JPH04260440A - Method and apparatus for preparing spherical zeolite catalyst - Google Patents

Method and apparatus for preparing spherical zeolite catalyst

Info

Publication number
JPH04260440A
JPH04260440A JP3042697A JP4269791A JPH04260440A JP H04260440 A JPH04260440 A JP H04260440A JP 3042697 A JP3042697 A JP 3042697A JP 4269791 A JP4269791 A JP 4269791A JP H04260440 A JPH04260440 A JP H04260440A
Authority
JP
Japan
Prior art keywords
oil
spherical
zeolite
zeolite catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3042697A
Other languages
Japanese (ja)
Inventor
Kazuo Takahashi
一男 高橋
Fumio Kumada
文雄 熊田
Fumio Igarashi
五十嵐 文穂
Hitoshi Nozaki
仁志 野崎
Iwao Ueda
上田 巖
Shinichi Inoue
慎一 井上
Toshiji Makabe
利治 真壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP3042697A priority Critical patent/JPH04260440A/en
Publication of JPH04260440A publication Critical patent/JPH04260440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a zeolite catalyst having almost spherical shape capable of being gelled at room temp. within a short time and controlled in its particle size over a wide range of raw material viscosity in high yield. CONSTITUTION:A zeolite-containing alumina sol is dripped in an oil phase containing a surfactant to be formed into a spherical shape and gelled in the alkali-containing aqueous solution formed to the lower part of the oil phase. In this method, parallel flow is applied to the periphery of a dripping orifice and zeolite particles containing alumina as a binder are formed into a uniform really spherical shape. Further, this apparatus has a liquid tank A forming the oil phase to an upper layer and the alkali-containing aqueous solution to a lower layer, the raw material dripping orifice to the liquid tank and an oil inflow port 8 imparting parallel oil flow.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は球形ゼオライト触媒の新
規な製造方法及びその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing spherical zeolite catalysts and an apparatus for producing the same.

【0002】0002

【従来の技術】球形のアルミナ、シリカ、シリカ・アル
ミナ、ゼオライト等の粒子は、例えば触媒担体や乾燥剤
として石油化学、石油精製等の化学工業で広範に使用さ
れている。触媒としては直径0.5〜5mm程度の大き
さの球形粒子が、固体床や移動床と呼ばれる反応器中に
充填される。これらは、球形であるため流れ易く、触媒
の充填や抜き出しが容易である。また均一に充填される
ため、充填時に特別な操作を必要とせず、また運転中に
遍流や異常流れを起こすことが少ないため、安定操業に
寄与する。さらに移動床と呼ばれる触媒床が自重により
下方に少しずつ移動していく反応器形式においては、球
形粒子であることが必須の要件である。
BACKGROUND OF THE INVENTION Spherical particles of alumina, silica, silica-alumina, zeolite, etc. are widely used, for example, as catalyst carriers and drying agents in chemical industries such as petrochemicals and petroleum refining. As a catalyst, spherical particles having a diameter of approximately 0.5 to 5 mm are packed into a reactor called a solid bed or a moving bed. Since these are spherical, they flow easily and the catalyst can be easily filled and extracted. In addition, since it is filled uniformly, no special operations are required during filling, and uneven flow or abnormal flow is less likely to occur during operation, contributing to stable operation. Furthermore, in a reactor type in which a catalyst bed called a moving bed moves downward little by little due to its own weight, spherical particles are an essential requirement.

【0003】このような球形触媒は、特公昭26−41
13号、同54−163798号、同38−17002
号、特公平1−16771号等に示される油中滴下法又
は特公昭52−14720号、同55−29930号等
に示される転動造粒法により製造される。油中滴下法に
よれば、比較的均一な真球に近い球形粒子が製造される
。転動造粒法によれば、球径の分布の広いやや真球度の
低い球形粒子が製造されるが、製造コストが安いため広
く使用されている。移動床用の球形粒子としては、自重
により流下し、さらに触媒再生のため気流中を搬送され
るので、粒子は均一で、真球に近く、表面が平滑であり
、かつ高強度、高耐摩擦性等の性能が要求される。従っ
て移動床用としては油中滴下法による球形粒子が使用さ
れてきた。
[0003]Such a spherical catalyst was developed by Japanese Patent Publication No. 26-41
No. 13, No. 54-163798, No. 38-17002
It is produced by the drop-in-oil method shown in Japanese Patent Publication No. 1-16771, etc., or the rolling granulation method shown in Japanese Patent Publication No. 52-14720, Japanese Patent Publication No. 55-29930, etc. According to the drop-in-oil method, relatively uniform spherical particles that are close to true spheres are produced. According to the rolling granulation method, spherical particles with a wide distribution of spherical diameters and slightly low sphericity are produced, but it is widely used because the production cost is low. Spherical particles for moving beds flow down due to their own weight and are further transported in the air stream for catalyst regeneration, so the particles are uniform, close to a true sphere, have a smooth surface, and have high strength and high friction resistance. Performance such as gender is required. Therefore, spherical particles produced by dropping in oil have been used for moving beds.

