JPH04261278A - Photographing device - Google Patents

Photographing device

Info

Publication number
JPH04261278A
JPH04261278A JP3022264A JP2226491A JPH04261278A JP H04261278 A JPH04261278 A JP H04261278A JP 3022264 A JP3022264 A JP 3022264A JP 2226491 A JP2226491 A JP 2226491A JP H04261278 A JPH04261278 A JP H04261278A
Authority
JP
Japan
Prior art keywords
optical axis
light
light receiving
shake correction
apex angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3022264A
Other languages
Japanese (ja)
Inventor
Katsumi Azusazawa
梓澤 勝美
Hironobu Takano
裕宣 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3022264A priority Critical patent/JPH04261278A/en
Publication of JPH04261278A publication Critical patent/JPH04261278A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To attain accurate focusing by an automatic focus device of the active system even with deflection correction by a variable apex angle prism. CONSTITUTION:An apex angle of a variable apex angle prism 10 is changed in response to a camera deflection detected by a deflection sensor 32 and an optical axis is deflected in a direction to eliminate the camera deflection. A projector 26 and a light receiver 28 are arranged at a rear side of the variable apex angle prism 10 so that the projection optical axis and the light receiving optical axis of the projector 26 and the light receiver 28 of the automatic focusing device are deflected in linking with the deflection of the pickup optical axis by the deflection correction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ビデオ・カメラやTV
カメラなどの撮影装置に関する。
[Industrial Application Field] The present invention is applicable to video cameras and TVs.
It relates to photographic devices such as cameras.

【0002】0002

【従来の技術】ビデオ・カメラは固体撮像素子の実用化
により小型・軽量化し、高倍率及び多機能化により急速
に普及している。最近では、露出制御や焦点制御が自動
化されており、これらに起因する撮影の失敗は少ない。 ところが、ビデオ・カメラは手持ちの体勢で使用するの
が普通であり、軽量・小型化に伴い、手振れの可能性が
高くなる。手持ちの場合には画面が必ず振れているとい
っても過言ではなく、このような画面振れによる画質低
下と、ビデオ酔いなどの不快な状況が、問題になってき
ている。
2. Description of the Related Art Video cameras have become smaller and lighter due to the practical use of solid-state imaging devices, and are rapidly becoming popular due to their high magnification and multifunctionality. Recently, exposure control and focus control have been automated, and there are fewer failures in shooting due to these. However, video cameras are usually used in a handheld position, and as they become lighter and more compact, the possibility of camera shake increases. It is no exaggeration to say that the screen always shakes when hand-held, and such screen shake is causing a decline in image quality and unpleasant situations such as video sickness, which are becoming a problem.

【0003】このような画面振れを抑制ないし解消する
手段として、ジャイロ機構を使用した構成や、可変頂角
プリズムなどの光学偏心装置を使用した構成が知られて
いる。前者は、ジャイロ機構によりレンズ鏡筒系を、撮
影装置本体の振れに関わらず安定化させるものであるが
、大型化し重量化するという欠点がある。後者は、撮影
装置本体の振れを相殺する方向に、可変頂角プリズムに
より撮影光学系の光軸を偏心させるものであり、カメラ
の大型化及び重量化を最小限に抑え得るという利点があ
る。可変頂角プリズムは例えば、光軸方向に離れた2枚
の透明板の周囲を蛇腹で閉鎖し、内部に所定屈折率の液
体を充填した構成になっており、被写体側の透明板を中
心軸線(中立位置での光軸)に直交する面に対して傾斜
させることにより、撮影光軸を偏心させる。
As means for suppressing or eliminating such screen shake, a configuration using a gyro mechanism or a configuration using an optical eccentric device such as a variable apex angle prism is known. The former uses a gyro mechanism to stabilize the lens barrel system regardless of the shake of the camera body, but it has the disadvantage of being large and heavy. The latter uses a variable apex angle prism to decenter the optical axis of the photographing optical system in a direction that offsets the shake of the camera body, and has the advantage of minimizing the size and weight of the camera. For example, a variable apex angle prism has two transparent plates that are separated in the optical axis direction, the circumference of which is closed with a bellows, and a liquid with a predetermined refractive index is filled inside.The transparent plate on the subject side is aligned with the central axis. The imaging optical axis is decentered by tilting it with respect to a plane perpendicular to (the optical axis at the neutral position).

