JPH04260783A - Cooling controller for hot isotropic pressurizer - Google Patents

Cooling controller for hot isotropic pressurizer

Info

Publication number
JPH04260783A
JPH04260783A JP3020147A JP2014791A JPH04260783A JP H04260783 A JPH04260783 A JP H04260783A JP 3020147 A JP3020147 A JP 3020147A JP 2014791 A JP2014791 A JP 2014791A JP H04260783 A JPH04260783 A JP H04260783A
Authority
JP
Japan
Prior art keywords
temperature
furnace
cooling
gas
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3020147A
Other languages
Japanese (ja)
Inventor
Takahiko Ishii
孝彦 石井
Tomomitsu Nakai
友充 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3020147A priority Critical patent/JPH04260783A/en
Priority to DE19924203959 priority patent/DE4203959A1/en
Priority to FR9201619A priority patent/FR2672669A1/en
Publication of JPH04260783A publication Critical patent/JPH04260783A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Furnace Details (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To dissipate heat by suppressing a temperature rise of a vessel to a minimum limit by holding a heat flux substantially constant during a cooling period. CONSTITUTION:A valve 9 for regulating an opening is provided at a lower part of a heat insulating layer 5 to regulate a flow rate of circulating gas. A temperature sensor 13 for measuring gas temperature in a furnace, and a calculator 14 for obtaining a time change rate according to its temperature signal, are provided. A controller 18 for so operating the valve 9 that the change rate coincides with a specified cooling speed calculated according to specific surface area and thermal capacity of a material 8 to be treated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、熱間等方圧加圧装置の
冷却制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling control device for a hot isostatic pressurizing device.

【0002】0002

【従来の技術】各種粉末の高密度焼結体等の製造に用い
る熱間等方圧加圧装置としては、従来、図7に示すよう
なものがある。即ち、図7において、上・下蓋1,2 
を有する高圧容器3 に、これとの間に間隙4 をおい
て断熱層5 を配設すると共に、断熱層5 の内側にヒ
ータ6 を配設して炉室7 が構成されている。
2. Description of the Related Art Conventionally, there is a hot isostatic pressing apparatus shown in FIG. 7 used for producing high-density sintered bodies of various powders. That is, in FIG. 7, the upper and lower lids 1 and 2
A furnace chamber 7 is constructed by disposing a heat insulating layer 5 in a high-pressure vessel 3 having a high-pressure container 3 with a gap 4 therebetween, and a heater 6 disposed inside the heat insulating layer 5.

【0003】この装置で被処理体8 を処理する場合に
は、炉室7 内に被処理体8 を配し、高圧容器3 内
に高圧の圧媒ガスを導入すると共に、ヒータ6 で加熱
することにより、被処理体8 に高温高圧の圧媒ガスを
作用させて熱間等方圧加圧処理を行う。そして、処理後
、炉内を冷却した後、被処理体8 を取出す。この処理
後の炉内の冷却は、従来、断熱層5 を介した放熱作用
のみで行われていたため、冷却に長時間を要し、生産性
向上のネックとなっていた。
When processing an object to be processed 8 with this apparatus, the object to be processed 8 is placed in a furnace chamber 7 , high-pressure pressure medium gas is introduced into a high-pressure container 3 , and the object is heated by a heater 6 . As a result, a hot isostatic pressurization process is performed by applying a high temperature and high pressure pressure medium gas to the object to be processed 8 . After the treatment, the inside of the furnace is cooled, and then the object to be treated 8 is taken out. Conventionally, the inside of the furnace after this treatment was cooled only by the heat dissipation effect through the heat insulating layer 5, which took a long time and became a bottleneck in improving productivity.

【0004】冷却時間の短縮の一手段としては、冷却時
に高圧容器3 内のガスを循環させる方法があり、例え
ば実開昭60−33195 号公報で開示されたような
間接冷却の方法があるが、ガス循環により冷却過程を促
進する方法の内、究極的なものは図7に示すような直接
冷却方式である。この直接冷却方式は、循環ガスの流れ
を点線で示すように、炉内(断熱層5 内) の高温ガ
スを炉外へ流出させて、上蓋1 、高圧容器3 の内壁
等で熱交換させ、低温になったガスを断熱層5 の下部
から再び炉内に循環させて冷却する。この直接冷却方式
によれば、冷却速度を大幅に促進できる。
[0004] One means of shortening the cooling time is to circulate the gas in the high-pressure vessel 3 during cooling; for example, there is an indirect cooling method as disclosed in Japanese Utility Model Application No. 60-33195. Among the methods of promoting the cooling process by gas circulation, the ultimate method is a direct cooling method as shown in FIG. In this direct cooling method, as the flow of circulating gas is shown by the dotted line, high-temperature gas inside the furnace (inside the heat insulating layer 5) flows out of the furnace, and heat is exchanged with the upper lid 1, the inner wall of the high-pressure vessel 3, etc. The low-temperature gas is circulated again into the furnace from the lower part of the heat insulating layer 5 to be cooled. According to this direct cooling method, the cooling rate can be greatly accelerated.

