JPH04259760A - Fuel cell generating device - Google Patents

Fuel cell generating device

Info

Publication number
JPH04259760A
JPH04259760A JP3018136A JP1813691A JPH04259760A JP H04259760 A JPH04259760 A JP H04259760A JP 3018136 A JP3018136 A JP 3018136A JP 1813691 A JP1813691 A JP 1813691A JP H04259760 A JPH04259760 A JP H04259760A
Authority
JP
Japan
Prior art keywords
steam
water
fuel cell
power generation
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3018136A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3018136A priority Critical patent/JPH04259760A/en
Publication of JPH04259760A publication Critical patent/JPH04259760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate the maintenance by using an insulating oil as a cooling liquid, and successively passing and purifying the water supplied so as to generate a reforming steam through a degasing tank and a vapor generator. CONSTITUTION:A circulating passage for a cooling liquid for removing a loss heat generated in a fuel cell body 1 and a passage for generating a reforming steam 24 used for the steam reformation of a hydrocarbon fuel are independently provided. As the cooling liquid, an insulating oil 31 is used, and a recovered water 21 and a clean water 39 supplied to the passage for generating the reforming steam 24 are passed through a degasing tank 34 and a vapor generator 42 heated by the exhaust heat of a fuel cell generator device, and purified. Thus, the purification of the supplied water can be conducted without using a water treatment device obtained by combining an ion exchange resin, active charcoal, and a microfilter, and a fuel cell generator device easy to maintain can be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭化水素系燃料を改質器
により水蒸気改質して得た水素リッチなガスおよび空気
供給手段により供給される空気とを反応ガスとして用い
て電気化学的に発電するとともに、発電にさいし発生す
る熱を冷却用液体を循環して除去する冷却手段を備えた
燃料電池発電装置に係わり、特に保守を容易とする補給
水の処理装置を備えた燃料電池発電装置に関する。
[Industrial Application Field] The present invention is an electrochemical method using a hydrogen-rich gas obtained by steam reforming a hydrocarbon fuel in a reformer and air supplied by an air supply means as a reaction gas. A fuel cell power generation device that generates electricity and is equipped with a cooling means that circulates a cooling liquid to remove the heat generated during power generation, and is particularly equipped with a make-up water treatment device that facilitates maintenance. Regarding.

【0002】0002

【従来の技術】燃料電池発電装置は、電解質を担持した
マトリックスと、マトリックスを挟持し燃料ガスおよび
酸化剤ガスがそれぞれ通流する燃料ガス流通路および酸
化剤ガス流通路を有する一対の多孔性のガス拡散電極で
ある燃料電極および酸化剤電極からなる単位セルを複数
積層する毎に冷却体を介装し、これら複数の単位セルと
冷却体との積層体を複数積層して燃料電池本体を構成し
、この燃料電池本体に燃料ガスと酸化剤ガスを供給して
電気化学反応を生じさせて前期両電極から直流電気を発
生させるものである。例えばリン酸型燃料電池発電装置
では電解質にリン酸を、燃料ガスとして例えば常温・常
圧下で気体状態にある天然ガス,ナフサなどの炭化水素
系燃料を水蒸気改質して得た水素リッチなガスを、酸化
剤ガスとしては空気供給手段により供給される空気を用
いるとともに、燃料電池発電装置を高効率で作動させる
ため約 200℃に維持して運転し、単位セルの温度を
約 200℃に維持するために、単位セル毎に介装され
る冷却体に冷却液体として例えば純水を循環して、電気
化学反応にさいして生じた損失による熱を単位セルから
除去する燃料電池発電装置が知られている。
[Prior Art] A fuel cell power generation device consists of a pair of porous structures having a matrix supporting an electrolyte, and a fuel gas flow passage and an oxidant gas flow passage sandwiching the matrix and through which fuel gas and oxidant gas flow, respectively. A cooling body is interposed between each stack of unit cells consisting of fuel electrodes and oxidizer electrodes, which are gas diffusion electrodes, and a fuel cell main body is constructed by stacking multiple stacks of these unit cells and cooling bodies. Then, fuel gas and oxidant gas are supplied to the fuel cell main body to cause an electrochemical reaction and generate direct current electricity from both electrodes. For example, in a phosphoric acid fuel cell power generation device, the electrolyte is phosphoric acid, and the fuel gas is natural gas, which is in a gaseous state at room temperature and pressure, or hydrogen-rich gas obtained by steam reforming a hydrocarbon fuel such as naphtha. In addition to using air supplied by an air supply means as the oxidizing gas, the fuel cell power generation device is operated at a temperature of approximately 200°C in order to operate with high efficiency, and the temperature of the unit cell is maintained at approximately 200°C. In order to do this, a fuel cell power generation device is known in which, for example, pure water is circulated as a cooling liquid through a cooling body provided in each unit cell to remove heat due to loss caused during an electrochemical reaction from the unit cell. ing.