【0004】0004

【発明が解決しようとする課題】ところで、自動焦点調
節装置として、被写体にビーム光を照射し、撮影光学系
を通過した被写体からの反射光を受光素子で受光した結
果に基づいて、撮影光学系のフォーカシング・レンズを
移動させる構成がある。この自動焦点調節装置では、発
光素子から被写体に向けて照射されるビーム光が撮影光
学系の撮影光軸上の所定位置で交差するようにセットさ
れている。従って、このような自動焦点調節装置を用い
るカメラに、上述の可変頂角プリズムを用いた振れ補正
装置を組み込んだ場合、撮影光学系の光軸と自動焦点調
節装置の発光素子の光軸との間にずれが生じ、正確な焦
点合わせができなくなるという問題点がある。
[Problems to be Solved by the Invention] By the way, as an automatic focus adjustment device, a photographic optical system is adjusted based on the result of irradiating a beam of light onto a subject and receiving the reflected light from the subject that has passed through a photographic optical system with a light receiving element. There is a configuration in which the focusing lens of the camera is moved. This automatic focus adjustment device is set so that the beams of light emitted from the light emitting elements toward the subject intersect at a predetermined position on the photographing optical axis of the photographing optical system. Therefore, when a shake correction device using the above-mentioned variable apex angle prism is incorporated into a camera using such an automatic focus adjustment device, the optical axis of the photographic optical system and the optical axis of the light emitting element of the automatic focus adjustment device are There is a problem that a shift occurs between the two, making it impossible to achieve accurate focusing.

【0005】更には、変倍機能を有するレンズ系、所謂
ズーム・レンズを使用する場合には、この問題が複雑化
する。
Furthermore, this problem becomes more complicated when a lens system having a variable magnification function, a so-called zoom lens, is used.

【0006】本発明は、このような問題を解決する撮影
装置を提示することを目的とする。
[0006] An object of the present invention is to provide a photographing device that solves these problems.

【0007】[0007]

【課題を解決するための手段】本発明に係る撮影装置は
、検出したカメラ振れに応じて光軸偏心手段により光軸
を偏心させる振れ補正装置と、被写体にビーム光を照射
し、その反射光を受光して撮影光学系を合焦状態に制御
する自動焦点調節装置を具備する撮影装置であって、当
該自動焦点調節装置の投光手段及び受光手段を、当該光
軸偏心手段の像面側に配置したことを特徴とする。
[Means for Solving the Problems] A photographing device according to the present invention includes a shake correction device that decenters an optical axis using an optical axis decentering means in response to detected camera shake, and a camera shake correction device that emits a beam of light onto a subject and emits reflected light. A photographing device equipped with an automatic focus adjustment device that receives light and controls a photographic optical system to a focused state, the light emitting means and the light receiving means of the automatic focus adjustment device being arranged on the image plane side of the optical axis decentering means. It is characterized by being placed in.

【0008】第2の発明に係る撮影装置は、検出したカ
メラ振れに応じて光軸偏心手段により光軸を偏心させる
振れ補正装置と、被写体にビーム光を照射し、その反射
光を受光して撮影光学系を合焦状態に制御する自動焦点
調節装置を具備する撮影装置であって、当該光軸偏心手
段における振れ補正のために回転駆動される部材に当該
自動焦点調節装置の投光手段及び受光手段を固定し、当
該光軸偏心手段の所定方向の光軸偏心に連動して、投光
手段及び受光手段の投光光軸及び受光光軸を傾動させる
ようにしたことを特徴とする。
[0008] The photographing device according to the second invention includes a shake correction device that decenters the optical axis using an optical axis decentering means in response to detected camera shake, and a camera that emits a beam of light onto a subject and receives the reflected light. A photographing device equipped with an automatic focus adjustment device that controls a photographic optical system to a focused state, the light projection means of the automatic focus adjustment device and a member that is rotationally driven for shake correction in the optical axis decentering means. The light receiving means is fixed, and the light emitting optical axis and the light receiving optical axis of the light projecting means and the light receiving means are tilted in conjunction with the eccentricity of the optical axis in a predetermined direction of the optical axis eccentric means.

【0009】第3の発明に係る撮影装置は、検出したカ
メラ振れに応じて光軸偏心手段により光軸を偏心させる
振れ補正装置と、被写体にビーム光を照射し、その反射
光を受光して撮影光学系を合焦状態に制御する自動焦点
調節装置を具備する撮影装置であって、当該光軸偏心手
段における振れ補正に連動して、投光手段及び受光手段
の投光光軸及び受光光軸を所定面内で傾動させる連動部
材を設けたことを特徴とする。
[0009] The photographing device according to the third invention includes a shake correction device that decenters the optical axis using an optical axis decentering means in response to detected camera shake, and a shake correction device that emits a beam of light to a subject and receives the reflected light. A photographing device that is equipped with an automatic focus adjustment device that controls a photographic optical system to a focused state, in which the light emitting optical axis and the received light of the light emitting means and the light receiving means are adjusted in conjunction with shake correction in the optical axis decentering means. It is characterized by providing an interlocking member that tilts the shaft within a predetermined plane.