【0004】0004

【解決すべき課題】アルミナ球形触媒の場合、従来の油
中滴下法は、ヘキサメチレンテトラミンや尿素のような
高温で分解してアンモニアを発生し、そのアルカリ性に
よりアルミナゾルをゲル化させる方法を採っているため
、100℃近い高温油中にアルミナゾルを滴下し、その
後20時間余りの長時間熟成させる必要がある。油中熟
成後洗浄し、強度を増すためさらに数時間塩化アンモニ
ア水やアンモニア水中で処理するという後処理の工程も
必要である。この方法でアルミナをバインダーとする球
形ゼオライト触媒を製造しようとするとゲル化時間が長
いため、粒子間の合一や粒子の変形、破壊が起こり易く
、製品収率が低いという欠点がある。さらには滴下液滴
径の制御を滴下口の径でのみ行っているため、自由に液
滴径を制御することや、ゼオライト混合率変化により、
原料粘度が変化した場合の対応が困難であった。
[Problem to be solved] In the case of alumina spherical catalysts, the conventional dropping method in oil uses a method such as hexamethylenetetramine or urea, which decomposes at high temperatures to generate ammonia, and its alkalinity turns the alumina sol into a gel. Therefore, it is necessary to drop the alumina sol into high-temperature oil near 100°C and then age it for a long time, about 20 hours. After aging in oil, a post-treatment step is also necessary, in which the material is washed and further treated in aqueous ammonia chloride or aqueous ammonia for several hours to increase its strength. When attempting to produce a spherical zeolite catalyst using alumina as a binder using this method, gelation time is long, which tends to cause coalescence between particles, deformation, and destruction of particles, resulting in a low product yield. Furthermore, since the droplet diameter is controlled only by the diameter of the dripping port, it is possible to freely control the droplet diameter and change the zeolite mixing ratio.
It was difficult to deal with changes in raw material viscosity.

【0005】[0005]

【課題を解決するための手段】本発明は、これらの課題
を解決すべく鋭意研究を重ねた結果、簡易かつ、高収率
で造粒可能な油中滴下法とその製造装置を開発するに至
ったものである。
[Means for Solving the Problems] As a result of extensive research to solve these problems, the present invention has been made to develop an in-oil dropping method that is simple and capable of granulating with high yield, and an apparatus for producing the same. This is what we have come to.

【0006】すなわち、本発明の一つは、ゼオライト含
有アルミナゾルを油中に滴下し、球形化させ、油相の下
部のアルカリ含有水溶液中でゲル化させる方法において
、滴下粒の周囲に併流を与え、アルミナをバインダーと
するゼオライト粒子を均一な球形とすることを特徴とす
る球形ゼオライト触媒の製造方法である。本発明の他の
一つは、上層に油相3と下層にアルカリ水溶液相6を形
成するための液槽Aと、液槽Aへの原料滴下口2と油の
併流を与える油流入口からなることを特徴とする球形ゼ
オライト触媒の製造装置である。ここに併流とは、原料
滴下口の近傍において油相中で重力により垂直方向に落
下するゾルと同一方向に、油が流れることを意味する。
That is, one aspect of the present invention is a method in which a zeolite-containing alumina sol is dropped into oil, spheroidized, and gelled in an alkali-containing aqueous solution at the bottom of the oil phase, in which a cocurrent is provided around the dropped particles. , is a method for producing a spherical zeolite catalyst, characterized in that zeolite particles containing alumina as a binder are made into uniform spherical shapes. Another aspect of the present invention is a liquid tank A for forming an oil phase 3 in the upper layer and an alkaline aqueous solution phase 6 in the lower layer, a raw material dripping port 2 to the liquid tank A, and an oil inlet for providing co-current flow of oil. This is an apparatus for producing a spherical zeolite catalyst, which is characterized by: The cocurrent flow here means that the oil flows in the same direction as the sol that falls vertically due to gravity in the oil phase in the vicinity of the raw material dripping port.

【0007】本発明の構成、作用を図1により説明する
The structure and operation of the present invention will be explained with reference to FIG.

【0008】原料タンク1を通して送られてきた原料は
、ノズル滴下口2から油相部3に滴下される。滴下口2
の周囲には、ポンプ4で油槽7から循環された油が流下
されている(併流)。油中に滴下されたゼオライト含有
アルミナゾルは油中で球形化しながら落下していく。 球形化したゼオライト粒子は油/アルカリ水溶液の界面
5を通過し、アルカリ水溶液(例えば、アンモニア水)
6中で表面からゲル化固化しながら落下し、底部から抜
き出される(図中、抜き出し口は省略)。
The raw material sent through the raw material tank 1 is dripped into the oil phase portion 3 from the nozzle dripping port 2. Dripping port 2
Around the oil tank 7, oil circulated from the oil tank 7 by the pump 4 flows down (cocurrent flow). The zeolite-containing alumina sol dropped into the oil falls while becoming spherical in the oil. The spherical zeolite particles pass through the oil/alkaline aqueous solution interface 5 and are mixed with an alkaline aqueous solution (e.g. aqueous ammonia).
6, it falls from the surface while gelling and solidifying, and is extracted from the bottom (the extraction port is omitted in the figure).