【0003】図3は従来技術によるこのようなリン酸型
燃料電池を用いて電気とともに熱を供給する従来例の熱
併給型燃料電池発電装置のプロセスフロー図である。図
3において1は水冷式燃料電池本体、2は天然ガス,ナ
フサなどの常温・常圧下で気体状態にある炭化水素系燃
料26を水素リッチなガスに改質する改質器である。燃
料26は含んでいる硫黄分を水素を含むガスと混合して
脱硫触媒中を通流して水添脱硫する脱硫反応器3で除去
された後、改質用水蒸気24と混合されて改質器2に導
かれる。改質器2は改質触媒が充填された改質触媒管4
と、改質触媒管4を炭化水素系燃料26の改質に適合し
た温度、例えば天然ガスの場合 600〜 800℃に
加熱するバーナ5とで構成され、バーナ5は燃料26お
よび燃料電池本体1で反応済の排気燃料ガス(以降、オ
フガスと略称する)9を燃焼して所要の温度を生成する
。燃料26を改質器2で水蒸気改質することでCOはま
だ含有するが水素リッチとなったCO含有燃料ガス8′
を得る。 CO含有燃料ガス8′は燃料系予熱器6において水蒸気
添加原燃料ガス予熱部6aで水蒸気添加燃料ガスの加熱
、および原燃料ガス予熱部6bで燃料26が水素リッチ
な水添用燃料ガス22と混合された原燃料ガスの加熱を
行った後CO変成器7に導かれる。CO含有燃料ガス8
′は、そのまま燃料電池本体1に供給するにはCO濃度
が高く燃料極13の触媒を被毒させるので、これを防止
するためCO変成器7で含有しているCOをCO2 と
H2 Oに変成して十分CO濃度が低下せしめられた燃
料ガス8として燃料電池本体1の燃料電極13に供給さ
れる。燃料ガス8は燃料電池本体1で空気極14に供給
された反応用空気17とともに化学反応して発電作用を
行い水素を消費してオフガス9となって燃料電池本体1
から排出される。しかしオフガス9はまだ水素の残量を
持っているので途中燃料系予熱器10で予熱されたうえ
でバーナ5に与えられ、バーナ用空気11とともに燃焼
され、改質触媒管4を所要の温度に加熱する。改質触媒
管4を所要の温度に加熱したうえで排出された改質器排
ガス12は、燃料系予熱器10でオフガス9とバーナ用
空気11を予熱した後、排ガス熱回収用熱交換器15で
冷水19と熱交換したうえで外部に放出される。燃料ガ
ス8の一部は分岐され燃料26に水素リッチな水添用燃
料ガス22として供給される。なお、始動時に改質触媒
が所定温度に到達していない場合には得られる燃料ガス
8は所要の組成に到達しえず燃料極13の触媒を被毒す
るおそれがある。そのためバイパス経路23のバイパス
弁23′を開いて燃料ガス8を燃料電池本体1に供給せ
ずバーナ5に直接回流するようにする。他方、酸化剤ガ
スである空気については、例えば空気ブロアなど空気供
給手段16により空気極14に与えられる反応用空気1
7およびバーナ5に与えられるバーナ用空気11が供給
される。反応用空気17は空気極14で発電作用を行っ
た後、 150〜170℃の温度の反応済空気(以後、
オフエアと略称する)18となって燃料電池本体1から
排出される。燃料電池本体1から排出されたオフエア1
8は改質器排ガス12とともに排ガス熱回収用熱交換器
15で冷水19と熱交換したうえで外部に放出される。 冷水19は高温の改質器排ガス12およびオフエア18
から熱を受取って加熱され温水20になって外部(温水
の需要先)に供給される。そのさい改質器排ガス12と
オフエア18には燃料26の反応生成水が含まれている
ので、排ガス熱回収用熱交換器15で冷水19により冷
却することで凝結させ、回収水21として回収する。
[0003] FIG. 3 is a process flow diagram of a conventional cogeneration type fuel cell power generation device that supplies heat as well as electricity using such a phosphoric acid fuel cell according to the prior art. In FIG. 3, 1 is a water-cooled fuel cell body, and 2 is a reformer for reforming a hydrocarbon fuel 26, such as natural gas or naphtha, which is in a gaseous state at room temperature and pressure, into a hydrogen-rich gas. The sulfur contained in the fuel 26 is mixed with hydrogen-containing gas and passed through a desulfurization catalyst to be removed in the desulfurization reactor 3 for hydrodesulfurization, and then mixed with reforming steam 24 and sent to the reformer. 2. The reformer 2 includes a reforming catalyst tube 4 filled with a reforming catalyst.
and a burner 5 that heats the reforming catalyst tube 4 to a temperature suitable for reforming the hydrocarbon fuel 26, for example 600 to 800°C in the case of natural gas. The reacted exhaust fuel gas (hereinafter referred to as off-gas) 9 is combusted to generate a required temperature. By steam reforming the fuel 26 in the reformer 2, a CO-containing fuel gas 8' that still contains CO but becomes hydrogen-rich is produced.
get. In the fuel system preheater 6, the CO-containing fuel gas 8' is heated in the steam-added raw fuel gas preheating section 6a, and the fuel 26 is converted into a hydrogen-rich hydrogenation fuel gas 22 in the raw fuel gas preheating section 6b. After the mixed raw fuel gas is heated, it is guided to the CO converter 7. CO-containing fuel gas 8
If ' is supplied directly to the fuel cell main body 1, the CO concentration is high and it will poison the catalyst of the fuel electrode 13. To prevent this, the CO contained in the CO is converted into CO2 and H2O in the CO converter 7. As a result, the fuel gas 8 whose CO concentration has been sufficiently reduced is supplied to the fuel electrode 13 of the fuel cell main body 1. The fuel gas 8 chemically reacts with the reaction air 17 supplied to the air electrode 14 in the fuel cell main body 1 to generate electricity, consumes hydrogen, and becomes off gas 9, which is then transferred to the fuel cell main body 1.
is discharged from. However, since the off-gas 9 still has a residual amount of hydrogen, it is preheated by the fuel system preheater 10 before being fed to the burner 5, where it is combusted together with the burner air 11 to bring the reforming catalyst tube 4 to the required temperature. Heat. The reformer exhaust gas 12 discharged after heating the reforming catalyst tube 4 to a required temperature preheats the off gas 9 and burner air 11 in the fuel system preheater 10, and then passes through the exhaust gas heat recovery heat exchanger 15. After exchanging heat with cold water 19, it is discharged to the outside. A portion of the fuel gas 8 is branched and supplied to the fuel 26 as a hydrogen-rich hydrogenation fuel gas 22 . Note that if the reforming catalyst has not reached the predetermined temperature at the time of startup, the obtained fuel gas 8 may not reach the required composition and may poison the catalyst of the fuel electrode 13. Therefore, the bypass valve 23' of the bypass path 23 is opened so that the fuel gas 8 is not supplied to the fuel cell main body 1 but is circulated directly to the burner 5. On the other hand, regarding air as an oxidant gas, reaction air 1 is supplied to the air electrode 14 by an air supply means 16 such as an air blower, for example.
7 and burner air 11 given to the burner 5 are supplied. After the reaction air 17 performs power generation at the air electrode 14, it is converted into reacted air at a temperature of 150 to 170°C (hereinafter referred to as
(abbreviated as off-air) 18 is discharged from the fuel cell main body 1. Off-air 1 discharged from the fuel cell main body 1
8, together with the reformer exhaust gas 12, undergoes heat exchange with cold water 19 in an exhaust gas heat recovery heat exchanger 15, and is then discharged to the outside. Cold water 19 is supplied to high temperature reformer exhaust gas 12 and off-air 18
It receives heat from the water, heats it, turns it into hot water 20, and supplies it to the outside (hot water demand destination). At this time, since the reformer exhaust gas 12 and the off-air 18 contain reaction product water of the fuel 26, the exhaust gas heat recovery heat exchanger 15 cools it with cold water 19 to condense it and recover it as recovered water 21. .