【0005】[0005]

【発明が解決しようとする課題】従来の直接冷却方式で
は、循環ガス量を増やせば冷却速度が大きくなるが、容
器内面温度の上昇も比例して大きくなる。高圧容器3 
には材料強度上の観点から許容最高温度が決まっており
、これを超えてはならない。従って、トータル放熱量を
大きくして高圧容器3 の温度上昇を低く抑えるために
は、炉内からの単位時間当りの放熱量を一定に保つのが
理想である。
[Problems to be Solved by the Invention] In the conventional direct cooling system, increasing the amount of circulating gas increases the cooling rate, but the increase in the internal temperature of the container also increases proportionally. High pressure container 3
The maximum allowable temperature is determined from the viewpoint of material strength, and this must not be exceeded. Therefore, in order to increase the total amount of heat radiation and suppress the temperature rise in the high-pressure vessel 3, it is ideal to keep the amount of heat radiation from the inside of the furnace constant per unit time.

【0006】しかしながら、従来の冷却法では、この目
的に沿った風量制御を行わないため、冷却初期の炉内か
らの放熱量と冷却過程最後の放熱量は10倍近い差があ
り(初期が大きい) 、徒らに高圧容器3 の内面温度
の上昇を招く結果となっていた。図8は或る容器サイズ
(内径 900mm)の高圧容器3 において、特定の
炉内熱容量を仮定した場合の容器内面への平均熱流束と
容器最高温度との関係を示す。この図8よりも明らかな
ように、平均熱流束が同じでも、その最大値/最小値の
比Rが大きい場合には、高圧容器3 の温度上昇が大き
くなる。従って、理想的には熱流束を一定にし、前記比
Rを1にすべきであるが、従来の冷却法では比Rが10
近い値となっている。
However, in conventional cooling methods, the air volume is not controlled in accordance with this purpose, so there is a difference of nearly 10 times between the amount of heat released from the inside of the furnace at the initial stage of cooling and the amount of heat released at the end of the cooling process (larger in the initial stage). ), which resulted in an unnecessary increase in the internal temperature of the high-pressure vessel 3. FIG. 8 shows the relationship between the average heat flux to the inner surface of the container and the maximum temperature of the high-pressure container 3 having a certain container size (inner diameter 900 mm) assuming a specific heat capacity in the furnace. As is clear from FIG. 8, even if the average heat flux is the same, when the ratio R of the maximum value/minimum value is large, the temperature rise in the high pressure vessel 3 becomes large. Therefore, ideally the heat flux should be constant and the ratio R should be 1, but in conventional cooling methods the ratio R should be 10.
The values are close.

【0007】本発明は、かかる点に鑑み、冷却過程中の
ガスから容器内面への熱流束を略一定に保ち、容器温度
上昇を最小限に抑えた放熱を可能にすることを目的とす
る。
[0007] In view of the above, an object of the present invention is to keep the heat flux from the gas to the inner surface of the container substantially constant during the cooling process, thereby making it possible to dissipate heat while minimizing the rise in the temperature of the container.

【0008】[0008]

