JPH04259324A - Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace - Google Patents

Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace

Info

Publication number
JPH04259324A
JPH04259324A JP3953091A JP3953091A JPH04259324A JP H04259324 A JPH04259324 A JP H04259324A JP 3953091 A JP3953091 A JP 3953091A JP 3953091 A JP3953091 A JP 3953091A JP H04259324 A JPH04259324 A JP H04259324A
Authority
JP
Japan
Prior art keywords
furnace
gas
atmosphere
carbon potential
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3953091A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaguchi
和夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3953091A priority Critical patent/JPH04259324A/en
Publication of JPH04259324A publication Critical patent/JPH04259324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the disturbance of atmosphere in a furnace at the time of charging and ejecting a material and to hold carbon potential in the atmospheric gas in the furnace to a constant level. CONSTITUTION:CO gas supplying system 9 is arranged at each RX gas supplying system 8 in a continuous type non-oxidizing annealing furnace 1. The carbon potential in the furnace is calculated from CO value and CO2 value in the furnace measured from a CO gas analyzer 4 and a CO2 analyzer 5, and RX gas content is adjusted with a carbon potential adjusting meter 6. At the same time, CO2 content is adjusted with a CO2 adjusting meter 7 so that CO2 value in the furnace becomes the setting value. The disturbance of atmosphere in the furnace at the time of charging and ejecting the material is restrained and the carbon potential in the atmospheric gas in the furnace can be held to the constant level. The development of defective due to decarbonizing and carburizing is reduced and adjustment of atmosphere in the furnace is easily executed and there is no danger of explosion at the time of blowing the gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は連続無酸化焼鈍炉等、
炉内雰囲気の適切な制御を必要とする連続式無酸化熱処
理炉の炉内雰囲気制御方法に関する。
[Industrial Application Field] This invention is applicable to continuous non-oxidation annealing furnaces, etc.
The present invention relates to a method for controlling the atmosphere in a continuous non-oxidizing heat treatment furnace, which requires appropriate control of the atmosphere in the furnace.

【0002】0002

【従来の技術】連続式無酸化焼鈍炉では、材料の脱炭お
よび浸炭を防止するため、炉内雰囲気ガスのカーボンポ
テンシャルを適当に保持すべく炉内に吹込む雰囲気調整
ガス(Rxガス、Dxガス等)の量を調整している。炉
内雰囲気ガスのカーボンポテンシャルは、下記数1で表
され、雰囲気ガスのカーボンポテンシャルPFが材料の
カーボンポテンシャルより高いと浸炭が発生し、逆に低
い場合は脱炭が発生する。このため、脱浸炭を防止する
ためには、炉内雰囲気ガスのカーボンポテンシャルを予
め決められた値(K=1とした場合、±10〜20)内
に調整する必要がある。
[Prior Art] In a continuous non-oxidizing annealing furnace, in order to prevent decarburization and carburization of materials, atmosphere adjusting gases (Rx gas, Dx gas, (gas, etc.) is being adjusted. The carbon potential of the atmosphere gas in the furnace is expressed by the following equation 1. If the carbon potential PF of the atmosphere gas is higher than the carbon potential of the material, carburization will occur, and if it is lower, decarburization will occur. Therefore, in order to prevent decarburization, it is necessary to adjust the carbon potential of the furnace atmosphere gas to within a predetermined value (±10 to 20 when K=1).

【0003】0003

【数1】[Math 1]

【0004】一般に炉内雰囲気制御は、炉内を複数のゾ
ーンに分割し、各ゾーンのガス成分分析を行い、その結
果に基づいて、雰囲気調整ガス成分の調整を行っている
[0004] Generally, in-furnace atmosphere control involves dividing the inside of the furnace into a plurality of zones, analyzing the gas components of each zone, and adjusting the atmosphere-adjusting gas components based on the results.