【0004】燃料電池本体1は電気化学反応による直流
発電を行うと、出力する負荷電流値にほぼ比例した損失
熱を発生する。この損失熱は複数単位セル毎に介装され
た冷却体30に通流する冷却媒体である例えば純水51
の加圧沸騰冷却により除去される。純水51は循環ポン
プ52によって循環経路を循環するに要する圧力を与え
られ、途中燃料電池発電装置の始動時において、まだ燃
料電池本体1が低温である場合に運転されて、純水51
を介して燃料電池本体1を所定温度に加熱するための始
動ボイラー53を経て燃料電池本体1に供給される。燃
料電池本体1の冷却体30において熱を奪った純水51
は、電池冷却系熱回収用熱交換器54で冷水55と熱交
換した後、水蒸気分離器57を経て循環ポンプ52に戻
る。冷水55は高温の純水51から熱を受取り加熱され
、温水56となって外部(温水の需要先)に供給される
。水蒸気分離器57は圧力容器で構成されており、冷却
体30から加圧沸騰冷却により熱を奪った純水51の水
蒸気を分離する。また、水蒸気分離器57に接続された
蒸気放圧弁58で水蒸気圧力を調整することで水の飽和
蒸気圧と温度に関する特性に従い純水51の温度を制御
する。すなわち、純水51の温度の降下は、蒸気放圧弁
58を開放し水蒸気分離器57内の水蒸気を外部に放出
し水蒸気圧力を降下させることで行う。改質器2におけ
る炭化水素系燃料の水蒸気改質には、燃料が例えば天然
ガスの場合には、天然ガス供給量の2〜4倍(モル数比
)の水蒸気を必要とする。この改質用水蒸気24は水蒸
気分離器57で分離された水蒸気が用いられ、改質用水
蒸気供給弁27を介して脱硫後の原燃料ガスと混合され
る。なおこの改質用水蒸気24を必要に応じて高圧とし
ていったんエゼクタ25に供給し、その噴流で脱硫後の
原燃料ガスを吸引して改質器2に供給することもある。 また、純水51は始動ボイラー53を通過後分岐され、
一部はCO変成器7の触媒を冷却して電池冷却系熱回収
用熱交換器54の上流で合流する。
[0004] When the fuel cell main body 1 performs DC power generation through an electrochemical reaction, it generates heat loss that is approximately proportional to the output load current value. This lost heat is absorbed by a cooling medium such as pure water 51 that flows through a cooling body 30 interposed in each of a plurality of unit cells.
is removed by pressurized boiling and cooling. The pure water 51 is given the pressure necessary to circulate through the circulation path by the circulation pump 52, and is operated midway when the fuel cell main body 1 is still at a low temperature at the time of starting the fuel cell power generation device.
The fuel is supplied to the fuel cell main body 1 via a starter boiler 53 for heating the fuel cell main body 1 to a predetermined temperature. Pure water 51 that has removed heat in the cooling body 30 of the fuel cell main body 1
After exchanging heat with cold water 55 in a battery cooling system heat recovery heat exchanger 54, it returns to the circulation pump 52 via a steam separator 57. The cold water 55 receives heat from the high-temperature pure water 51, is heated, becomes hot water 56, and is supplied to the outside (hot water demand destination). The steam separator 57 is constituted by a pressure vessel, and separates the steam of the pure water 51 from which heat has been removed from the cooling body 30 by pressurized boiling cooling. Further, by adjusting the steam pressure with a steam relief valve 58 connected to the steam separator 57, the temperature of the pure water 51 is controlled according to the characteristics regarding water's saturated steam pressure and temperature. That is, the temperature of the pure water 51 is lowered by opening the steam pressure relief valve 58, releasing the steam in the steam separator 57 to the outside, and lowering the steam pressure. For steam reforming of hydrocarbon fuel in the reformer 2, when the fuel is natural gas, for example, steam in an amount 2 to 4 times (molar ratio) the amount of natural gas supplied is required. This reforming steam 24 is separated by a steam separator 57, and is mixed with the raw fuel gas after desulfurization via a reforming steam supply valve 27. Note that this reforming steam 24 may be made high-pressure and once supplied to the ejector 25 as necessary, and the raw fuel gas after desulfurization may be sucked in by the jet stream and supplied to the reformer 2. Further, the pure water 51 is branched after passing through the starting boiler 53,
A portion cools the catalyst of the CO shift converter 7 and joins upstream of the battery cooling system heat recovery heat exchanger 54.