【課題を解決するための手段】本発明は、高圧容器3 
内に、該高圧容器3 との間に間隙4 をおいて断熱層
5 を配設すると共に、断熱層5 内にヒータ6 を配
設して炉室7 を構成し、炉室7 内に高圧の圧媒ガス
を導入しヒータ6 で加熱することにより、炉室7内の
被処理体8 に高温高圧の圧媒ガスを作用させて熱間等
方圧加圧処理を行う熱間等方圧加圧装置において、炉室
7 内の高温の圧媒ガスを断熱層5 の上部から外部に
導き、高圧容器3 の内壁に沿って流下させて断熱層5
 の下部から炉室7 内に導く圧媒ガス循環路12の途
中に循環ガス流量調節機構10を設け、被処理体温度又
は炉内ガス温度を測定する温度センサ13と、温度セン
サ13の温度信号より時間変化率を演算する時間変化率
演算部14と、被処理体8 の比表面積及び熱容量及び
冷却開始時の炉内ガス温度、圧力より算出される規定冷
却速度に時間変化率が一致するように循環ガス流量調節
機構10を作動させる制御部18とを備えたものである
[Means for Solving the Problems] The present invention provides a high pressure vessel 3
A heat insulating layer 5 is disposed within the high pressure vessel 3 with a gap 4 therebetween, and a heater 6 is disposed within the heat insulating layer 5 to form a furnace chamber 7. Hot isostatic pressure treatment is performed by introducing high temperature and high pressure pressure medium gas onto the object to be processed 8 in the furnace chamber 7 and heating it with the heater 6. In the pressurizing device, high-temperature pressurized gas in the furnace chamber 7 is guided to the outside from the upper part of the heat insulating layer 5 , and is caused to flow down along the inner wall of the high pressure vessel 3 to form the heat insulating layer 5 .
A circulating gas flow rate adjustment mechanism 10 is provided in the middle of a pressure medium gas circulation path 12 leading from the lower part of the chamber into the furnace chamber 7, and a temperature sensor 13 for measuring the temperature of the object to be treated or the temperature of the gas in the furnace and a temperature signal of the temperature sensor 13 are provided. The time change rate calculation unit 14 calculates the time change rate, and the time change rate is calculated so that the time change rate matches the specified cooling rate calculated from the specific surface area and heat capacity of the object to be processed 8 and the furnace gas temperature and pressure at the time of starting cooling. and a control section 18 that operates the circulating gas flow rate adjustment mechanism 10.

【0009】[0009]

【作用】冷却期間中、温度センサ13により被処理体温
度又は炉内ガス温度を測定し、演算部14により温度の
時間変化率を求める。そして、この時間変化率が、比表
面積及び熱容量及び冷却開始時の炉内ガス温度、圧力よ
り算出される規定冷却速度に一致するように、制御部1
8により循環ガス流量調節機構10を作動させ、循環ガ
ス流量を調節する。
[Operation] During the cooling period, the temperature sensor 13 measures the temperature of the object to be processed or the temperature of the gas in the furnace, and the calculating section 14 calculates the rate of change in temperature over time. Then, the controller 1 controls the rate of change over time to match the specified cooling rate calculated from the specific surface area, heat capacity, and furnace gas temperature and pressure at the start of cooling.
8 operates the circulating gas flow rate adjustment mechanism 10 to adjust the circulating gas flow rate.

【0010】0010

【実施例】以下、本発明の実施例を図面に基づいて詳述
する。図1において、9は循環ガス流量調節機構10を
構成する電動アクチュエータ付きのバルブで、炉室7 
内の高温の圧媒ガスを断熱層5 の上部から蓄熱器11
を経て外部に導き、高圧容器3 の内壁に沿って間隙4
 を下方に流下させて断熱層5 の下部から炉室7 内
に導く圧媒ガス循環路12の途中、即ち断熱層5 の下
部に複数個設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below in detail with reference to the drawings. In FIG. 1, reference numeral 9 denotes a valve with an electric actuator that constitutes the circulating gas flow rate adjustment mechanism 10.
The high temperature pressurized gas inside the heat storage layer 11 is transferred from the top of the heat insulating layer 5
is guided to the outside through the gap 4 along the inner wall of the high pressure vessel 3.
A plurality of pressurized gas circulation paths 12 are provided in the middle of the pressurized gas circulation path 12 that flows downward into the furnace chamber 7 from the lower part of the heat insulating layer 5, that is, in the lower part of the heat insulating layer 5.