【0009】尚、図中、9は流量計、10は油流入部、
11・12は油戻り部、Aは液槽(球形整形部)、aは
球形調整部である。
In the figure, 9 is a flow meter, 10 is an oil inlet,
11 and 12 are oil return parts, A is a liquid tank (spherical shaping part), and a is a spherical adjusting part.

【0010】滴下口2から油相部3中に注入される原料
ゾルは、油の併流を与えない場合、原料ゾルと油の界面
張力、ゾルの滴下口出口部への付着力、ゾルの密度、粘
度等により決まる一定粒径で滴下する。この場合、界面
張力が大きく、付着力が小さく、密度が大きく、粘度が
低いほど小さな液滴になると考えられる。原料性状が変
化するとそれにより液滴径も変化する。油の併流を与え
ると、原料性状が変化しても、例えば粘度が高くなると
流速を速めることにより一定粒径を保つことができる。
When the raw material sol is injected into the oil phase part 3 from the dripping port 2, the interfacial tension between the raw material sol and the oil, the adhesion force of the sol to the dripping port outlet, and the density of the sol are determined when the oil is not co-flowed. , dripping at a constant particle size determined by viscosity, etc. In this case, it is thought that the larger the interfacial tension, the smaller the adhesion force, the larger the density, and the lower the viscosity, the smaller the droplet will be. When the raw material properties change, the droplet diameter also changes accordingly. By applying a co-current flow of oil, even if the properties of the raw material change, for example when the viscosity increases, it is possible to maintain a constant particle size by increasing the flow rate.

【0011】原料であるゼオライト含有アルミナゾルは
、球形形成が可能であれば、特に制限はないが、濃度5
〜30重量%のベーマイト又は擬ベーマイトを含有する
アルミナゾルと、乾燥重量としてゼオライト分が5〜9
0重量%となるようゼオライトとを混合して調整した粘
度100〜3000cstのゼオライト含有アルミナゾ
ルが好ましい。
The zeolite-containing alumina sol, which is a raw material, is not particularly limited as long as it can be formed into spheres;
Alumina sol containing ~30% by weight of boehmite or pseudoboehmite and a zeolite content of 5 to 9 as dry weight
A zeolite-containing alumina sol having a viscosity of 100 to 3000 cst, which is adjusted by mixing with zeolite so that the viscosity is 0% by weight, is preferable.

【0012】併流は、滴下粒の落下方向に平行かつ、滴
下口及び滴下粒の周囲で均一な流れであることが望まし
く、好ましくは滴下口より上層部から流下するのが良い
。流速は原料性状(例えば粘度、密度)目的とする粒径
により異なるが、滴下口近傍において下方向き線速度5
〜100cm/secの範囲であり、より好適には10
〜80cm/secである。
[0012] The cocurrent flow is preferably parallel to the direction in which the dropped particles fall and is uniform around the dropping port and the dropped particles, and preferably flows down from an upper layer above the dropping port. The flow rate varies depending on the raw material properties (e.g. viscosity, density) and the target particle size, but the downward linear velocity near the dropping port is 5.
~100 cm/sec, more preferably 10
~80cm/sec.

【0013】滴下口の口径は原料性状、目的とする粒径
により異なるが、内径0.5〜2mmが好適である。
[0013] The diameter of the dropping port varies depending on the properties of the raw material and the intended particle size, but an inner diameter of 0.5 to 2 mm is preferable.

【0014】油中で球形化するための油の性状に関して
は、油の粘度と密度が重要である。粘度が高いとゲル化
していない液滴は油の粘性のため縦長に変形する。密度
が低いと液滴の落下速度が速まり、油の抵抗が増して皿
状に変形する。従って液滴の性状により適当な油の粘度
と密度がある。ゼオライト含有アルミナゾルを原料とす
るときは、油相は0.6〜0.9g/cm3で、粘度1
〜3cstであることが好ましい。具体的には灯油、軽
油等の石油留分やヘキサン等有機溶剤、その他各種の炭
化水素化合物が使用できる。
Regarding the properties of oil for spheroidization in oil, the viscosity and density of the oil are important. If the viscosity is high, the ungelled droplets will become vertically long due to the viscosity of the oil. When the density is low, the droplets fall faster, increasing the resistance of the oil and causing it to deform into a dish shape. Therefore, the viscosity and density of the oil are appropriate depending on the properties of the droplets. When using zeolite-containing alumina sol as a raw material, the oil phase is 0.6 to 0.9 g/cm3, and the viscosity is 1.
It is preferable that it is 3 cst. Specifically, petroleum fractions such as kerosene and light oil, organic solvents such as hexane, and various other hydrocarbon compounds can be used.