【0005】純水51は改質用水蒸気24として供給さ
れたり圧力調整のための蒸気放圧弁58から放出される
水蒸気として消費されるので、補給を必要とする。この
補給用の水は前記した回収水21だけでは不足の場合は
上水39から補給される。回収水21は改質器排ガス1
2とオフエア18とが冷却水19で冷却されることで凝
結したものではあるが、まだ水処理装置60にとって高
温であるので回収水冷却器59を介して、また上水39
は直接水処理装置60に入る。ところで回収水21およ
び上水39からなる補給用の水には、塩素イオン,溶存
酸素などの溶存ガス,金属イオン,リン酸イオン,シリ
カ,カルシウム等の各種の不純物が含まれている。塩素
イオンなどは改質触媒管4中の改質触媒を被毒させ改質
特性を劣化させる。金属イオンは純水51の電気伝導度
を増大させて、純水51が燃料電池本体1の冷却体30
を通流するさいリーク電流を発生せしめる。リーク電流
を防止するため純水51の電気伝導度は0.2 μS/
cm以下である必要がある。また、溶存酸素は配管など
の金属構造体に応力腐食を生じさせる原因物質であるし
、シリカ,カルシウムなどはスケールとなり各部の弁類
の動作に不具合を生じさせる原因物質となるものである
。不純物による問題の発生を防止するために用いるのが
水処理装置60である。水処理装置60は前記した各種
の不純物を除去するために、イオン交換樹脂,活性炭,
ミクロフィルタ,メッシュフィルタなどから構成されて
いる。 水処理装置60を通流して精製された回収水21および
上水39は、純水ポンプ61によって水蒸気分離器57
の下流で純水51に合流される。
Since the pure water 51 is supplied as reforming steam 24 or consumed as steam released from a steam relief valve 58 for pressure adjustment, it needs to be replenished. This replenishment water is replenished from the tap water 39 if the recovered water 21 alone is insufficient. Recovered water 21 is reformer exhaust gas 1
2 and the off-air 18 are cooled by the cooling water 19 and condensed, but since it is still high temperature for the water treatment device 60, it is condensed through the recovered water cooler 59 and the tap water 39.
directly enters the water treatment device 60. By the way, the replenishment water made up of the recovered water 21 and the tap water 39 contains various impurities such as chlorine ions, dissolved gases such as dissolved oxygen, metal ions, phosphate ions, silica, and calcium. Chlorine ions and the like poison the reforming catalyst in the reforming catalyst tube 4 and deteriorate the reforming characteristics. The metal ions increase the electrical conductivity of the pure water 51, and the pure water 51 becomes the cooling body 30 of the fuel cell main body 1.
When passing through, a leakage current is generated. To prevent leakage current, the electrical conductivity of pure water 51 is 0.2 μS/
It must be less than cm. Further, dissolved oxygen is a substance that causes stress corrosion in metal structures such as piping, and silica, calcium, etc. are substances that become scales and cause malfunctions in the operation of valves in various parts. The water treatment device 60 is used to prevent problems caused by impurities. The water treatment device 60 uses ion exchange resin, activated carbon, etc. to remove the various impurities mentioned above.
It consists of micro filters, mesh filters, etc. The recovered water 21 and clean water 39 that have passed through the water treatment device 60 and have been purified are transferred to a steam separator 57 by a pure water pump 61.
It is joined to pure water 51 downstream of.

【0006】[0006]

【発明が解決しようとする課題】前記した従来例の炭化
水素系燃料を水蒸気改質して水素リッチな燃料ガスとし
て用いるとともに、燃料電池本体で電気化学反応による
直流発電を行うさいに発生する損失熱を複数の単位セル
毎に介装された冷却体中を通流する純水によって除去す
る燃料電池発電装置においては、補給する水を不純物が
ないよう十分に精製されたものとするために、イオン交
換樹脂,活性炭,ミクロフィルタなどを組合わせた水処
理装置を使用している。しかし、水蒸気改質用などへの
補給水の必要量が多いために処理すべき水量が多く、こ
のためイオン交換樹脂などの交換を頻繁に行うことを要
するなど水処理装置の保守に多くの時間を要するという
問題があった。
[Problems to be Solved by the Invention] Loss that occurs when the conventional hydrocarbon fuel described above is used as a hydrogen-rich fuel gas by steam reforming, and when DC power generation is performed by an electrochemical reaction in the fuel cell body. In a fuel cell power generation device in which heat is removed by pure water flowing through a cooling body interposed in each of a plurality of unit cells, in order to ensure that the supplied water is sufficiently purified to be free of impurities, A water treatment device that combines ion exchange resin, activated carbon, microfilters, etc. is used. However, the amount of water to be treated is large due to the large amount of make-up water required for steam reforming, etc. This requires frequent replacement of ion exchange resins, etc., which requires a lot of time to maintain the water treatment equipment. There was a problem that it required