【0005】[0005]

【発明が解決しようとする課題】ところで、連続無酸化
焼鈍炉等における炉内雰囲気の乱れは主として、装入さ
れた材料に付着したO2(水分、スケール、空気等)お
よび、装入・抽出時、外部より侵入したO2(空気)に
より2CO+O2→2CO2の反応が起り、炉内のCO
2が増加し炉内雰囲気ガスのカーボンポテンシャルが低
下することにより起る。しかし、炉内のCO2が低い場
合、同じ量のO2が侵入しても炉内雰囲気ガスのカーボ
ンポテンシャルは大きく低下し、雰囲気の乱れは一層大
きくなり、また雰囲気制御においても同じ量の雰囲気調
整ガスを吹込んでも炉内CO2が高い場合は、炉内雰囲
気ガスのカーボンポテンシャルの上昇率は小さく、CO
2が低い場合は大きくなるため、炉内雰囲気を安定に維
持することが困難であった。
[Problems to be Solved by the Invention] Incidentally, disturbances in the atmosphere in the furnace in continuous non-oxidizing annealing furnaces, etc. are mainly caused by O2 (moisture, scale, air, etc.) adhering to the charged material and during charging and extraction. , O2 (air) entering from the outside causes a reaction of 2CO + O2 → 2CO2, and the CO in the furnace
2 increases and the carbon potential of the furnace atmosphere gas decreases. However, if the CO2 in the furnace is low, even if the same amount of O2 enters, the carbon potential of the atmosphere gas in the furnace will be greatly reduced, and the disturbance of the atmosphere will be even greater. If the CO2 in the furnace is high even after injecting CO2, the rate of increase in the carbon potential of the atmosphere gas in the furnace is small, and the
2 becomes large, making it difficult to maintain a stable atmosphere in the furnace.

【0006】従来、炉内CO2を確保する方法として、
炉内へ空気を吹込む方法があるが、炉内はCO、H2等
の可燃性ガスが存在するため、空気吹込量を誤ると爆発
の危険性があり、容易に実施することができない。
[0006] Conventionally, as a method for securing CO2 in the furnace,
There is a method of blowing air into the furnace, but since flammable gases such as CO and H2 are present in the furnace, there is a risk of explosion if the amount of air blown is incorrect, and this method cannot be carried out easily.

【0007】この発明は、前に述べたような実状よりみ
て、無酸化炉における炉内CO2を一定レベルに保持す
る制御を行うことによって、材料の装入・抽出時の炉内
雰囲気乱れを抑制し、雰囲気調整ガス吹込みによる炉内
雰囲気調整を容易にするとともに、CO2レベル確保の
ためのガス吹込み時の爆発等の危険を回避し得る炉内雰
囲気制御方法を提案しようとするものである。
In view of the above-mentioned actual situation, this invention suppresses the disturbance of the atmosphere inside the furnace during charging and extraction of materials by controlling the CO2 inside the non-oxidation furnace to be maintained at a constant level. The purpose of this paper is to propose a method for controlling the atmosphere in a furnace that makes it easier to adjust the atmosphere in the furnace by injecting atmosphere adjustment gas, and also avoids dangers such as explosions when gas is injected to maintain the CO2 level. .

【0008】[0008]

【課題を解決するための手段】この発明は炉内雰囲気ガ
スをガス分析計に取込んでガス分析を行い、その分析ガ
ス濃度に応じて雰囲気調整ガスを炉内に吹込んで炉内雰
囲気を制御する方法において、主炉内雰囲気調整ガス供
給系とは別に、副炉内雰囲気調整用のCO2ガス供給系
を設置し、ガス分析計により測定された炉内CO2濃度
が予め設定された濃度になるよう、前記CO2ガス供給
系よりCO2ガスを炉内に吹込む方法を要旨とするもの
である。
[Means for Solving the Problems] This invention takes in the furnace atmosphere gas into a gas analyzer, performs gas analysis, and controls the furnace atmosphere by blowing atmosphere adjustment gas into the furnace according to the analysis gas concentration. In the method of The gist of this method is to blow CO2 gas into the furnace from the CO2 gas supply system.