【0015】また油相と水溶液相の界面においては界面
張力のため、油相を通過してきた液滴は界面でいったん
停滞する。通常は、滞留時間が短いため、球形の形成に
影響を及ぼさないが、滞留が長いと、界面上で水相に突
き出た液滴の一部分のゲル化が始まり不均一なゲル化が
起きると共にゲル化していない油相部分で液滴間の付着
が起き、均一な粒子が製造できない場合がある。このよ
うなときには、油相中に油溶性の界面活性剤を添加し、
油相と水溶液相間の界面張力を下げることにより界面の
通過が容易となり、停滞を抑制することができる。界面
活性剤は、油相中で液下されたアルミナゾルがアルカリ
水溶液相との界面で停滞することなく界面をスムーズに
通過できるようにするものであれば、何でもよく、油溶
性界面活性剤、水溶性界面活性剤のいずれかまたは両者
を併用することができる。油溶性界面活性剤としては各
種のものが使えるが、触媒として使用するためには、ア
ルカリ金属や硫酸根を含まず、焼成により除去可能で影
響を残さない非イオン系界面活性剤でHLB3〜10の
もの、好適には4〜7のものが良い。また界面活性剤は
、油相通過中の液滴にも影響を与えるので、濃度は界面
の通過がスムーズな範囲でできるだけ薄い方がよく、0
.01〜2.0%である。水溶性界面活性剤でも同じ効
果を持つ。
Furthermore, due to the interfacial tension at the interface between the oil phase and the aqueous solution phase, droplets that have passed through the oil phase temporarily stagnate at the interface. Normally, the residence time is short and does not affect the formation of a spherical shape, but if the residence time is long, a portion of the droplet protruding into the aqueous phase at the interface begins to gel, resulting in non-uniform gelation and gelation. Adhesion between droplets occurs in the oil phase portion that has not been solidified, and uniform particles may not be produced. In such cases, add an oil-soluble surfactant to the oil phase.
By lowering the interfacial tension between the oil phase and the aqueous solution phase, passage through the interface becomes easier and stagnation can be suppressed. Any surfactant may be used as long as it allows the alumina sol dropped in the oil phase to smoothly pass through the interface with the alkaline aqueous solution phase without being stagnant at the interface. Oil-soluble surfactants, water-soluble surfactants, Either or both of these surfactants can be used in combination. Various types of oil-soluble surfactants can be used, but in order to be used as a catalyst, nonionic surfactants that do not contain alkali metals or sulfate groups, can be removed by calcination, and do not leave any effects, and must have an HLB of 3 to 10. 4 to 7, preferably 4 to 7. In addition, the surfactant also affects the droplets passing through the oil phase, so it is better to keep the concentration as thin as possible within the range that allows smooth passage through the interface.
.. 01-2.0%. Water-soluble surfactants have the same effect.

【0016】アルカリ水溶液は、pHが9〜11で、製
品上に残存しないものが良く、通常はアンモニア水溶液
が使われれる。アンモニア濃度はゲル化時間に関係し、
薄いと表面が十分ゲル化しない間に原料ゾルが底部に達
し、変形や付着を起こす。濃いとゲル化が表面のみ速す
ぎ、ゲル化が不均一で製品強度が低下する。適当な濃度
は0.2〜20重量%でより好適には2〜10重量%で
ある。
The alkaline aqueous solution preferably has a pH of 9 to 11 and does not remain on the product, and an ammonia aqueous solution is usually used. Ammonia concentration is related to gelation time;
If it is too thin, the raw sol will reach the bottom before the surface is sufficiently gelled, causing deformation and adhesion. If it is too thick, gelation will occur too quickly on the surface, resulting in uneven gelation and reduced product strength. A suitable concentration is between 0.2 and 20% by weight, more preferably between 2 and 10%.

【0017】アルカリ水溶液中でゲル化したゼオライト
含有アルミナ粒子は底部より抜き出され、ゲル化を十分
進行させるため、同じアルカリ水溶液中で数分〜10数
時間熟成される。熟成した球形粒子は乾燥、焼成の工程
を経て製品化される。
The zeolite-containing alumina particles gelled in the alkaline aqueous solution are extracted from the bottom and aged in the same alkaline aqueous solution for several minutes to 10-odd hours in order to sufficiently promote gelation. The aged spherical particles are made into a product through drying and firing processes.

【0018】本発明に係る方法は、乾燥・焼成を除くす
べての工程が常温で実施され、操作時間も従来より短時
間であり、従来技術に無い多くの利点を有している。
The method according to the present invention has many advantages over the prior art, in that all steps except drying and baking are carried out at room temperature, and the operation time is shorter than that of the conventional method.