【0007】本発明は前述の従来技術の問題点に鑑みな
されたものであり、その目的はイオン交換樹脂,活性炭
,ミクロフィルタなどを組合わせた水処理装置を用いる
ことなく補給する水の精製を行うことができて、保守を
容易とした燃料電池発電装置を提供することにある。
The present invention was made in view of the problems of the prior art described above, and its purpose is to purify replenishment water without using a water treatment device that combines ion exchange resin, activated carbon, microfilter, etc. An object of the present invention is to provide a fuel cell power generation device that can be easily maintained.

【0008】[0008]

【課題を解決するための手段】本発明では前述の目的は
[Means for Solving the Problems] The above-mentioned objects of the present invention are as follows:

【0009】1)炭化水素系燃料を改質器により水蒸気
改質して得た水素リッチなガスおよび酸化剤供給手段に
より供給される酸化剤ガスとを反応ガスとして用いて電
気化学的に発電するとともに、発電にさいし発生する熱
を冷却用液体を循環して除去する冷却手段を備え、しか
も燃料電池発電装置から得た回収水および上水とを前記
水蒸気改質に用いる改質用水蒸気を生成するために補給
する水として用いる燃料電池発電装置において、前記冷
却用液体として絶縁油を用いるとともに、前記改質用水
蒸気を生成するために補給する水を、いずれも燃料電池
発電装置の排熱により加熱される脱気槽および蒸気発生
器を順次通流して精製すること、
1) Electrochemical power generation using a hydrogen-rich gas obtained by steam reforming a hydrocarbon fuel using a reformer and an oxidizing gas supplied by an oxidizing agent supply means as a reaction gas. In addition, it is equipped with a cooling means for removing heat generated during power generation by circulating a cooling liquid, and also generates reforming steam to be used in the steam reforming using recovered water and clean water obtained from the fuel cell power generation device. In a fuel cell power generation device, insulating oil is used as the cooling liquid, and the water to be replenished to generate the reforming steam is generated using the exhaust heat of the fuel cell power generation device. refining by sequentially passing through a heated degassing tank and a steam generator;

【0010】2)前記1項の手段において改質用水蒸気
を生成するために補給する水を、前記冷却用液体によっ
て加熱される脱気槽および前記改質器の排ガスによって
加熱される蒸気発生槽に順次通流し、それぞれ脱気およ
び濃縮不純物のブローダウンをすることで精製すること
2) A degassing tank heated by the cooling liquid and a steam generation tank heated by the exhaust gas of the reformer are used to supply water for generating reforming steam in the means of item 1 above. purification by degassing and blowing down concentrated impurities, respectively;

【0011】3)前記1項の手段において改質用水蒸気
を生成するために補給する水を、いずれも前記冷却用液
体によって加熱される脱気槽および蒸気発生器に順次通
流し、それぞれ脱気および濃縮不純物のブローダウンを
することで精製すること、により達成される。
3) The water supplied in order to generate reforming steam in the means of item 1 above is sequentially passed through a deaeration tank and a steam generator, both of which are heated by the cooling liquid, to deaeration each of them. and purification by blowing down concentrated impurities.

【0012】0012

【作用】本発明では前述の構成とし、燃料電池本体で生
ずる損失熱を除去する冷却液体の循環経路と、炭化水素
系燃料の水蒸気改質に用いる改質用水蒸気を生成させる
経路とを独立させるとともに、冷却液体を絶縁油とし、
しかも改質用水蒸気を生成させる経路に補給する水はい
ずれも燃料電池発電装置の排熱で加熱される脱気槽およ
び蒸気発生器に通流させるようにした。このことにより
冷却液体の電気伝導度を低下させるようにするための手
段の設置が不要となり、また、改質用水蒸気を生成する
ために補給する水は、まず脱気槽で常圧下で沸騰点より
低いが沸騰温度に近い温度例えば約80℃に加熱して気
化容易な不純物を放散することで除去し、続いて蒸気発
生器で高圧・高温の水蒸気を発生させつつその工程下で
濃縮される不純物をブローダウンして除去することで、
精製される。これによってイオン交換樹脂,活性炭,ミ
クロフィルタなどを組合わせた水処理装置の設置が不要
となる。
[Operation] The present invention has the above-mentioned configuration, and the circulation path for the cooling liquid that removes the loss heat generated in the fuel cell body is made independent of the path that generates reforming steam used for steam reforming of hydrocarbon fuel. At the same time, the cooling liquid is used as insulating oil,
Moreover, the water supplied to the path for generating reforming steam is made to flow through the degassing tank and the steam generator, which are heated by the exhaust heat of the fuel cell power generator. This eliminates the need to install means to reduce the electrical conductivity of the cooling liquid, and the water to be replenished to generate reforming steam is first brought to a boiling point under normal pressure in a degassing tank. Easily vaporized impurities are removed by heating to a lower temperature, but close to boiling temperature, for example, approximately 80°C, and then concentrated during the process while generating high-pressure and high-temperature water vapor in a steam generator. By blowing down and removing impurities,
Refined. This eliminates the need to install water treatment equipment that combines ion exchange resin, activated carbon, microfilters, etc.