【0011】13は炉室7 内のガス温度を測定する温
度センサ、14は時間変化率演算部で、温度センサ13
で測定された炉内ガス温度Tの温度信号より、その時間
変化率dT/dtを演算するようになっている。15は
規定冷却速度演算部で、容器及び炉体サイズ、容器許容
温度、被処理体8の比表面積(表面積/重量)及び被処
理体8 の熱容量及び冷却開始時の炉内ガス温度、圧力
より、各装置毎に予め規定冷却速度Vを演算し算出する
ためのものである。例えば、冷却速度として炉内のガス
温度降下速度をとった場合、これに対する影響因子は、
表1に示す通りである。従って、容器サイズ、容器許容
温度、炉内熱容量及び被処理物比表面積を条件にして規
定冷却速度Vが演算される。但し、容器許容温度と容器
,炉体サイズは定数である。
13 is a temperature sensor that measures the gas temperature in the furnace chamber 7; 14 is a time change rate calculating section;
From the temperature signal of the furnace gas temperature T measured at , the time rate of change dT/dt is calculated. Reference numeral 15 denotes a specified cooling rate calculation unit, which calculates the temperature based on the container and furnace body size, the allowable temperature of the container, the specific surface area (surface area/weight) of the object to be processed 8, the heat capacity of the object to be processed 8, and the gas temperature and pressure in the furnace at the start of cooling. , for calculating the specified cooling rate V for each device in advance. For example, if we take the gas temperature drop rate in the furnace as the cooling rate, the influencing factors for this are:
As shown in Table 1. Therefore, the specified cooling rate V is calculated based on the container size, the allowable temperature of the container, the heat capacity in the furnace, and the specific surface area of the object to be treated. However, the allowable temperature of the container and the size of the container and furnace body are constants.

【0012】0012

【表1】[Table 1]

【0013】16は規定冷却速度Vと時間変化率とを比
較する比較部、17は比較部16の出力により働く調節
器であり、これらにより規定冷却速度Vに時間変化率が
一致するようにバルブ9 を作動させる制御部18が構
成されている。次に規定冷却速度Vの導出方法を説明す
る。被処理体8 を処理した後、冷却するに際しては、
冷却開始から終了までの間を微小時間に区切り、その微
小時間内にガス循環によって蓄熱器11、上蓋1 、高
圧容器3 へ放出される放熱量は、計算によって求める
ことができる。また、この放熱量がその時間内に炉内の
被処理体8 、ヒータ6 等の炉内構造物、炉内ガスか
ら奪われる熱量と等しいとして、炉内の被処理体8 、
ヒータ6 、炉内ガスの温度降下を計算できる。そして
、このようにして求めた微小時間後の炉内の被処理体8
 、ヒータ6 、炉内ガスの温度を元に、次の微小時間
での各部の放熱量を再び求めることができる。
Reference numeral 16 denotes a comparator for comparing the prescribed cooling rate V and the time rate of change, and 17 denotes a regulator that operates based on the output of the comparator 16, which adjusts the valve so that the rate of change over time matches the prescribed cooling rate V. A control section 18 is configured to operate 9. Next, a method for deriving the specified cooling rate V will be explained. When cooling the object 8 after processing,
The time period from the start to the end of cooling can be divided into minute periods of time, and the amount of heat released to the heat storage device 11, the upper lid 1, and the high-pressure vessel 3 through gas circulation within each minute period can be determined by calculation. Furthermore, assuming that this amount of heat radiation is equal to the amount of heat removed from the object to be processed 8 in the furnace, the structures in the furnace such as the heater 6, and the gas in the furnace within that time, the object to be processed in the furnace 8,
Heater 6 can calculate the temperature drop of the gas in the furnace. Then, the object to be processed 8 in the furnace after the minute time determined in this way
, heater 6, and the temperature of the gas in the furnace, the amount of heat dissipated from each part in the next minute time can be determined again.

【0014】上記のような計算を繰返すことにより、炉
内温度の冷却過程をトレースできることになり、冷却速
度も求まる。図2は上記過程を示すフローチャートであ
る。図2において、容器サイズ、炉内熱容量、被処理体
比表面積の入力データがあり(ステップS1)、更に或
る冷却速度に対応すると考えられる循環風量を仮初期値
として入力する(ステップ3)。なお、炉内熱容量は、
被処理体熱容量、冷却開始時炉内ガス温度、圧力から求
められるので、実際にはこれらを入力する。そして、微
小時間Δt秒間の放熱及び容器内面温度を計算し(ステ
ップS4)、Δt秒後の被処理体温度を計算した後(ス
テップS5)、炉内ガス温度の低下速度と冷却速度設定
値とを比較する(ステップS6)。この比較を行った結
果、両者が等しくなければ、循環風量を設定し直して(
ステップS7)、ステップS4に戻り、また等しければ
Δt秒後の状態にデータを置き換える(ステップS8)
。そして、次に炉内温度と冷却終了温度との大小関係を
求め(ステップS9)、炉内温度が大であればステップ
S4に戻り、また小であれば終わる。このような計算に
より設定冷却速度に対する循環風景が求まる。
By repeating the above calculations, the cooling process of the furnace temperature can be traced, and the cooling rate can also be determined. FIG. 2 is a flowchart showing the above process. In FIG. 2, there is input data such as the container size, the heat capacity in the furnace, and the specific surface area of the object to be treated (step S1), and furthermore, the circulating air volume that is considered to correspond to a certain cooling rate is input as a temporary initial value (step 3). In addition, the heat capacity inside the furnace is
It is determined from the heat capacity of the object to be processed, the gas temperature in the furnace at the start of cooling, and the pressure, so these are actually input. Then, after calculating the heat dissipation and the inner surface temperature of the container for a minute time of Δt seconds (step S4), and calculating the temperature of the object to be processed after Δt seconds (step S5), the decreasing rate of the furnace gas temperature and the cooling rate set value are calculated. are compared (step S6). As a result of this comparison, if the two are not equal, reset the circulating air volume (
Step S7), return to step S4, and if they are equal, replace the data with the state after Δt seconds (step S8)
. Then, the magnitude relationship between the furnace temperature and the cooling end temperature is determined (step S9), and if the furnace temperature is high, the process returns to step S4, and if it is low, the process ends. Through such calculations, the circulation landscape for the set cooling rate can be determined.

