明の実施例1で合成されたアルキル置換ジ
フェニルポリシラン薄膜の紫外線照射後におけるFT−
IR吸収スペクトルの差スペクトルを表す図である(波
長:254nm、出力6W、空気中、室温、時間60分
)。
FIG. 8: FT- after UV irradiation of the alkyl-substituted diphenylpolysilane thin film synthesized in Example 1 of the present invention.
It is a diagram showing a difference spectrum of IR absorption spectra (wavelength: 254 nm, output 6 W, in air, room temperature, time 60 minutes).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  下記構造式(化1):【化1】 (nは重量平均重合度を示す)で表されることを特徴と
するアルキル置換ジフェニルポリシラン。
1. An alkyl-substituted diphenylpolysilane represented by the following structural formula (Chemical formula 1): [Chemical formula 1] (n represents a weight average degree of polymerization).
【請求項2】  ビス(o−エチルフェニル)ジクロロ
シランを、金属ナトリウムで縮合させることを特徴とす
る請求項1に記載の構造式(化1)で表されるアルキル
置換ジフェニルポリシランの製造方法。
2. The method for producing an alkyl-substituted diphenylpolysilane represented by the structural formula (Chemical formula 1) according to claim 1, characterized in that bis(o-ethylphenyl)dichlorosilane is condensed with sodium metal.
JP4548091A 1991-02-19 1991-02-19 Alkyl-substituted diphenylpolysilane and its production Pending JPH04264133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4548091A JPH04264133A (en) 1991-02-19 1991-02-19 Alkyl-substituted diphenylpolysilane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4548091A JPH04264133A (en) 1991-02-19 1991-02-19 Alkyl-substituted diphenylpolysilane and its production

Publications (1)

Publication Number Publication Date
JPH04264133A true JPH04264133A (en) 1992-09-18

Family

ID=12720566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4548091A Pending JPH04264133A (en) 1991-02-19 1991-02-19 Alkyl-substituted diphenylpolysilane and its production

Country Status (1)

Country Link
JP (1) JPH04264133A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181156B2 (en) 2003-07-25 2007-02-20 Ricoh Company, Ltd. Image forming apparatus using a cleaning member for preventing noises and process cartridge therefor
EP2146251A1 (en) 2008-07-15 2010-01-20 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge
EP2278407A1 (en) 2009-07-23 2011-01-26 Ricoh Company, Ltd. Image forming apparatus
US7897313B2 (en) 2006-04-27 2011-03-01 Ricoh Company Limited Electrostatic latent image bearing member, and image forming apparatus and process cartridge using the electrostatic latent image bearing member
US7995950B2 (en) 2005-07-15 2011-08-09 Ricoh Co., Ltd. Image forming apparatus, image forming method and process cartridge involving the use of a cleaning blade that removes toner remaining on a surface of an image bearing member
WO2012099182A1 (en) 2011-01-21 2012-07-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181156B2 (en) 2003-07-25 2007-02-20 Ricoh Company, Ltd. Image forming apparatus using a cleaning member for preventing noises and process cartridge therefor
US7295802B2 (en) 2003-07-25 2007-11-13 Ricoh Company, Ltd Image forming apparatus using a cleaning unit for preventing noises
US7995950B2 (en) 2005-07-15 2011-08-09 Ricoh Co., Ltd. Image forming apparatus, image forming method and process cartridge involving the use of a cleaning blade that removes toner remaining on a surface of an image bearing member
US7897313B2 (en) 2006-04-27 2011-03-01 Ricoh Company Limited Electrostatic latent image bearing member, and image forming apparatus and process cartridge using the electrostatic latent image bearing member
EP2146251A1 (en) 2008-07-15 2010-01-20 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge
EP2278407A1 (en) 2009-07-23 2011-01-26 Ricoh Company, Ltd. Image forming apparatus
WO2012099182A1 (en) 2011-01-21 2012-07-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor

Similar Documents

Publication Publication Date Title
Sakamoto et al. Highly ordered high-molecular weight alternating polysilylene copolymer prepared by anionic polymerization of masked disilene
US6258506B1 (en) Ultraviolet-curable polysiloxane composition and method for the formation of cured patterns therefrom
US4761464A (en) Interrupted polysilanes useful as photoresists
US4841083A (en) Ladder polysilanes
CN114316265B (en) Polythiourea compound and preparation method and application thereof
JPH04264133A (en) Alkyl-substituted diphenylpolysilane and its production
EP0129834B1 (en) Photo and radiation-sensitive organopolymeric material
JPH04264131A (en) Alkyl-substituted diphenylpolysilane and its production
JPH04264132A (en) Hydrophenylpolysilane and its production
US5229481A (en) High-molecular weight, silicon-containing polymers and methods for the preparation and use thereof
JPH04264130A (en) Alkyl-substituted diphenylpolysilane and its production
CA1298930C (en) Diorganopolysiloxane-azobenzene alternating copolymers and methods for their preparation
US5426160A (en) Process for the addition of functional groups to polysilyne polymers
Tsumura et al. Synthesis and properties of polycarbosilanes with the meta‐linkage bending unit by hydrosilylation polymerization
JPH06248082A (en) Method of synthesis of polysilsesquioxane and utilization of obtained compound
Smith et al. Functionalization of polysilyne networks for enhanced surface properties
US5254439A (en) Light-sensitive polymer, method for preparing the same and method for forming patterns
JPH0525282A (en) Organosilicon polymer and its preparation
US5905139A (en) Purification of polysilane
JP3283407B2 (en) Polysilane optical device
JP2005281518A (en) Manufacturing method of organic polysilane, organic polysilane membrane and optical waveguide
JPH01252637A (en) Production of organometallic polymeric compound
US5126419A (en) Light-sensitive polymer, method for preparing the same andmethod for forming patterns
JPH0525281A (en) Organosilicon polymer and its preparation
KR102115976B1 (en) Self-healing polysilsesquioxanes and hybrid film using the same