【0019】本発明に係る球形ゼオライト触媒の製造装
置について、図1により説明する。本製造装置は、アル
カリ性水溶液相と油相を形成し得る液槽と液槽内の油相
に原料タンク1から原料を滴下する滴下口2と滴下粒に
平行に下方向に併流を生じさせるための油流入口8を有
することを特徴とする。原料滴下口は、好適な球形を得
るには、滴下口より上部から均一かつ平行な併流を与え
るのがよく、そのためには滴下口はノズル状に油中に突
出していることが望ましい。
An apparatus for producing a spherical zeolite catalyst according to the present invention will be explained with reference to FIG. This manufacturing device has a liquid tank capable of forming an alkaline aqueous solution phase and an oil phase, and a drip port 2 for dropping raw materials from a raw material tank 1 into the oil phase in the liquid tank, and a cocurrent flow parallel to the dropped particles in a downward direction. It is characterized by having an oil inlet 8 of . In order to obtain a suitable spherical shape, the raw material dripping port should preferably provide uniform and parallel cocurrent flow from above the dripping port, and for this purpose, it is desirable that the dripping port protrude into the oil in the shape of a nozzle.

【0020】併流は、原料滴下口の円周方向に均一であ
り、かつ円周に沿って下方向へ、均一な速度で流下する
のが望ましい。そのためには、油流入口は原料滴下口よ
り上部で、かつ滴下口の円周方向に均一に分布している
ことが好ましい。
[0020] It is desirable that the cocurrent flow be uniform in the circumferential direction of the raw material dropping port and flow downward along the circumference at a uniform speed. For this purpose, it is preferable that the oil inlets are located above the raw material dripping port and are uniformly distributed in the circumferential direction of the dripping port.

【0021】油は、原料滴下口の下部から一部を抜き出
し、油槽3を経て油循環ポンプ4で油流入口へ循環し、
併流を形成することができる。
A portion of the oil is extracted from the lower part of the raw material dripping port, passed through the oil tank 3, and circulated to the oil inlet by the oil circulation pump 4.
Cocurrent flow can be formed.

【0022】[0022]

【実施例】以下に本発明を実施例によりさらに詳細に説
明するが、本発明の要旨を逸脱しない限り、実施例に限
定されるものではない。
[Examples] The present invention will be explained in more detail by examples below, but the invention is not limited to the examples unless it departs from the gist of the present invention.

【0023】実施例1 アルミナとして10重量%を含有する市販アルミナゾル
(日産化学製)とペンタシル型ゼオライトを乾燥重量で
アルミナ:ゼオライトが30:70、50:50、70
:30になるように混合する。それぞれを原料A、B、
Cとする。原料A、B、Cの粘度はそれぞれ1000c
st、600cst、400cstである。原料A、B
、Cを図1に示す原料タンクに張り込み、原料タンクに
圧力をかけることにより、油中に滴下する。ノズルの内
径は1mmである。そのときの油の流速はそれぞれ30
cm/sec、25cm/sec、20cm/secで
ある。油相はHLB6の非イオン系界面活性剤(ポリオ
キシエチレンアルキルフェニルエーテル)を1.0重量
%含有している。水相は5重量%のアンモニアを含有し
ている。油中に滴下されたゼオライト含有アルミナゾル
は、界面で停滞することなく落下し、アルカリ水の底部
に堆積したが、球形が保たれ、合一することはない。底
部から抜き出された球形粒子は、12時間5%アンモニ
ア水中で熟成した後、120℃で3時間乾燥し、550
℃3時間焼成し、本発明の触媒とする。焼成後物性を測
定すると、表1に示すように、高真球で高強度の球形ゼ
オライト触媒が得られた。
Example 1 A commercially available alumina sol (manufactured by Nissan Chemical) containing 10% by weight of alumina and pentasil type zeolite were mixed in a dry weight ratio of alumina:zeolite of 30:70, 50:50, 70.
: Mix so that it becomes 30%. Raw materials A, B,
Let it be C. The viscosity of raw materials A, B, and C is 1000c each.
st, 600cst, and 400cst. Raw materials A, B
, C are placed in the raw material tank shown in FIG. 1, and are dripped into the oil by applying pressure to the raw material tank. The inner diameter of the nozzle is 1 mm. At that time, the oil flow rate was 30
cm/sec, 25 cm/sec, and 20 cm/sec. The oil phase contains 1.0% by weight of a nonionic surfactant (polyoxyethylene alkylphenyl ether) with an HLB of 6. The aqueous phase contains 5% by weight ammonia. The zeolite-containing alumina sol dropped into the oil fell without stagnation at the interface and was deposited at the bottom of the alkaline water, but it maintained its spherical shape and did not coalesce. The spherical particles extracted from the bottom were aged in 5% ammonia water for 12 hours, dried at 120°C for 3 hours, and heated to 550°C.
C. for 3 hours to obtain the catalyst of the present invention. When the physical properties were measured after calcination, as shown in Table 1, a highly spherical and highly strong spherical zeolite catalyst was obtained.