【0010】0010

【作用】上記手段により、自動焦点調節のための投光光
軸及び受光光軸が、振れ補正のための光軸偏心と連動し
て偏心される。従って、振れ補正を行ないながらも、正
確な焦点調節が得られる。
[Operation] By the above means, the light emitting optical axis and the receiving optical axis for automatic focus adjustment are decentered in conjunction with the optical axis eccentricity for shake correction. Therefore, accurate focus adjustment can be obtained while performing shake correction.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0012】図1は、本発明の一実施例の概略構成ブロ
ック図を示す。10は頂角を変更自在な可変頂角プリズ
ム(VAP)、12は可変頂角プリズム10の頂角を変
更する駆動回路である。14は撮影光学系であり、内部
にフォーカシング・レンズ14aと絞り14bを具備す
る。16は撮影光学系14による被写体の光学像を電気
信号に変換する撮像素子(例えば、CCD式固体撮像素
子)、18は撮像素子16の出力にガンマ補正、ブラン
キング処理及び同期信号の付加等の、周知のカメラ信号
処理を施して標準形式のビデオ信号を出力するカメラ・
プロセス回路、20は撮影光学系による像をモニタする
ためのモニタ装置(例えば、電子ビューファインダ)で
ある。
FIG. 1 shows a schematic block diagram of an embodiment of the present invention. 10 is a variable apex angle prism (VAP) whose apex angle can be freely changed, and 12 is a drive circuit which changes the apex angle of the variable apex angle prism 10. Reference numeral 14 denotes a photographing optical system, which includes a focusing lens 14a and an aperture 14b. Reference numeral 16 denotes an image sensor (for example, a CCD solid-state image sensor) that converts the optical image of the object produced by the photographing optical system 14 into an electrical signal, and 18 performs gamma correction, blanking processing, addition of a synchronization signal, etc. to the output of the image sensor 16. , a camera that performs well-known camera signal processing and outputs a standard format video signal.
The process circuit 20 is a monitor device (for example, an electronic viewfinder) for monitoring the image produced by the photographing optical system.

【0013】22は撮像素子16の出力から、適正露出
にするための絞り14bの絞り値を演算する絞り制御回
路であり、絞り駆動回路24を介して絞り14bを適正
絞り値に制御する。26は自動焦点調節のための投光装
置、28は被写体により反射され可変頂角プリズム10
を通過した光を受ける受光装置である。受光装置28は
例えば、2分割の光センサからなる。投光装置26及び
受光装置28は、可変頂角プリズム10の撮影光学系1
4側に配置されており、投光光軸及び受光光軸は共に、
可変頂角プリズム10により偏心されるようになってい
る。30はフォーカシング・レンズ14aを駆動するフ
ォーカス駆動回路である。32はカメラ本体の振れを検
出する振れ検出センサである。
Reference numeral 22 denotes an aperture control circuit that calculates the aperture value of the aperture 14b for proper exposure from the output of the image sensor 16, and controls the aperture 14b to the appropriate aperture value via the aperture drive circuit 24. 26 is a light projecting device for automatic focus adjustment; 28 is a variable apex angle prism 10 that is reflected by the subject;
This is a light receiving device that receives the light that has passed through the . The light receiving device 28 is composed of, for example, a two-split optical sensor. The light projecting device 26 and the light receiving device 28 are the photographing optical system 1 of the variable apex angle prism 10.
The light emitting and receiving optical axes are both located on the 4th side.
It is eccentrically arranged by a variable apex angle prism 10. 30 is a focus drive circuit that drives the focusing lens 14a. 32 is a shake detection sensor that detects shake of the camera body.