【0009】[0009]

【作用】炉内雰囲気ガスのガス分析は、一般的には一台
のガス分析計を共用し、各ゾーンを切替ながら分析が行
われる。そして、各分析ガス成分濃度に基づいて、雰囲
気調整ガス供給系の調節弁を操作するのである。
[Operation] Gas analysis of the furnace atmosphere gas is generally carried out using one gas analyzer while switching between each zone. Then, the control valve of the atmosphere adjustment gas supply system is operated based on the concentration of each analysis gas component.

【0010】副炉内雰囲気調整用のCO2ガス供給系は
、各ゾーンに対する主炉内雰囲気調整ガス供給系に分岐
接続し、雰囲気調整ガス供給配管を共用することができ
る。各ゾーンの炉内CO2濃度を適切に制御する場合は
、ガス分析計により炉内のCO、CO2濃度を測定し、
炉内CO2濃度が設定値になるようCO2ガス供給系の
調節弁を操作する。
[0010] The CO2 gas supply system for adjusting the atmosphere in the auxiliary furnace can be branched and connected to the main furnace atmosphere adjustment gas supply system for each zone, so that the atmosphere adjustment gas supply piping can be shared. To appropriately control the CO2 concentration in the furnace in each zone, measure the CO and CO2 concentrations in the furnace with a gas analyzer,
Operate the control valve of the CO2 gas supply system so that the CO2 concentration in the furnace reaches the set value.

【0011】炉内CO2の設定値は、0.3〜0.4%
程度とする。これは、材料装入時、炉内に持込むO2に
より2CO+O2→2CO2の反応が起り、COの低下
が約0.3%、CO2の上昇が0.02%となり、この
時の炉内雰囲気ガスのカーボンポテンシャルの変動量は
、前記数1でK=1とした時、炉内CO2が0.3%の
時は−19となり品質上問題の限界であるが、炉内CO
2が0.2%の時は−24となり、品質上不良品発生の
可能性があるためである。
[0011] The set value of CO2 in the furnace is 0.3 to 0.4%.
degree. This is because when charging materials, the O2 brought into the furnace causes a reaction of 2CO + O2 → 2CO2, resulting in a decrease in CO of about 0.3% and an increase in CO2 of 0.02%. The amount of variation in carbon potential is -19 when the in-furnace CO2 is 0.3% when K = 1 in the above equation 1, which is the limit of quality problems, but the in-furnace CO2
This is because when 2 is 0.2%, it becomes -24, which may result in defective products in terms of quality.

【0012】このように、炉内CO2が一定レベル以下
に低下しないよう制御することにより、材料装入・抽出
時の炉内雰囲気の乱れを抑制し、雰囲気調整ガスの吹込
みによる炉内雰囲気調整が容易となる。また、不燃性の
CO2ガスを用いることにより、爆発等の危険性も皆無
である。
[0012] In this way, by controlling the CO2 in the furnace so that it does not fall below a certain level, disturbances in the furnace atmosphere during material charging and extraction can be suppressed, and the atmosphere in the furnace can be adjusted by blowing atmosphere adjustment gas. becomes easier. Furthermore, by using nonflammable CO2 gas, there is no risk of explosion or the like.

【0013】[0013]

【実施例】図1はこの発明方法を実施するための装置構
成例を示す概略図であり、1は材料搬送方向に複数のゾ
ーンに分割された連続式無酸化焼鈍炉、2は材料、3は
サンプルガス切替器、4はCO分析計、5はCO2分析
計、6は炉内雰囲気ガスのカーボンポテンシャル調節計
、7はCO2調節計、8はRxガス供給配管系、9はC
O2ガス供給配管系であり、CO2ガス供給系9は各R
xガス供給系8毎に設けられている。
[Example] Fig. 1 is a schematic diagram showing an example of the configuration of an apparatus for carrying out the method of the present invention, in which 1 is a continuous non-oxidizing annealing furnace divided into a plurality of zones in the material transport direction, 2 is a material; is a sample gas switch, 4 is a CO analyzer, 5 is a CO2 analyzer, 6 is a carbon potential controller for the furnace atmosphere gas, 7 is a CO2 controller, 8 is an Rx gas supply piping system, 9 is a C
This is an O2 gas supply piping system, and the CO2 gas supply system 9 is connected to each R
It is provided for each x gas supply system 8.