【0024】実施例2 アルミナとして20重量%を含有する市販アルミナゾル
(日産化学製)を用い、ペンタシル型ゼオライトを乾燥
重量でアルミナ:ゼオライトが30:70になるように
混合する。これを原料Dとする。原料Dの粘度は800
cstである。この場合油の流速は30cm/secで
あり、油はHLB4の非イオン系界面活性剤(ソルビタ
ン脂肪エステル)0.5重量%を含有している。他は実
施例1と同じく処理し、高真球で高強度の球形ゼオライ
ト含有アルミナ触媒が得られた。
Example 2 Using a commercially available alumina sol (manufactured by Nissan Chemical) containing 20% by weight of alumina, pentasil type zeolite was mixed in a dry weight ratio of alumina:zeolite of 30:70. This is called raw material D. The viscosity of raw material D is 800
cst. In this case, the flow rate of the oil was 30 cm/sec, and the oil contained 0.5% by weight of a nonionic surfactant (sorbitan fatty ester) with HLB4. Other treatments were carried out in the same manner as in Example 1, and a highly spherical and high strength spherical zeolite-containing alumina catalyst was obtained.

【0025】実施例3 アルミナとして20重量%を含有する市販アルミナゾル
(日産化学製)に、ベーマイトのアルミナ粉末を添加し
、アルミナとして30重量%を含有するアルミナゾルを
調整する。これにペンタシル型ゼオライトを乾燥重量で
アルミナ:ゼオライトが50:50になるように混合す
る。これを原料Eとする。原料Eの粘度は2000cs
tであった。この場合、油の流速は40cm/secで
ある。他は実施例と同じく処理し、高真球、高強度の球
形ゼオライト含有アルミナ触媒が得られる。
Example 3 Boehmite alumina powder was added to a commercially available alumina sol (manufactured by Nissan Chemical) containing 20% by weight of alumina to prepare an alumina sol containing 30% by weight of alumina. Pentasil type zeolite is mixed with this so that the dry weight ratio of alumina:zeolite is 50:50. This is called raw material E. The viscosity of raw material E is 2000cs
It was t. In this case, the oil flow rate is 40 cm/sec. The rest of the process was carried out in the same manner as in the example, and a highly spherical and high-strength spherical zeolite-containing alumina catalyst was obtained.

【0026】実施例4 アルミナとして20重量%を含有する市販アルミナゾル
(日産化学製)に、ベーマイトのアルミナ粉末を添加し
、アルミナとして30重量%を含有するアルミナゾルを
調整する。これにペンタシル型ゼオライトを乾燥重量で
アルミナ:ゼオライトが30:70になるように混合す
る。これを原料Fとする。原料Fの粘度は2800cs
tであった。この場合、油の流速は80cm/secで
ある。他は実施例1と同じく処理し、高真球、高強度の
球形ゼオライト触媒が得られた。
Example 4 Boehmite alumina powder was added to a commercially available alumina sol (manufactured by Nissan Chemical) containing 20% by weight of alumina to prepare an alumina sol containing 30% by weight of alumina. Pentasil type zeolite is mixed with this so that the dry weight ratio of alumina:zeolite is 30:70. This is referred to as raw material F. The viscosity of raw material F is 2800cs
It was t. In this case, the oil flow rate is 80 cm/sec. The rest was treated in the same manner as in Example 1, and a highly spherical and highly strong spherical zeolite catalyst was obtained.

【0027】実施例5 原料油Aを用い、実施例1で、界面活性剤として非イオ
ン界面活性剤の代わりにアルキルベンゼンスルホン酸ナ
トリウム0.1%をアルカリ水溶液に添加して用いた。 他は実施例1と同じく処理した。結果は、実施例1の原
料Aの場合と同程度の高真球、高強度の球形ゼオライト
触媒が得られた。
Example 5 Raw material oil A was used in Example 1, except that 0.1% of sodium alkylbenzenesulfonate was added to the alkaline aqueous solution instead of the nonionic surfactant as the surfactant. The rest was treated in the same manner as in Example 1. As a result, a spherical zeolite catalyst with the same degree of sphericity and strength as in the case of raw material A of Example 1 was obtained.

【0028】比較例1 原料油A、B、Cを油の併流を与えないで油中滴下した
。この場合液滴の直径は併流を与えた場合の約2倍とな
り、粒径の制御はできなかった。
Comparative Example 1 Raw material oils A, B, and C were dropped into oil without cocurrent flow of oil. In this case, the diameter of the droplet was approximately twice that of the case where cocurrent flow was applied, and the particle size could not be controlled.

【0029】比較例2 原料油Aを用い、実施例1で油に界面活性剤を加えない
で実施した。液滴は界面に停滞し、再合一を起こし、著
しく製品の分どまりが低下した。
Comparative Example 2 Using raw material oil A, the same experiment as in Example 1 was carried out without adding any surfactant to the oil. The droplets stagnated at the interface and coalesced again, resulting in a significant drop in product retention.