【0014】34は全体を制御する制御回路であって、
例えば、I/Oポート、A/D変換器、D/A変換器R
OM、及びRAMを具備するマイクロコンピュータから
なる。本実施例において、制御回路34は具体的には、
振れ検出センサ32、VAP駆動回路12及び可変頂角
プリズム10による振れ補正制御、並びに、投光装置2
6、受光装置28、フォーカス駆動回路30及びフォー
カシング・レンズ14aによる焦点制御を行なう。
34 is a control circuit that controls the whole,
For example, I/O port, A/D converter, D/A converter R
It consists of a microcomputer equipped with OM and RAM. In this embodiment, the control circuit 34 specifically:
Shake correction control by the shake detection sensor 32, VAP drive circuit 12, and variable apex angle prism 10, and the light projection device 2
6. Focus control is performed by the light receiving device 28, focus drive circuit 30, and focusing lens 14a.

【0015】図1の基本動作を簡単に説明する。制御回
路34は、振れ検出センサ32の出力に応じて、検出さ
れた振れを解消するための振れ補正信号をVAP駆動回
路12に印加する。VAP駆動回路12はこの振れ補正
信号に応じて可変頂角プリズム10の頂角を変更する。 可変頂角プリズム10は、検出された振れを解消する方
向に光軸を偏心させる。これにより、カメラ振れを解消
された被写体像が撮像素子16の光電変換面に結像する
The basic operation of FIG. 1 will be briefly explained. The control circuit 34 applies a shake correction signal to the VAP drive circuit 12 in response to the output of the shake detection sensor 32 to eliminate the detected shake. The VAP drive circuit 12 changes the apex angle of the variable apex angle prism 10 in accordance with this shake correction signal. The variable apex angle prism 10 decenters the optical axis in a direction that eliminates the detected shake. As a result, a subject image with camera shake eliminated is formed on the photoelectric conversion surface of the image sensor 16.

【0016】投光装置26が出力する光ビームは可変頂
角プリズム10により偏心されて被写体に照射され、当
該被写体による反射光が可変頂角プリズム10を通過し
て受光装置28に入射する。受光装置28は被写体から
の反射光のスポット位置を示す電気信号を制御回路34
に出力する。これにより、制御回路34は被写体までの
距離を知ることができ、その距離でピントがあうように
、フォーカス駆動回路30によりフォーカシング・レン
ズ14aを駆動する。
The light beam outputted from the light projecting device 26 is decentered by the variable apex angle prism 10 and irradiated onto the object, and the light reflected by the object passes through the variable apex angle prism 10 and enters the light receiving device 28 . The light receiving device 28 sends an electric signal indicating the spot position of the reflected light from the subject to the control circuit 34.
Output to. Thereby, the control circuit 34 can know the distance to the subject, and the focus drive circuit 30 drives the focusing lens 14a so that the object is in focus at that distance.

【0017】撮像素子16により光電変換された被写体
の画像信号は、カメラ・プロセス回路18によりビデオ
信号に変換され、モニタ20に印加される。モニタ20
の表示映像により被写体を確認できる。カメラ・プロセ
ス回路18の出力は、図示しない記録回路に供給され、
磁気テープ、磁気ディスク、固体メモリなどの記録媒体
に記録される。撮像素子16の出力は絞り制御回路22
にも印加され、絞り制御回路22は、適正露光量になる
ように絞り駆動回路24により絞り14bを駆動させる
The image signal of the object photoelectrically converted by the image sensor 16 is converted into a video signal by the camera processing circuit 18 and applied to the monitor 20. monitor 20
You can confirm the subject using the displayed image. The output of the camera process circuit 18 is supplied to a recording circuit (not shown),
Recorded on recording media such as magnetic tape, magnetic disks, and solid-state memory. The output of the image sensor 16 is sent to the aperture control circuit 22.
The diaphragm control circuit 22 causes the diaphragm drive circuit 24 to drive the diaphragm 14b so that the exposure amount is appropriate.

【0018】可変頂角プリズム10、投光装置26、受
光装置28、振れ検出センサ32、VAP駆動回路12
及び制御回路34の関係をより詳細に説明する。図2は
、これらの詳細な構成図を示す。図1と同じ構成要素に
は同じ符号を付してある。
Variable apex angle prism 10, light emitter 26, light receiver 28, shake detection sensor 32, VAP drive circuit 12
The relationship between the control circuit 34 and the control circuit 34 will be explained in more detail. FIG. 2 shows a detailed configuration diagram of these. The same components as in FIG. 1 are given the same reference numerals.