【0015】設定冷却速度の値及び炉内の熱容量、比表
面積を色々変えて計算すると、容器サイズ毎に図3に示
すようなグラフが得られる。容器については、金属材料
の強度面から許容最高温度T℃が設計面から決定される
( 通常 150℃〜 200℃) 、許容最高温度T
℃が決まれば図3より炉内熱容量と最高冷却速度の関係
が求まる。こうして得られるのが図4である。即ち最高
冷却速度は容器温度が許容値を超えない範囲の最高冷却
速度である。
When calculations are made by varying the set cooling rate, the heat capacity in the furnace, and the specific surface area, a graph as shown in FIG. 3 is obtained for each container size. For containers, the maximum allowable temperature T°C is determined from the design aspect based on the strength of the metal material (usually 150°C to 200°C).
Once the temperature is determined, the relationship between the heat capacity inside the furnace and the maximum cooling rate can be determined from Figure 3. FIG. 4 is thus obtained. That is, the maximum cooling rate is the highest cooling rate within a range where the container temperature does not exceed the permissible value.

【0016】図4で求まる最高速度が規定冷却速度であ
る。図4は容器サイズや容器の許容温度が変われば異な
る。逆に一つの装置について、図4のグラフが一つ決ま
ることになる。上記では理解の助けのためグラフ等を用
いたが、実際にはこの過程は計算機内で演算される。冷
却時の制御は、図5に示すフローチャートのように行わ
れる。各チャージ毎に熱容量、比表面積冷却開始ガス温
度、圧力を入力し(ステップS10) 、これより冷却
開始時の炉内熱容量が求まる(S10 ,) 。これよ
り予め計算されたガス規定冷却速度のデータから入力値
に見合う冷却速度Vs (=一定) が選定される(ス
テップS11) 。 一方、温度センサ13により炉内のガス温度Tgを測定
し(ステップS12) 、演算部14でTgの時間変化
率Vmを計算する(ステップS13)。そして、比較部
16で冷却速度Vsと時間変化率Vmとを比較し(ステ
ップS14) 、規定冷却速度Vsが時間変化率Vmよ
り大であれば、調節器17によりバルブ9 を一定量だ
け開け、また逆であればバルブ9 を一定量だけ閉じる
。なお、実際の制御に当っては、|Vs−Vm|の値に
比例してバルブ9 を動作させたり、冷却初期の過渡期
間は別の制御方法をとる等の状況に応じた処置をとるの
は勿論である。
The maximum speed found in FIG. 4 is the specified cooling rate. Figure 4 differs depending on the container size and allowable temperature of the container. Conversely, one graph in FIG. 4 is determined for one device. In the above, graphs and the like are used to aid understanding, but in reality, this process is calculated within a computer. Control during cooling is performed as shown in the flowchart shown in FIG. The heat capacity, specific surface area, cooling start gas temperature, and pressure are input for each charge (step S10), and from these, the furnace heat capacity at the start of cooling is determined (S10,). From this, a cooling rate Vs (=constant) corresponding to the input value is selected from data on the gas prescribed cooling rate calculated in advance (step S11). On the other hand, the temperature sensor 13 measures the gas temperature Tg in the furnace (step S12), and the calculation unit 14 calculates the temporal change rate Vm of Tg (step S13). Then, the comparison section 16 compares the cooling rate Vs and the time rate of change Vm (step S14), and if the prescribed cooling rate Vs is greater than the time rate of change Vm, the regulator 17 opens the valve 9 by a certain amount. If the opposite is true, valve 9 is closed by a certain amount. In actual control, measures may be taken depending on the situation, such as operating the valve 9 in proportion to the value of |Vs-Vm| or using a different control method during the initial transient period of cooling. Of course.