【0030】比較例3 原料油Aを用い、実施例1で油の流速を150cm/s
ecで実施した。粒径は0.1〜1.0mmの範囲で不
揃いであり、目的とする粒径の粒子は得られなかった。
Comparative Example 3 Using raw material oil A, the flow rate of the oil was set to 150 cm/s in Example 1.
It was carried out using ec. The particle size was irregular in the range of 0.1 to 1.0 mm, and particles with the desired particle size could not be obtained.

【0031】[0031]

【表1】[Table 1]

【0032】[0032]

【発明の効果】本発明に係る方法によれば、アルカリ含
有水溶液相を有するため、常温でかつ短時間でゲル化で
き、本発明のゼオライト触媒収率は著しく向上する。ま
た、併流を与えることにより、広範囲の原料粘度に亘り
、粒径の制御が可能となった。更に、油相に界面活性剤
を添加することにより、真に球形に近いゼオライト触媒
の製造が容易となった。その結果、幅広の原料に亘り、
短時間で精度の高い球形のゼオライト触媒を高収率で製
造することが可能となった。
Effects of the Invention According to the method of the present invention, since it has an alkali-containing aqueous solution phase, it can be gelled at room temperature in a short time, and the yield of the zeolite catalyst of the present invention is significantly improved. Furthermore, by providing cocurrent flow, it became possible to control the particle size over a wide range of raw material viscosities. Furthermore, by adding a surfactant to the oil phase, it has become easier to produce a zeolite catalyst that is nearly truly spherical. As a result, across a wide range of raw materials,
It has become possible to produce highly accurate spherical zeolite catalysts in a high yield in a short period of time.

【0033】本発明に係る装置によれば、容易に最適な
併流条件、原料滴下条件を現出でき、上記効果を容易に
発揮できる。
According to the apparatus according to the present invention, optimum co-current conditions and raw material dropping conditions can be easily achieved, and the above-mentioned effects can be easily achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る球形ゼオライト触媒の製造装置の
一実施例を示す概略正面図である。
FIG. 1 is a schematic front view showing an embodiment of an apparatus for producing a spherical zeolite catalyst according to the present invention.

【図2】同上の要部を示す概略正面図である。FIG. 2 is a schematic front view showing the main parts of the same as above.

【図3】図2の概略平面図である。FIG. 3 is a schematic plan view of FIG. 2;

【符号の説明】 1    原料タンク 2    ノズル滴下口 3    油相部(界面活性剤入り) 4    油循環ポンプ 5    油/アルカリ水溶液の界面 6    アルカリ水溶液相 7    油槽 8    油流入口 9    流量計 a    球形調整部 2    ノズル滴下部口 10  油流入部 11  油戻り部 12    〃 A    液槽(球整形部)[Explanation of symbols] 1 Raw material tank 2 Nozzle dripping port 3 Oil phase (contains surfactant) 4 Oil circulation pump 5. Oil/alkaline aqueous solution interface 6 Alkaline aqueous solution phase 7 Oil tank 8 Oil inlet 9 Flowmeter a Spherical adjustment part 2 Nozzle dripping port 10 Oil inlet 11 Oil return section 12 〃 A Liquid tank (ball shaping section)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ゼオライト含有アルミナゾルを界面活性剤
を含有する油相中で滴下し球形化させ、油相の下部のア
ルカリ含有水溶液中でゲル化させる方法において、滴下
口の周囲に併流を与え、アルミナをバインダーとするゼ
オライト触媒を真球状の均一な球形とすることを特徴と
する球形ゼオライト触媒の製造方法。
Claim 1: A method in which a zeolite-containing alumina sol is dropped into an oil phase containing a surfactant to form a spheroid, and is then gelled in an alkali-containing aqueous solution below the oil phase, in which a cocurrent is provided around the dropping port, A method for producing a spherical zeolite catalyst, which is characterized by forming a zeolite catalyst containing alumina as a binder into a true and uniform spherical shape.
【請求項2】濃度5〜30重量%のアルミナを含有する
アルミナゾルと乾燥重量としてゼオライト分が5〜90
重量%になるようにゼオライトを混合調整した粘度10
0〜3000cstのゼオライト含有アルミナゾルであ
ることを特徴とする請求項1記載の球形ゼオライト触媒
の製造方法。
Claim 2: An alumina sol containing alumina at a concentration of 5 to 30% by weight and a zeolite content of 5 to 90% by dry weight.
Viscosity adjusted by mixing zeolite so that it is 10% by weight
2. The method for producing a spherical zeolite catalyst according to claim 1, wherein the zeolite-containing alumina sol has a weight of 0 to 3000 cst.
【請求項3】併流の流速が5〜100cm/秒であるこ
とを特徴とする請求項1又は2記載の球形ゼオライト触
媒の製造方法。
3. The method for producing a spherical zeolite catalyst according to claim 1 or 2, wherein the cocurrent flow rate is 5 to 100 cm/sec.
【請求項4】油相が密度0.6〜0.9g/cm2で、
粘度1〜3cstであることを特徴とする請求項1、2
又は3記載の球形ゼオライト触媒の製造方法。
Claim 4: The oil phase has a density of 0.6 to 0.9 g/cm2,
Claims 1 and 2, characterized in that the viscosity is 1 to 3 cst.
Or the method for producing a spherical zeolite catalyst according to 3.
【請求項5】油相中にHLB3〜10の非イオン系界面
活性剤を含有することを特徴とする請求項1〜4のいず
れかに記載の球形ゼオライト触媒の製造方法。
5. The method for producing a spherical zeolite catalyst according to claim 1, wherein the oil phase contains a nonionic surfactant with an HLB of 3 to 10.
【請求項6】アルカリ含有水溶液が0.2〜20重量%
のアンモニア水であることを特徴とする請求項1〜5の
いずれかに記載の球形ゼオライト触媒の製造方法。
Claim 6: The aqueous solution containing alkali is 0.2 to 20% by weight.
The method for producing a spherical zeolite catalyst according to any one of claims 1 to 5, wherein the ammonia water is aqueous ammonia.
【請求項7】上層に油相と下層にアルカリ含有水溶液相
を形成するための液槽と、液槽への原料滴下口と、油の
併流を与える油流入口とを有してなることを特徴とする
球形ゼオライト触媒の製造装置。
Claim 7: A liquid tank for forming an oil phase in the upper layer and an alkali-containing aqueous solution phase in the lower layer, an inlet for dropping raw materials into the liquid tank, and an oil inlet for providing simultaneous flow of oil. A manufacturing device for spherical zeolite catalysts.
【請求項8】併流を与える油流入口が、原料滴下口より
上部にあることを特徴とする請求項7記載の球形ゼオラ
イト触媒の製造装置。
8. The apparatus for producing a spherical zeolite catalyst according to claim 7, wherein the oil inlet that provides cocurrent flow is located above the raw material dripping port.
【請求項9】原料滴下口の口径が0.5〜2mmである
ことを特徴とする請求項7又は8記載の球形ゼオライト
触媒の製造装置。
9. The apparatus for producing a spherical zeolite catalyst according to claim 7 or 8, wherein the diameter of the raw material dropping port is 0.5 to 2 mm.
JP3042697A 1991-02-14 1991-02-14 Method and apparatus for preparing spherical zeolite catalyst Pending JPH04260440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042697A JPH04260440A (en) 1991-02-14 1991-02-14 Method and apparatus for preparing spherical zeolite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042697A JPH04260440A (en) 1991-02-14 1991-02-14 Method and apparatus for preparing spherical zeolite catalyst