【0019】振れ検出センサ32の構造は次のようにな
っている。即ち、円筒ケース40内に所定屈折率の液体
42を入れ、液体42中には、所定の回転軸の回りに回
転可能な浮体44を浮遊させてある。浮体44は磁性材
料からなり、円筒ケース40の外部の永久磁石46との
間で閉磁気回路を構成する。この閉磁気回路により、浮
体44はカメラ振れのないときには永久磁石46に最も
近い位置で静止する。48は浮体44にビーム光を照射
する発光素子、50は浮体44による反射光が入射する
受光素子、52は受光素子50への反射光入射位置を検
出する位置検出回路である。受光素子50は例えば2分
割の光センサからなり、位置検出回路52は受光素子5
0の2つの出力から、浮体44からの反射ビームの入射
位置を判別する。
The structure of the shake detection sensor 32 is as follows. That is, a liquid 42 having a predetermined refractive index is placed in a cylindrical case 40, and a floating body 44 that is rotatable around a predetermined rotation axis is suspended in the liquid 42. The floating body 44 is made of a magnetic material and forms a closed magnetic circuit with a permanent magnet 46 outside the cylindrical case 40. Due to this closed magnetic circuit, the floating body 44 remains stationary at a position closest to the permanent magnet 46 when there is no camera shake. 48 is a light emitting element that irradiates the floating body 44 with a beam of light; 50 is a light receiving element into which the reflected light from the floating body 44 is incident; and 52 is a position detection circuit that detects the position of incidence of the reflected light on the light receiving element 50. The light receiving element 50 is composed of, for example, a two-split optical sensor, and the position detection circuit 52 is connected to the light receiving element 5.
From the two outputs of 0, the incident position of the reflected beam from the floating body 44 is determined.

【0020】カメラ本体が振れると、円筒ケース40、
永久磁石46、発光素子48及び受光素子50も同様に
振れるが、浮体44は慣性により静止しようとする。従
って、浮体44は円筒ケース40に対して相対的に回転
することになる。受光素子50には、浮対44の回転量
に応じた位置に反射光が入射する。受光素子50は光の
入射位置に応じた電気信号を発生する。位置検出回路5
2は、受光素子50の出力に応じて光入射位置の信号を
制御回路34に出力する。これにより、制御回路34は
カメラ振れ量を知ることができる。
When the camera body shakes, the cylindrical case 40,
The permanent magnet 46, the light emitting element 48, and the light receiving element 50 also swing, but the floating body 44 tends to remain stationary due to inertia. Therefore, the floating body 44 rotates relative to the cylindrical case 40. The reflected light is incident on the light receiving element 50 at a position corresponding to the amount of rotation of the float 44. The light receiving element 50 generates an electric signal according to the incident position of light. Position detection circuit 5
2 outputs a light incident position signal to the control circuit 34 in accordance with the output of the light receiving element 50. This allows the control circuit 34 to know the amount of camera shake.

【0021】可変頂角プリズム10を説明する。蛇腹を
有する円筒状容器54の両端面を透明板56,58で密
閉し、内部に所定屈折率の液体60を充填してある。透
明板56は、水平軸を中心に回動自在に支持されており
、コイル62に通電することにより電磁的に回転駆動自
在なようになっている。VAP駆動回路12はコイル6
2に駆動電流を供給する。64は受光素子、66は受光
素子64に対面する発光素子であり、受光素子64は透
明板56と一体化され、発光素子66はカメラ本体に固
定されている。68は受光素子64における、発光素子
66の放射光の入射位置を検出する位置検出回路である
The variable apex angle prism 10 will be explained. Both ends of a bellows-shaped cylindrical container 54 are sealed with transparent plates 56 and 58, and the inside is filled with a liquid 60 having a predetermined refractive index. The transparent plate 56 is rotatably supported around a horizontal axis, and can be electromagnetically driven to rotate by energizing the coil 62. The VAP drive circuit 12 has a coil 6
A drive current is supplied to 2. 64 is a light receiving element, 66 is a light emitting element facing the light receiving element 64, the light receiving element 64 is integrated with the transparent plate 56, and the light emitting element 66 is fixed to the camera body. A position detection circuit 68 detects the incident position of the light emitted from the light emitting element 66 on the light receiving element 64.

【0022】透明板56が水平軸を中心に回動すると、
受光素子64では、発光素子66の出力する光が別の位
置に入射し、位置検出回路68は、入射位置を示す信号
を制御回路34に供給する。これにより、制御回路34
は透明板56の傾斜角を知ることができる。
When the transparent plate 56 rotates around the horizontal axis,
In the light receiving element 64, the light output from the light emitting element 66 is incident on another position, and the position detection circuit 68 supplies a signal indicating the incident position to the control circuit 34. As a result, the control circuit 34
The angle of inclination of the transparent plate 56 can be known.