【0014】すなわち、連続式無酸化焼鈍炉1内に、R
xガス(無酸化雰囲気ガス)が流量調節弁V1を有する
供給配管系8より供給されるとともに、CO2ガスが流
量調節弁V2を有する供給配管系9より供給されるよう
に構成されている。サンプルガス切替器3は、各ゾーン
に対して配設されたサンプリング管3−1を介してサン
プリングされる炉内ガスを、分析対象ゾーン毎に切替え
てCO分析計4およびCO2分析計5に供給するごく構
成されている。
That is, in the continuous non-oxidation annealing furnace 1, R
The configuration is such that x gas (non-oxidizing atmospheric gas) is supplied from a supply piping system 8 having a flow rate control valve V1, and CO2 gas is supplied from a supply piping system 9 having a flow rate control valve V2. The sample gas switching device 3 switches the furnace gas sampled via the sampling pipe 3-1 arranged for each zone for each zone to be analyzed and supplies it to the CO analyzer 4 and the CO2 analyzer 5. It's extremely structured.

【0015】CO分析計4、CO2分析計5からの分析
結果は、それぞれ実績値としてカーボンポテンシャル調
節計6に与えられ、ここで前記式1により炉内雰囲気ガ
スのカーボンポテンシャルが算出され、その値と設定値
との比較がなされ、その差に応じて流量調節信号が流量
調節弁V1に出力される。また同時に、CO2分析値が
CO2調節計7に与えられ、ここで設定値と比較され、
炉内CO2濃度が設定値になるよう、流量調節信号が流
量調節弁V2に出力されるように構成されている。
The analysis results from the CO analyzer 4 and the CO2 analyzer 5 are respectively given as actual values to the carbon potential controller 6, where the carbon potential of the furnace atmosphere gas is calculated using the above formula 1, and the value is and a set value, and a flow rate adjustment signal is outputted to the flow rate adjustment valve V1 in accordance with the difference. At the same time, the CO2 analysis value is given to the CO2 controller 7, where it is compared with the set value,
The flow rate adjustment signal is configured to be output to the flow rate adjustment valve V2 so that the CO2 concentration in the furnace becomes a set value.

【0016】[0016]

【実施例1】図1の制御系により、連続式無酸化熱処理
炉(炉長40m、ゾーン数10)の炉内雰囲気制御を行
った時の熱処理履歴を図2に示す。また、比較のため、
従来法による熱処理履歴を図3に示す。本実施例におけ
る熱処理条件を表1にそれぞれ示す。
[Example 1] FIG. 2 shows a heat treatment history when the atmosphere in a continuous non-oxidizing heat treatment furnace (furnace length: 40 m, number of zones: 10) was controlled using the control system shown in FIG. 1. Also, for comparison,
Figure 3 shows the heat treatment history by the conventional method. Table 1 shows the heat treatment conditions in this example.