【0013】[0013]

【実施例】以下本発明の実施例を図面を参照して詳細に
説明する。図1は本発明の一実施例の熱併給型燃料電池
発電装置のプロセスフロー図である。図3の従来例と同
一部分には同じ符号を付してその説明を省略する。図1
において31は冷却体30に通流して燃料電池本体1に
発生した損失熱を除去する冷却媒体である例えばシリコ
ーン油,耐熱性鉱油などの絶縁油である。絶縁油31は
絶縁油循環ポンプ32によって循環経路を循環するに要
する圧力を与えられ、途中、燃料電池発電装置の始動時
にまだ燃料電池本体1が低温である場合に運転されて絶
縁油31を介して燃料電池本体1を所要温度に加熱する
ための始動バーナ33,脱気槽用加熱器35および電池
冷却系熱回収用熱交換器36を通流し、電池冷却系熱回
収用熱交換器36では冷水37と熱交換した後燃料電池
本体1に供給される。冷水37は高温の絶縁油31から
熱を受取り加熱され温水38となって外部(温水の需要
先)に供給される。また、絶縁油31は電池冷却系熱回
収用熱交換器36を通過後分岐され、一部はCO変成器
7の触媒を冷却して絶縁油循環ポンプ32の上流で合流
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a process flow diagram of a cogeneration fuel cell power generation apparatus according to an embodiment of the present invention. Components that are the same as those in the conventional example shown in FIG. 3 are given the same reference numerals, and their description will be omitted. Figure 1
In the figure, 31 is a cooling medium that flows through the cooling body 30 to remove heat loss generated in the fuel cell body 1, such as insulating oil such as silicone oil or heat-resistant mineral oil. The insulating oil 31 is given the pressure necessary to circulate through the circulation path by the insulating oil circulation pump 32, and is operated during the fuel cell power generation system when the fuel cell main body 1 is still at a low temperature when the fuel cell generator is started. The starting burner 33 for heating the fuel cell body 1 to a required temperature, the deaeration tank heater 35 and the battery cooling system heat recovery heat exchanger 36 are passed through. After exchanging heat with cold water 37, it is supplied to the fuel cell main body 1. The cold water 37 receives heat from the high-temperature insulating oil 31, is heated, becomes hot water 38, and is supplied to the outside (hot water demand destination). Further, the insulating oil 31 is branched after passing through the battery cooling system heat recovery heat exchanger 36 , and a portion cools the catalyst of the CO shift converter 7 and joins upstream of the insulating oil circulation pump 32 .

【0014】改質用水蒸気24を生成するためなどに補
給する水である回収水21および上水39(以降、補給
水と略称する)はまず脱気槽34に入り、常圧下で脱気
槽用加熱器35で沸騰点より低いが沸騰温度に近い温度
例えば約80℃に加熱される。この温度に加熱されるこ
とで補給水に含まれる不純物のうち気化容易な塩素イオ
ン,溶存酸素などの溶存ガスが補給水から気化し離脱す
る。なお気化した塩素イオン,溶存酸素などの溶存ガス
は燃料電池発電装置の運転中は開放されている放出弁4
0から外部に放出される。気化容易なガスを放出した補
給水は水ポンプ41によって改質器排ガス12で加熱さ
れる蒸気発生器用加熱器43と底部にブローダウン用弁
44とを備えた蒸気発生器42に送られて一旦貯溜され
る。蒸気発生器42に貯溜された補給水は蒸気発生器用
加熱器43により加熱され高温・高圧の水蒸気になる。 この水蒸気化の工程下で補給水に含まれる金属イオン,
シリカ,カルシウム,リン酸イオン等の不純物は、加熱
によっては蒸発されずしだいに濃縮されるので、固形化
物として析出することのない適切な間隔でブローダウン
用弁44を開放してブローダウンすることで蒸気発生器
42から排出する。かくして不純物を除去されて精製さ
れた水蒸気は改質用水蒸気供給弁27を介して改質用水
蒸気24として改質器2に供給される。
Recovered water 21 and tap water 39 (hereinafter abbreviated as make-up water), which are water to be replenished for generating reforming steam 24, first enter the deaeration tank 34, and then enter the deaeration tank under normal pressure. The water is heated to a temperature lower than the boiling point but close to the boiling temperature, for example, about 80° C., by the heater 35. By being heated to this temperature, easily vaporized dissolved gases such as chlorine ions and dissolved oxygen among the impurities contained in the make-up water are vaporized and separated from the make-up water. Dissolved gases such as vaporized chlorine ions and dissolved oxygen are discharged through the release valve 4, which is kept open during operation of the fuel cell power generation system.
0 to the outside. The make-up water that has released easily vaporized gas is sent by a water pump 41 to a steam generator 42 equipped with a steam generator heater 43 heated by the reformer exhaust gas 12 and a blowdown valve 44 at the bottom, and once It is stored. The make-up water stored in the steam generator 42 is heated by the steam generator heater 43 and becomes high-temperature, high-pressure steam. Metal ions contained in makeup water during this steaming process,
Impurities such as silica, calcium, and phosphate ions are not evaporated by heating but are gradually concentrated, so the blowdown valve 44 should be opened at appropriate intervals to blow down so that they do not precipitate as solids. is discharged from the steam generator 42. The purified steam from which impurities have been removed is supplied to the reformer 2 as reforming steam 24 via the reforming steam supply valve 27 .