【0023】制御回路34は位置検出回路52の出力か
らカメラ振れ量を知り、位置検出回路68の出力から可
変頂角プリズム10の現在の頂角を知り、両者の差がゼ
ロになるように可変頂角プリズム10の頂角を駆動制御
する。即ち、制御回路34は位置検出信号52,68の
出力の差信号をVAP駆動回路12に印加し、VAP駆
動回路12はコイル62に相応する駆動電流を供給する
。これに応じて透明板56が水平軸を中心に所定角度回
動し、可変頂角プリズム10はカメラ振れを補正する偏
心を光軸に与える。これにより、先に説明したように、
カメラ振れにかかわらず、撮像素子16の光電変換面で
の被写体像は振れない。
The control circuit 34 learns the amount of camera shake from the output of the position detection circuit 52, the current apex angle of the variable apex angle prism 10 from the output of the position detection circuit 68, and adjusts the apex angle so that the difference between the two becomes zero. The apex angle of the apex angle prism 10 is driven and controlled. That is, the control circuit 34 applies a difference signal between the outputs of the position detection signals 52 and 68 to the VAP drive circuit 12, and the VAP drive circuit 12 supplies a corresponding drive current to the coil 62. In response to this, the transparent plate 56 rotates by a predetermined angle about the horizontal axis, and the variable apex angle prism 10 provides eccentricity to the optical axis to correct camera shake. This allows, as explained earlier,
Regardless of camera shake, the subject image on the photoelectric conversion surface of the image sensor 16 does not shake.

【0024】図2では、水平軸を中心とする振れを検出
し、可変頂角プリズム10により補正する構成のみを図
示したが、垂直軸線を中心とする振れを検出し、可変頂
角プリズム10の頂角を変更する構成も装備されており
、これらは、単に図示を省略しただけであることが理解
されるべきである。即ち、図2に示す振れ検出センサ3
2と同様の構成であって、垂直軸線を中心とする振れを
検出するセンサがある。また、可変頂角プリズム10に
関しては、透明板58は垂直軸を中心に回動自在に支持
されており、コイル62と同様のコイルにより電磁的に
回転駆動自在なようになっている。受光素子64、発光
素子66及び位置検出回路68からなる回路と同様に回
路があり、これにより制御回路34は透明板58の傾斜
角を知ることができる。
In FIG. 2, only a configuration is shown in which shakes about the horizontal axis are detected and corrected by the variable apex angle prism 10, but shakes about the vertical axis are detected and the variable apex angle prism 10 It should be understood that arrangements for changing the apex angle are also provided and these are simply not shown. That is, the shake detection sensor 3 shown in FIG.
There is a sensor that has the same configuration as No. 2 and detects shake around the vertical axis. Regarding the variable apex angle prism 10, the transparent plate 58 is rotatably supported around a vertical axis, and can be electromagnetically driven to rotate by a coil similar to the coil 62. There is a circuit similar to the circuit consisting of the light receiving element 64, the light emitting element 66, and the position detection circuit 68, which allows the control circuit 34 to know the inclination angle of the transparent plate 58.

【0025】図2に示すように、自動焦点調節のための
投光装置26及び受光装置28が、可変頂角プリズム1
0の背面に設置されているので、投光装置26の投光光
軸及び受光装置28の受光光軸が共に、撮影光軸と同様
に可変頂角プリズム10により偏心させられる。従って
、被写体に対して正確に焦点を合わせることができる。
As shown in FIG. 2, a light projecting device 26 and a light receiving device 28 for automatic focus adjustment are connected to the variable apex angle prism 1.
0, the light emitting optical axis of the light emitting device 26 and the light receiving optical axis of the light receiving device 28 are both eccentrically set by the variable apex angle prism 10 in the same way as the photographing optical axis. Therefore, it is possible to accurately focus on the subject.

【0026】図3は本発明の他の実施例を示す。図1及
び図2と同じ構成要素には同じ符号を付してある。図3
では、投光装置26及び受光装置28を可変頂角プリズ
ム10の透明板56の延長部分56a,56bに設け、
投光装置26の投光光軸及び受光装置28の受光光軸は
透明板56の平面に対して垂直になるように、投光装置
26及び受光装置28を当該延長部分56a,56bに
固定してある。これにより、透明板56の水平軸線を中
心とする回動又は傾斜に応じて投光装置26及び受光装
置28の光軸も傾斜し、可変頂角プリズム10による撮
影光軸の偏心を考慮した焦点合わせを行なえる。
FIG. 3 shows another embodiment of the invention. The same components as in FIGS. 1 and 2 are given the same reference numerals. Figure 3
Now, the light projecting device 26 and the light receiving device 28 are provided on the extension portions 56a and 56b of the transparent plate 56 of the variable apex angle prism 10,
The light projecting device 26 and the light receiving device 28 are fixed to the extension portions 56a and 56b so that the light emitting optical axis of the light projecting device 26 and the light receiving optical axis of the light receiving device 28 are perpendicular to the plane of the transparent plate 56. There is. As a result, the optical axes of the light projecting device 26 and the light receiving device 28 are also tilted in accordance with the rotation or inclination of the transparent plate 56 about the horizontal axis, and the focal point is taken into account by the eccentricity of the photographing optical axis by the variable apex angle prism 10. Can be matched.