【0017】このようにすれば、ガスから容器内面への
熱流束を略一定にして最も効率の良い冷却を行うことが
可能である。炉内の冷却速度を一定に保ち得ることは、
炉内からの放熱量が略一定になることを意味している。 炉内からの放熱量は蓄熱器11や炉外の低温ガスとの熱
交換があり、厳密な意味で容器系外への放熱量と全く同
じではないが、冷却過程のトータルで見れば同じとみな
しても良く、即ち容器への熱流束を略一定値に保つこと
につながり、容器温度上昇を最小限に抑えた放熱が可能
となる。
[0017] In this way, it is possible to keep the heat flux from the gas to the inner surface of the container substantially constant, thereby achieving the most efficient cooling. Being able to maintain a constant cooling rate in the furnace means that
This means that the amount of heat released from inside the furnace is approximately constant. The amount of heat released from inside the furnace involves heat exchange with the heat storage device 11 and the low-temperature gas outside the furnace, so in a strict sense it is not exactly the same as the amount of heat released outside the container system, but if you look at the total cooling process, it is the same. In other words, it leads to keeping the heat flux to the container at a substantially constant value, and it becomes possible to dissipate heat while minimizing the rise in the temperature of the container.

【0018】図6は本発明の別の実施例を示す。この図
6に示すように、炉室7 内の下部に、インバータ21
制御型のモータ19により駆動されるファン20を設け
、循環ガス流をファン20によって強制対流させるよう
にしてもよい。この場合、循環ガス流量の調節は、ファ
ン20の回転数を変化させて行うこともできる。従って
、断熱層5 の下部のバルブ9 は開閉機能のみを有す
るものにできる。
FIG. 6 shows another embodiment of the invention. As shown in FIG. 6, an inverter 21 is installed at the bottom of the furnace chamber 7.
A fan 20 driven by a controlled motor 19 may be provided, with forced convection of the circulating gas flow. In this case, the circulating gas flow rate can also be adjusted by changing the rotation speed of the fan 20. Therefore, the valve 9 under the heat insulating layer 5 can be made to have only an opening/closing function.

【0019】また開度調節可能なバルブ9 の代わりに
、開閉バルブを複数個設けて、開と閉のバルブ個数の配
分を変化させて循環ガス流量を制御するようにしても良
い。さらに、本実施例では、炉内ガス温度を測定してい
るが、被処理体の温度を測定し、これにより時間変化率
を演算するようにしてもよい。
Furthermore, instead of the valve 9 whose opening degree can be adjusted, a plurality of open/close valves may be provided, and the distribution of the number of open and closed valves may be changed to control the circulating gas flow rate. Further, in this embodiment, the temperature of the gas in the furnace is measured, but the temperature of the object to be processed may be measured and the time rate of change may be calculated based on this.

【0020】[0020]

【発明の効果】本発明によれば、炉室7 内の高温の圧
媒ガスを断熱層5 の上部から外部に導き、高圧容器3
 の内壁に沿って流下させて断熱層5 の下部から炉室
7 内に導く圧媒ガス循環路12の途中に循環ガス流量
調節機構10を設け、被処理体温度又は炉内ガス温度を
測定する温度センサ13と、温度センサ13の温度信号
より時間変化率を演算する時間変化率演算部14と、被
処理体8 の比表面積及び熱容量及び冷却開始時の炉内
ガス温度、圧力より算出される規定冷却速度に時間変化
率が一致するように循環ガス流量調節機構10を作動さ
せる制御部18とを備えているので、冷却過程中のガス
から容器内壁への熱流束を略一定にでき、容器温度上昇
を最小限に抑えた放熱が可能となる。
According to the present invention, the high-temperature pressure medium gas in the furnace chamber 7 is guided to the outside from the upper part of the heat insulating layer 5, and the high-pressure vessel 3
A circulating gas flow rate adjustment mechanism 10 is provided in the middle of a pressure gas circulation path 12 that flows down along the inner wall of the heat insulating layer 5 and leads into the furnace chamber 7, and measures the temperature of the object to be treated or the temperature of the gas in the furnace. Calculated from the temperature sensor 13, the time change rate calculation unit 14 that calculates the time change rate from the temperature signal of the temperature sensor 13, the specific surface area and heat capacity of the object to be processed 8, and the furnace gas temperature and pressure at the start of cooling. Since it is equipped with a control unit 18 that operates the circulating gas flow rate adjustment mechanism 10 so that the time rate of change matches the prescribed cooling rate, the heat flux from the gas to the inner wall of the container during the cooling process can be kept approximately constant, and the It is possible to dissipate heat while minimizing temperature rise.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る冷却制御装置を示す構成図である
FIG. 1 is a configuration diagram showing a cooling control device according to the present invention.