【0015】図2は本発明の異なる実施例の熱併給型燃
料電池発電装置のプロセスフロー図である。図1および
図3と同一部分には同じ符号を付してその説明を省略す
る。図2において燃料電池本体1の冷却体30で熱を除
去した絶縁油31は、まず電池冷却系熱回収用熱交換器
45に入る。電池冷却系熱回収用熱交換器45において
絶縁油31は冷水46に熱を与え温水47として外部(
温水の需要先)に供給する。48は絶縁油31で加熱さ
れる蒸気発生器用加熱器49と底部にブローダウン用弁
44とを備えた蒸気発生器であり、改質用水蒸気を生成
するとともに補給水に含有する不純物を除去して精製す
るためのものである。絶縁油31は脱気槽用加熱器35
を通流し、引続き蒸気発生器用加熱器49を通流後燃料
電池本体1に供給される。気化容易なガスを放出した補
給水は水ポンプ41によって蒸気発生器48に送られて
一旦貯留される。蒸気発生器48に貯留された補給水は
蒸気発生器用加熱器49により加熱され高温・高圧の水
蒸気になる。この水蒸気化の工程下で補給水に含まれる
金属イオン,シリカ,カルシウム,リン酸イオン等の不
純物は、加熱によって蒸発されずしだいに濃縮されるの
で、固形化物として析出することのない適切な間隔でブ
ローダウン用弁44を開放してブローダウンすることで
蒸気発生器48から排出する。
FIG. 2 is a process flow diagram of a cogeneration fuel cell power generation apparatus according to a different embodiment of the present invention. Components that are the same as those in FIGS. 1 and 3 are given the same reference numerals, and their explanations will be omitted. In FIG. 2, the insulating oil 31 from which heat has been removed by the cooling body 30 of the fuel cell main body 1 first enters the battery cooling system heat recovery heat exchanger 45. In the heat exchanger 45 for battery cooling system heat recovery, the insulating oil 31 gives heat to the cold water 46 and returns it as hot water 47 to the outside (
supply to hot water demand destinations). 48 is a steam generator equipped with a steam generator heater 49 heated by insulating oil 31 and a blowdown valve 44 at the bottom, which generates reforming steam and removes impurities contained in make-up water. It is used for purification. The insulating oil 31 is a heater 35 for the deaeration tank.
After passing through the steam generator heater 49, the fuel is supplied to the fuel cell main body 1. The makeup water that has released easily vaporized gas is sent to the steam generator 48 by the water pump 41 and is temporarily stored therein. The make-up water stored in the steam generator 48 is heated by the steam generator heater 49 and becomes high-temperature, high-pressure steam. During this steaming process, impurities such as metal ions, silica, calcium, phosphate ions, etc. contained in the make-up water are gradually concentrated without being evaporated by heating, so the impurities are kept at appropriate intervals to prevent them from precipitating out as solids. By opening the blowdown valve 44 and blowing down, the steam is discharged from the steam generator 48.

【0016】[0016]

【発明の効果】本発明によれば前述した通り燃料電池本
体で生ずる損失熱を除去する冷却液体の循環経路と、炭
化水素系燃料の水蒸気改質に用いる改質用水蒸気を生成
するために補給する補給水の経路を独立させるとともに
、冷却液体を絶縁油として、しかも補給水はいずれも燃
料電池発電装置の排熱で加熱される脱気槽および蒸気発
生器を通流させるようにした。そのうえ補給水に含まれ
る不純物の除去の方法として、補給水をまず脱気槽にお
いて常圧下で沸騰点より低いが沸騰温度に近い温度に加
熱して気化容易な不純物をまず除去し、続いて補給水を
蒸気発生器において加熱し高温・高圧の水蒸気にすると
ともに水蒸気化工程で残留する不純物をブローダウンに
より除去するようにした。これによりイオン交換樹脂,
活性炭,ミクロフィルタなどを用いた水処理装置が不要
となり、かつイオン交換樹脂などの保守を不要となしえ
ることで、燃料電池発電装置の構成の簡易化とランニン
グコストの低減ができる、という効果を奏する。
According to the present invention, as described above, there is provided a cooling liquid circulation path for removing heat loss generated in the fuel cell body, and a replenishment system for generating reforming steam used for steam reforming of hydrocarbon fuel. In addition to making the make-up water route independent, the cooling liquid is insulating oil, and the make-up water is made to flow through a degassing tank and a steam generator, both of which are heated by the exhaust heat of the fuel cell power generator. Furthermore, as a method for removing impurities contained in make-up water, make-up water is first heated in a degassing tank under normal pressure to a temperature lower than the boiling point but close to the boiling temperature to remove impurities that easily vaporize, and then Water is heated in a steam generator to turn it into high-temperature, high-pressure steam, and impurities remaining in the steaming process are removed by blowdown. As a result, ion exchange resin,
By eliminating the need for water treatment equipment that uses activated carbon, microfilters, etc., and eliminating the need for maintenance of ion-exchange resins, etc., it has the effect of simplifying the configuration of fuel cell power generation equipment and reducing running costs. play.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の熱併給型燃料電池発電装置
のプロセスフロー図
[Fig. 1] Process flow diagram of a cogeneration fuel cell power generation device according to an embodiment of the present invention

【図2】本発明の異なる実施例の熱併給型燃料電池発電
装置のプロセスフロー図
FIG. 2 is a process flow diagram of a cogeneration fuel cell power generation device according to different embodiments of the present invention.