【0027】可変頂角プリズム10、振れ検出センサ3
2、VAP駆動回路12及び制御回路34を、カメラ本
体とは別体のアダプタ構成とし、必要によりカメラ本体
に装着して使用するようにしてもよい。
Variable apex angle prism 10, shake detection sensor 3
2. The VAP drive circuit 12 and the control circuit 34 may be configured as an adapter separate from the camera body, and may be used by being attached to the camera body if necessary.

【0028】上述の実施例において、2枚の透明板56
,58を直交させて回動させ、ピッチ及びヨー方向の振
れを補正する可変頂角プリズムを用いる場合には、振れ
補正の変位に応じて自動焦点調節装置の投受光光軸の方
向を、連結可動機構や従動可動機構、平行プリズム等を
用いて補正する攻勢としてもよい。
In the above embodiment, two transparent plates 56
. It may also be an offensive correction using a movable mechanism, a driven movable mechanism, a parallel prism, or the like.

【0029】[0029]

【発明の効果】以上の説明から容易に理解できるように
、本発明によれば、光軸偏心手段による光軸偏心にかか
わらず、アクティブ式の自動焦点調節装置を正確に作動
させることができる。従って、カメラ振れ補正と自動焦
点調節とを支障なく併用できる。
As can be easily understood from the above description, according to the present invention, an active automatic focusing device can be operated accurately regardless of optical axis eccentricity caused by the optical axis eccentricity means. Therefore, camera shake correction and automatic focus adjustment can be used together without any problem.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例の概略構成ブロック図で
ある。
FIG. 1 is a schematic block diagram of an embodiment of the present invention.

【図2】  振れ補正装置部分の構成図である。FIG. 2 is a configuration diagram of the shake correction device portion.

【図3】  振れ補正装置部分の別の構成図である。FIG. 3 is another configuration diagram of the shake correction device portion.

【符号の説明】[Explanation of symbols]

10:可変頂角プリズム(VAP)  12:VAP駆
動回路  14:撮影光学系
10: Variable vertex angle prism (VAP) 12: VAP drive circuit 14: Photographing optical system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  検出したカメラ振れに応じて光軸偏心
手段により光軸を偏心させる振れ補正装置と、被写体に
ビーム光を照射し、その反射光を受光して撮影光学系を
合焦状態に制御する自動焦点調節装置を具備する撮影装
置であって、当該自動焦点調節装置の投光手段及び受光
手段を、当該光軸偏心手段の像面側に配置したことを特
徴とする撮影装置。
1. A shake correction device that decenters an optical axis using an optical axis decentering means in response to detected camera shake; and a camera shake correction device that emits a beam of light onto a subject and receives the reflected light to bring a photographic optical system into focus. What is claimed is: 1. A photographing device comprising an automatic focus adjustment device to control, wherein a light projecting means and a light receiving means of the automatic focus adjustment device are arranged on the image plane side of the optical axis decentering means.
【請求項2】  検出したカメラ振れに応じて光軸偏心
手段により光軸を偏心させる振れ補正装置と、被写体に
ビーム光を照射し、その反射光を受光して撮影光学系を
合焦状態に制御する自動焦点調節装置を具備する撮影装
置であって、当該光軸偏心手段における振れ補正のため
に回転駆動される部材に当該自動焦点調節装置の投光手
段及び受光手段を固定し、当該光軸偏心手段の所定方向
の光軸偏心に連動して、投光手段及び受光手段の投光光
軸及び受光光軸を傾動させるようにしたことを特徴とす
る撮影装置。
2. A shake correction device that decenters the optical axis using an optical axis decentering means in response to detected camera shake; and a camera shake correction device that emits a beam of light onto a subject and receives the reflected light to bring the photographic optical system into focus. The photographing device is equipped with an automatic focus adjustment device that controls the optical axis, and the light emitting means and the light reception means of the automatic focus adjustment device are fixed to a member that is rotationally driven for shake correction in the optical axis decentering means, and the light emitting means and light reception means of the automatic focus adjustment device are fixed to 1. A photographing device characterized in that the light emitting optical axis and the light receiving optical axis of the light emitting means and the light receiving means are tilted in conjunction with the eccentricity of the optical axis in a predetermined direction of the axis eccentric means.
【請求項3】  検出したカメラ振れに応じて光軸偏心
手段により光軸を偏心させる振れ補正装置と、被写体に
ビーム光を照射し、その反射光を受光して撮影光学系を
合焦状態に制御する自動焦点調節装置を具備する撮影装
置であって、当該光軸偏心手段における振れ補正に連動
して、投光手段及び受光手段の投光光軸及び受光光軸を
所定面内で傾動させる連動部材を設けたことを特徴とす
る撮影装置。
3. A shake correction device that decenters the optical axis using an optical axis decentering means in response to detected camera shake; and a camera shake correction device that emits a beam of light onto a subject and receives the reflected light to bring the photographic optical system into focus. A photographing device equipped with an automatic focus adjustment device that tilts the light emitting optical axis and the light receiving optical axis of the light emitting means and the light receiving means within a predetermined plane in conjunction with shake correction in the optical axis decentering means. A photographing device characterized by being provided with an interlocking member.
JP3022264A 1991-02-15 1991-02-15 Photographing device Withdrawn JPH04261278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022264A JPH04261278A (en) 1991-02-15 1991-02-15 Photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022264A JPH04261278A (en) 1991-02-15 1991-02-15 Photographing device