【図2】規定冷却速度を求めるフローチャートである。FIG. 2 is a flowchart for determining a prescribed cooling rate.

【図3】容器内面最高上昇温度と冷却速度との関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the maximum temperature rise inside the container and the cooling rate.

【図4】炉内熱容量と規定冷却速度との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between furnace heat capacity and specified cooling rate.

【図5】制御動作のフローチャートである。FIG. 5 is a flowchart of control operation.

【図6】本発明に係る冷却制御装置の別の実施例を示す
構成図である。
FIG. 6 is a configuration diagram showing another embodiment of the cooling control device according to the present invention.

【図7】熱間等方圧加圧装置の断面図である。FIG. 7 is a sectional view of a hot isostatic pressing device.

【図8】容器最高温度と平均熱流束との関係を示す図で
ある。
FIG. 8 is a diagram showing the relationship between container maximum temperature and average heat flux.

【符号の説明】[Explanation of symbols]

3  高圧容器 5  断熱層 6  ヒータ 8  被処理体 10  循環ガス流量調節機構 12  圧媒ガス循環路 13  温度センサ 14  時間変化率演算部 18  制御部 3 High pressure container 5 Heat insulation layer 6 Heater 8 Object to be processed 10 Circulating gas flow rate adjustment mechanism 12 Pressure gas circulation path 13 Temperature sensor 14 Time change rate calculation section 18 Control section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高圧容器(3) 内に、該高圧容器(
3) との間に間隙(4) をおいて断熱層(5) を
配設すると共に、断熱層(5)内にヒータ(6) を配
設して炉室(7) を構成し、炉室(7)内に高圧の圧
媒ガスを導入しヒータ(6) で加熱することにより、
炉室(7) 内の被処理体(8) に高温高圧の圧媒ガ
スを作用させて熱間等方圧加圧処理を行う熱間等方圧加
圧装置において、炉室(7) 内の高温の圧媒ガスを断
熱層(5) の上部から外部に導き、高圧容器(3) 
の内壁に沿って流下させて断熱層(5) の下部から炉
室(7) 内に導く圧媒ガス循環路(12)の途中に循
環ガス流量調節機構(10)を設け、被処理体温度又は
炉内ガス温度を測定する温度センサ(13)と、温度セ
ンサ(13)の温度信号より時間変化率を演算する時間
変化率演算部(14)と、被処理体(8) の比表面積
及び熱容量及び冷却開始時の炉内ガス温度、圧力より算
出される規定冷却速度に時間変化率が一致するように循
環ガス流量調節機構(10)を作動させる制御部(18
)とを備えたことを特徴とする熱間等方圧加圧装置の冷
却制御装置。
Claim 1: Inside the high pressure vessel (3), the high pressure vessel (
3) A heat insulating layer (5) is provided with a gap (4) between the heat insulating layer (5) and a heater (6) is provided within the heat insulating layer (5) to form a furnace chamber (7). By introducing high-pressure pressure medium gas into the chamber (7) and heating it with the heater (6),
In a hot isostatic pressurizing device that performs hot isostatic pressurization treatment by applying high temperature and high pressure pressure medium gas to a workpiece (8) in the furnace chamber (7), The high-temperature pressure medium gas is led to the outside from the top of the heat insulating layer (5), and
A circulating gas flow rate adjustment mechanism (10) is provided in the middle of a pressure gas circulation path (12) that flows down along the inner wall of the heat insulating layer (5) and leads into the furnace chamber (7). or a temperature sensor (13) that measures the furnace gas temperature, a time rate of change calculation unit (14) that calculates the rate of change over time from the temperature signal of the temperature sensor (13), and a specific surface area of the object to be processed (8). A control unit (18) that operates the circulating gas flow rate adjustment mechanism (10) so that the rate of change over time matches the prescribed cooling rate calculated from the heat capacity and the furnace gas temperature and pressure at the start of cooling.
) A cooling control device for a hot isostatic pressurizing device.
JP3020147A 1991-02-13 1991-02-13 Cooling controller for hot isotropic pressurizer Pending JPH04260783A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3020147A JPH04260783A (en) 1991-02-13 1991-02-13 Cooling controller for hot isotropic pressurizer
DE19924203959 DE4203959A1 (en) 1991-02-13 1992-02-11 Gas flow regulator to limit temperature rise in isostatic hot pressing system
FR9201619A FR2672669A1 (en) 1991-02-13 1992-02-13 Cooling control device for a hot isostatic-compression installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020147A JPH04260783A (en) 1991-02-13 1991-02-13 Cooling controller for hot isotropic pressurizer