Publications (1)

Publication Number Publication Date
JPH04260440A true JPH04260440A (en) 1992-09-16

Family

ID=12643245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042697A Pending JPH04260440A (en) 1991-02-14 1991-02-14 Method and apparatus for preparing spherical zeolite catalyst

Country Status (1)

Country Link
JP (1) JPH04260440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147931A (en) * 2000-04-20 2014-08-21 Basf Corp Catalyst, catalyst support and process for hydrogenation, hydroisomerization, hydrocracking and/or hydrodesulfurization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147931A (en) * 2000-04-20 2014-08-21 Basf Corp Catalyst, catalyst support and process for hydrogenation, hydroisomerization, hydrocracking and/or hydrodesulfurization

Similar Documents

Publication Publication Date Title
CN101918308B (en) Carbonising and/or activating carbonaceous material
US2385217A (en) Gel pellets
US4628040A (en) Method of making uniform spheroidal catalyst beads
CN102378776B (en) Method for producing polymers and reactor for carrying out said method
WO2006111417A1 (en) Solid particles, method and device for the production thereof
JPH0351459B2 (en)
CN110203953B (en) Gamma-alumina microsphere and preparation method thereof
CN104828803A (en) A preparing method of a monodisperse phenolic resin carbon microbead
Oxley Overview of microencapsulation process technologies
US2386810A (en) Gels comprising silica
US3329745A (en) Process for making gelled spherical particles of oxides
Pype et al. Development of alumina microspheres with controlled size and shape by vibrational droplet coagulation
US2384945A (en) Spheroidal gel particles
US2422499A (en) Alumina gel
JPH04260440A (en) Method and apparatus for preparing spherical zeolite catalyst
CN112742486B (en) Oil column catalyst forming device and forming method
EP0507122B1 (en) Process for producing spherical zeolite catalyst and apparatus for producing the same
US2584286A (en) Preparation and drying of catalytic hydrogel beads
CN109692703B (en) Alumina pellet containing molecular sieve and preparation method thereof
JPH04281849A (en) Method and device for producing spherical zeolite catalyst
JP3744683B2 (en) Method for producing spherical silica gel with controlled specific surface area
US3330774A (en) Method and apparatus for preparing silica-alumina type spherical hydrogels
JP2014520665A (en) Method of encapsulation and immobilization
RU2765118C1 (en) Method for obtaining a spherical aluminum oxide carrier
US2641583A (en) Process for producing silica gel spheres in oil