【図3】従来例の熱併給型燃料電池発電装置のプロセス
フロー図
[Figure 3] Process flow diagram of a conventional cogeneration fuel cell power generation device

【符号の説明】[Explanation of symbols]

1      燃料電池本体 2      改質器 21    回収水 24    改質用水蒸気 30    冷却体 31    絶縁油 34    脱気槽 39    上水 42    蒸気発生器 1 Fuel cell main body 2 Reformer 21 Recovered water 24 Steam for reforming 30 Cooling body 31 Insulating oil 34 Deaeration tank 39 Josui 42 Steam generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭化水素系燃料を改質器により水蒸気改質
して得た水素リッチなガスおよび酸化剤供給手段により
供給される酸化剤ガスとを反応ガスとして用いて電気化
学的に発電するとともに、発電にさいし発生する熱を冷
却用液体を循環して除去する冷却手段を備え、しかも燃
料電池発電装置から得た回収水および上水とを前記水蒸
気改質に用いる改質用水蒸気を生成するために補給する
水として用いる燃料電池発電装置において、前記冷却用
液体として絶縁油を用いるとともに、前記改質用水蒸気
を生成するために補給する水を、いずれも燃料電池発電
装置の排熱により加熱される脱気槽および蒸気発生器に
順次通流して精製することを特徴とする燃料電池発電装
置。
Claim 1: Electrochemical power generation using a hydrogen-rich gas obtained by steam reforming a hydrocarbon fuel using a reformer and an oxidizing agent gas supplied by an oxidizing agent supplying means as a reaction gas. In addition, it is equipped with a cooling means for removing heat generated during power generation by circulating a cooling liquid, and also generates reforming steam to be used in the steam reforming using recovered water and clean water obtained from the fuel cell power generation device. In a fuel cell power generation device, insulating oil is used as the cooling liquid, and the water to be replenished to generate the reforming steam is generated using the exhaust heat of the fuel cell power generation device. A fuel cell power generation device characterized in that purification is performed by sequentially passing through a heated deaeration tank and a steam generator.
【請求項2】請求項1記載のものにおいて、改質用水蒸
気を生成するために補給する水を、前記冷却用液体によ
って加熱される脱気槽および前記改質器の排ガスによっ
て加熱される蒸気発生器に順次通流し、それぞれ脱気お
よび濃縮不純物のブローダウンをすることで精製するこ
とを特徴とする燃料電池発電装置。
2. The apparatus according to claim 1, wherein the water to be replenished to generate reforming steam is a degassing tank heated by the cooling liquid and steam heated by the exhaust gas of the reformer. 1. A fuel cell power generation device characterized in that the fuel is purified by sequentially passing through a generator and respectively degassing and blowing down concentrated impurities.
【請求項3】請求項1記載のものにおいて、改質用水蒸
気を生成するために補給する水を、いずれも前記冷却用
液体によって加熱されるる脱気槽および蒸気発生器に順
次通流し、それぞれ脱気および濃縮不純物のブローダウ
ンをすることで精製することを特徴とする燃料電池発電
装置。
3. The apparatus according to claim 1, wherein water to be replenished for generating reforming steam is sequentially passed through a degassing tank and a steam generator, both of which are heated by the cooling liquid, respectively. A fuel cell power generation device characterized by purification by deaeration and blowdown of concentrated impurities.
JP3018136A 1991-02-12 1991-02-12 Fuel cell generating device Pending JPH04259760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018136A JPH04259760A (en) 1991-02-12 1991-02-12 Fuel cell generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018136A JPH04259760A (en) 1991-02-12 1991-02-12 Fuel cell generating device

Publications (1)

Publication Number Publication Date
JPH04259760A true JPH04259760A (en) 1992-09-16

Family

ID=11963189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018136A Pending JPH04259760A (en) 1991-02-12 1991-02-12 Fuel cell generating device

Country Status (1)

Country Link
JP (1) JPH04259760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172873A2 (en) * 2000-07-14 2002-01-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system having cooling apparatus
JP2016012520A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172873A2 (en) * 2000-07-14 2002-01-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system having cooling apparatus
EP1172873A3 (en) * 2000-07-14 2004-03-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system having cooling apparatus
JP2016012520A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
JP5214190B2 (en) Fuel cell system and operation method thereof
CN101238608B (en) High temperature fuel cell system with integrated heat exchanger network
US6316134B1 (en) Fuel cell electric power generation system
JP2006309982A (en) Solid oxide fuel cell system
JPH02183967A (en) Power generating system for fused carbonate type fuel cell
JP3943405B2 (en) Fuel cell power generation system
EP1168476B1 (en) Fuel cell power generating system and operation method
JP2003331901A (en) Fuel cell generating system
JPH0831435A (en) Method for adjusting temperature of cooling water of fuel cell power generating device
JPH04259760A (en) Fuel cell generating device
JP2001313053A (en) Fuel cell system
JP3139574B2 (en) Fuel cell generator
JP4176130B2 (en) Fuel cell power generation system
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2002100382A (en) Fuel cell power generator
JP2003288936A (en) Fuel cell power generating system and its operation method
JP4161264B2 (en) Fuel cell power generator
JP4660888B2 (en) Fuel cell power generation system and operation method thereof
JP4283980B2 (en) Starting method of fuel cell power generator
WO2023163182A1 (en) Fuel cell system
JP4049526B2 (en) Method for starting reformer for fuel cell
WO2023182490A1 (en) Fuel cell system
JP4072725B2 (en) Operation method of fuel cell power generator
JPS6280970A (en) Power generating method of fuel cell
JP2002008690A (en) Fuel cell power generation system and its running method