Publications (1)

Publication Number Publication Date
JPH04261278A true JPH04261278A (en) 1992-09-17

Family

ID=12077913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022264A Withdrawn JPH04261278A (en) 1991-02-15 1991-02-15 Photographing device

Country Status (1)

Country Link
JP (1) JPH04261278A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270856A (en) * 2008-05-01 2009-11-19 Nikon Corp Ranging device
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151930A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151926A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016030925A1 (en) * 2014-08-27 2017-07-20 株式会社 ニコンビジョン Distance meter and distance measuring method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270856A (en) * 2008-05-01 2009-11-19 Nikon Corp Ranging device
JPWO2016030925A1 (en) * 2014-08-27 2017-07-20 株式会社 ニコンビジョン Distance meter and distance measuring method
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016151930A1 (en) * 2015-03-20 2017-08-03 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151930A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016151929A1 (en) * 2015-03-20 2017-06-29 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
JPWO2016151928A1 (en) * 2015-03-20 2017-06-29 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151926A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016151926A1 (en) * 2015-03-20 2017-08-03 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
JPWO2016151927A1 (en) * 2015-03-20 2017-08-17 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
US10027891B2 (en) 2015-03-20 2018-07-17 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10027892B2 (en) 2015-03-20 2018-07-17 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10051186B2 (en) 2015-03-20 2018-08-14 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10051185B2 (en) 2015-03-20 2018-08-14 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10057494B2 (en) 2015-03-20 2018-08-21 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program

Similar Documents

Publication Publication Date Title
JP3861815B2 (en) Camera with image stabilization function
US7479985B2 (en) Variable magnification lens having image stabilizing function
JPH10293237A (en) Lens barrel and image pickup device provided therewith
JP2006259247A (en) Image shake correction device
US7388604B2 (en) Image pickup device and apparatus including vibration correction means
JPH04261278A (en) Photographing device
JP3278212B2 (en) Image stabilizer
JPH0723277A (en) Deflection correcting device
JPH08240830A (en) Shake correcting device and optical device
JPH10145649A (en) Dual eye image pickup device
JP3135379B2 (en) Image stabilization device
JPH07325330A (en) Blurring correcting device
JPH04247776A (en) Image pickup device
JPH07230107A (en) Shake correction device
JP3119444B2 (en) Imaging device with blur correction function
JP2006349707A (en) Digital camera
JP2783654B2 (en) Imaging device
JP2791190B2 (en) Imaging device and image blur correction device
JPH07170433A (en) Camera
JPH07294988A (en) Shake correction device
JP2023073295A (en) Exchangeable lens, camera body, camera system, and method for sending information
JPH07170435A (en) Camera
JPH07170434A (en) Camera
JP2020126193A (en) Control device, and lens device and imaging device equipped with the same
JPH05346534A (en) Anamorphic converter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514