Publications (1)

Publication Number Publication Date
JPH04260783A true JPH04260783A (en) 1992-09-16

Family

ID=12019043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020147A Pending JPH04260783A (en) 1991-02-13 1991-02-13 Cooling controller for hot isotropic pressurizer

Country Status (3)

Country Link
JP (1) JPH04260783A (en)
DE (1) DE4203959A1 (en)
FR (1) FR2672669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298905B2 (en) 2017-03-23 2022-04-12 Quintus Technologies Ab Pressing arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3914442A1 (en) * 2019-01-25 2021-12-01 Quintus Technologies AB A method in a pressing arrangement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE398984B (en) * 1976-05-25 1978-01-30 Asea Ab OVEN FOR TREATMENT OF MATERIAL AT HIGH TEMPERATURE IN A GAS ATMOSPHERE HIGH
JPS6033195U (en) * 1983-08-11 1985-03-06 株式会社神戸製鋼所 Hot isostatic pressurization device
US4532984A (en) * 1984-06-11 1985-08-06 Autoclave Engineers, Inc. Rapid cool autoclave furnace
DE3833337A1 (en) * 1988-09-30 1990-04-05 Dieffenbacher Gmbh Maschf Apparatus for rapid cooling of workpieces and of the pressure container in an HIP plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298905B2 (en) 2017-03-23 2022-04-12 Quintus Technologies Ab Pressing arrangement

Also Published As

Publication number Publication date
FR2672669A1 (en) 1992-08-14
DE4203959A1 (en) 1992-09-03

Similar Documents

Publication Publication Date Title
US6855916B1 (en) Wafer temperature trajectory control method for high temperature ramp rate applications using dynamic predictive thermal modeling
US5593608A (en) Temperature control method and apparatus for use in thermal processing equipment
US4761538A (en) Method and apparatus for controlling the temperature of a radiantly heated object
KR100441046B1 (en) Inertial temperature control system and method
US20100029193A1 (en) Method for preventing air recirculation and oversupply in data centers
KR20030040511A (en) System and method for controlling movement of a workpiece in a thermal processing system
US8764915B2 (en) Carburizing treatment apparatus and method
JPH04260783A (en) Cooling controller for hot isotropic pressurizer
JPH1081913A (en) Isothermal quenching apparatus by gas cooling
CN110933937B (en) Combined device and method for smoothing the surface of plastic products
US5926390A (en) Programmed temperature controller
JPH02205623A (en) Cooling method for material to be treated in vacuum furnace and vacuum furnace
JP2002297245A (en) Controller and temperature control unit and heat treatment apparatus
JP7198718B2 (en) Heat treatment apparatus and heat treatment method
JPH0630027B2 (en) Method and device for controlling temperature in heat treatment apparatus for semiconductor substrate
JPH0726787B2 (en) Hot isostatic pressurizing device and cooling operation method of the device
JP3629325B2 (en) Sample temperature control method
RU2151108C1 (en) Method of annealing glass
EP3111149B1 (en) Heat chamber furnace for heat treatment with gaseous atmosphere quenching
JP2001318720A (en) Temperature control method and device
JPH03233295A (en) Hot isostatic pressing method
JPH0452215A (en) Vacuum furnace and method for uniformizing temperature in vacuum furnace
JP2000271981A (en) Method for regulating temperature of die plate and injection molding machine having mechanism for executing same
JPH0936097A (en) Temperature adjustment device
JP2819102B2 (en) Temperature control method of programmed temperature controller