【0017】図2、図3の結果より明らかなごとく、す
なわち、従来法による場合は、炉内CO2が目標値0.
3%より低い0.2%であるため炉内雰囲気ガスのカー
ボンポテンシャルが制御不能となり、目標値と大幅にず
れたのに対し、本発明法によれば、炉内CO2を約0.
3%と高く保持できるため炉内雰囲気ガスのカーボンポ
テンシャル値をほぼ目標値に近付けることができ、炉内
雰囲気を安定に保持することができた。その結果、不良
品の発生頻度として、従来5%であったものが、3%に
低減した。
As is clear from the results shown in FIGS. 2 and 3, in the case of the conventional method, the CO2 in the furnace reaches the target value of 0.
Since it was 0.2%, which is lower than 3%, the carbon potential of the atmosphere gas in the furnace became uncontrollable and deviated significantly from the target value.However, according to the method of the present invention, the CO2 in the furnace was reduced to about 0.2%.
Since the carbon potential value of the furnace atmosphere gas could be maintained as high as 3%, the carbon potential value of the furnace atmosphere gas could be brought close to the target value, and the furnace atmosphere could be maintained stably. As a result, the frequency of defective products has been reduced from 5% to 3%.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【発明の効果】以上説明したごとく、この発明方法によ
れば、炉内雰囲気ガスのカーボンポテンシャルを一定レ
ベルに保持することができるので、材料の装入、抽出時
の炉内雰囲気の乱れを抑制し安定に維持することが可能
となり、脱炭および浸炭による不良品の発生を大幅に少
なくできる。また、この発明はRXガス吹込みによる炉
内雰囲気調整が容易であるとともに、CO2レベル確保
のためのガス吹込み時の爆発の危険性もなく安全性の面
でも有利である。
[Effects of the Invention] As explained above, according to the method of this invention, the carbon potential of the furnace atmosphere gas can be maintained at a constant level, thereby suppressing disturbances in the furnace atmosphere during charging and extraction of materials. This makes it possible to maintain stable performance, and significantly reduces the occurrence of defective products due to decarburization and carburization. Further, the present invention is advantageous in terms of safety because it is easy to adjust the atmosphere inside the furnace by blowing in RX gas, and there is no risk of explosion when gas is blowing in to ensure the CO2 level.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明法を実施するための装置構成例を示す
概略図である。
FIG. 1 is a schematic diagram showing an example of an apparatus configuration for carrying out the method of the present invention.

【図2】この発明法により無酸化熱処理炉の炉内雰囲気
制御を行った時の熱処理履歴を示す図である。
FIG. 2 is a diagram showing a heat treatment history when controlling the atmosphere in a non-oxidizing heat treatment furnace according to the method of the present invention.

【図3】従来法により無酸化熱処理炉の炉内雰囲気制御
を行った時の熱処理履歴を示す図である。
FIG. 3 is a diagram showing a heat treatment history when controlling the atmosphere in a non-oxidizing heat treatment furnace using a conventional method.

【符号の説明】[Explanation of symbols]

1    連続式無酸化熱処理炉 2    材料 4    CO分析計 5    CO2分析計 6    カーボンポテンシャル調節計7    CO
2調節計 8    RXガス供給配管系 9    CO2ガス供給配管系
1 Continuous non-oxidation heat treatment furnace 2 Material 4 CO analyzer 5 CO2 analyzer 6 Carbon potential controller 7 CO
2 Controller 8 RX gas supply piping system 9 CO2 gas supply piping system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  連続式無酸化熱処理炉内に主炉内雰囲
気調整ガスを吹込み、炉内雰囲気ガスをガス分析計に取
込んでガス分析を行うとともに、各分析ガス成分濃度に
基づいて炉内雰囲気を制御する方法において、主炉内雰
囲気調整ガス供給系とは別に、副炉内雰囲気調整用のC
O2ガス供給系を設置し、ガス分析計により測定された
炉内CO2濃度が予め設定された濃度になるよう、前記
CO2ガス供給系よりCO2ガスを炉内に吹込むことを
特徴とする連続式無酸化熱処理炉の炉内雰囲気制御方法
Claim 1: A main furnace atmosphere adjustment gas is blown into a continuous non-oxidizing heat treatment furnace, and the furnace atmosphere gas is taken into a gas analyzer for gas analysis. In the method for controlling the internal atmosphere, in addition to the main furnace atmosphere adjustment gas supply system, a gas supply system for adjusting the atmosphere in the auxiliary furnace
A continuous type characterized in that an O2 gas supply system is installed and CO2 gas is blown into the furnace from the CO2 gas supply system so that the CO2 concentration in the furnace measured by a gas analyzer becomes a preset concentration. A method for controlling the atmosphere inside a non-oxidizing heat treatment furnace.
JP3953091A 1991-02-08 1991-02-08 Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace Pending JPH04259324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3953091A JPH04259324A (en) 1991-02-08 1991-02-08 Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3953091A JPH04259324A (en) 1991-02-08 1991-02-08 Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace

Publications (1)

Publication Number Publication Date
JPH04259324A true JPH04259324A (en) 1992-09-14

Family

ID=12555602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3953091A Pending JPH04259324A (en) 1991-02-08 1991-02-08 Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace

Country Status (1)

Country Link
JP (1) JPH04259324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283116A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Method and device for heat treatment
JP2011042878A (en) * 2010-10-06 2011-03-03 Dowa Holdings Co Ltd Method and device for heat treatment
JP2015117396A (en) * 2013-12-17 2015-06-25 大同プラント工業株式会社 Continuous-type steel pipe annealing furnace atmosphere control method
CN112609056A (en) * 2021-01-07 2021-04-06 湖北中冶窑炉有限公司 Decarburization-preventing steel through type heat treatment system and heat treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283116A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Method and device for heat treatment
JP2011042878A (en) * 2010-10-06 2011-03-03 Dowa Holdings Co Ltd Method and device for heat treatment
JP2015117396A (en) * 2013-12-17 2015-06-25 大同プラント工業株式会社 Continuous-type steel pipe annealing furnace atmosphere control method
CN112609056A (en) * 2021-01-07 2021-04-06 湖北中冶窑炉有限公司 Decarburization-preventing steel through type heat treatment system and heat treatment method

Similar Documents

Publication Publication Date Title
CA1084392A (en) Methods for carburizing steel parts
US20080073002A1 (en) Carburization treatment method and carburization treatment apparatus
US8157561B2 (en) System for controlling atmosphere gas inside furnace
JPH04259324A (en) Method for controlling atmosphere in continuous type non-oxidizing heat treatment furnace
US8465603B2 (en) Method and device for controlling process gases for heat treatments of metallic materials/workpieces in industrial furnaces
US3522035A (en) Determining operation of furnace vessel
US4966632A (en) Process for the annealing treatment of metal strips
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
KR101909219B1 (en) Apparatus and method for treating gas in annealing furnace for decarbonization of electrical steel sheet
US6955730B2 (en) Method for enhancing the metallurigcal quality of products treated in a furnace
JPH0645867B2 (en) Atmosphere heat treatment control device
KR19980071377A (en) Atmosphere control method and apparatus in heat treatment furnace
KR20020092837A (en) A carburization treatment method
JPS5763641A (en) Controller for pressure in gas-water cooling furnace in continuous annealing furnace
JPS5716164A (en) Gas cementation treatment
EP0495151B1 (en) Method of heat treating in vacuum furnaces
JPS61174309A (en) Furnace pressure control device in converter waste gas treatment device
KR100985238B1 (en) Method for controlling the amount of supplying pulverized coal as to gas using ratio in blast furnace
JPH0853712A (en) Control of distribution of dew point in continuous decarburize-annealing furnace
JPH03111514A (en) Method for controlling atmosphere in continuous non-oxidizing annealing furnace
JPH0860254A (en) Method for controlling atmospheric flow in continuous annealing furnace
JPS5629668A (en) Carbon concn. controlling method of carburizing atmosphere
JPS61259860A (en) Method for controlling atmosphere in tundish or the like
JPH10102133A (en) Method for controlling decarburization to extra-low carbon steel
SU986874A1 (en) Method for controlling thermal conditions of cupola furnace in the mineral wool production