JPH04258260A - Polysaccharide gel and its production - Google Patents

Polysaccharide gel and its production

Info

Publication number
JPH04258260A
JPH04258260A JP3040892A JP4089291A JPH04258260A JP H04258260 A JPH04258260 A JP H04258260A JP 3040892 A JP3040892 A JP 3040892A JP 4089291 A JP4089291 A JP 4089291A JP H04258260 A JPH04258260 A JP H04258260A
Authority
JP
Japan
Prior art keywords
gel
polysaccharide
polyvalent metal
pressure treatment
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3040892A
Other languages
Japanese (ja)
Other versions
JP3164831B2 (en
Inventor
Toshiaki Shiotani
塩谷 敏明
Ryogo Hirano
平野 了悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP04089291A priority Critical patent/JP3164831B2/en
Publication of JPH04258260A publication Critical patent/JPH04258260A/en
Application granted granted Critical
Publication of JP3164831B2 publication Critical patent/JP3164831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)

Abstract

PURPOSE:To provide the subject gel having a high elastic modulus and excellent transparency and useful as a food raw material, etc., by mixing a prescribed amount of a multivalent metal salt with a prescribed amount of a polysaccharide capable of being gelled by the action of the ions of the multivalent metal, and subsequently subjecting the mixture to a high pressure treatment to form the gel. CONSTITUTION:A prescribed amount of a multivalent metal salt such as a Ca or Al salt is mixed with a prescribed amount of a polysaccharide such as polyuronide, alginic acid or acidic heteroglucan, capable of being gelled by the action of the ions of the multivalent metal, and the mixture is subjected to a high pressure treatment under a pressure of >=100MPa to substantially cause a gelling reaction for forming the objective gel.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高圧処理技術を応用す
るものであり、多価金属イオンの作用でゲル化する多糖
類ゲルおよびその製造方法に関する。本技術はゲルを用
いる食品、医薬品さらに固定化担体等の技術分野で利用
できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies high-pressure processing technology and relates to a polysaccharide gel that gels under the action of polyvalent metal ions and a method for producing the same. This technology can be used in technical fields such as food, medicine, and immobilization carriers that use gels.

【0002】0002

【従来の技術】従来よりゲルは多様な形態で利用され、
食品素材として用いられるほか保形材、接着材、カプセ
ル又はその被包材、酸素や微生物の固定化担体等として
用いられている。この様にゲルは広範に利用されること
から、その目的により要求される機能が異なり、耐熱性
、耐寒性、透明性、保水性、保形性、弾力性、官能適正
、耐塩性、耐酸性等の観点から適宜適正なゲル材及び調
製法が採用される。
[Prior Art] Gels have been used in various forms,
In addition to being used as a food material, it is also used as a shape-retaining material, an adhesive, a capsule or its wrapping material, and a carrier for immobilizing oxygen and microorganisms. As gels are widely used in this way, the required functions differ depending on the purpose, such as heat resistance, cold resistance, transparency, water retention, shape retention, elasticity, organoleptic suitability, salt resistance, and acid resistance. From these viewpoints, appropriate gel materials and preparation methods are adopted as appropriate.

【0003】ゲル材として用いられる原料としては、蛋
白質系ではゼラチン、アルブミン等、多糖類系ではでん
ぷん等のグルカン系、寒天やアラビアゴム等のガラクタ
ン系、ペクチンやアルギン酸等のポリウロン酸系等が知
られており、それぞれゲル化機構、ゲル特性等を異にす
る。例えば、溶解性利用型(寒天等)、疎水結合型(ア
ルブミン等)、水素結合型(高メトキシペクチン等)、
イオン結合型(アルギン酸等)等である。
Known raw materials used as gel materials include protein-based materials such as gelatin and albumin, polysaccharide-based materials such as glucan-based materials such as starch, galactan-based materials such as agar and gum arabic, and polyuronic acid-based materials such as pectin and alginic acid. They have different gelation mechanisms, gel properties, etc. For example, soluble type (agar, etc.), hydrophobic bond type (albumin, etc.), hydrogen bond type (high methoxy pectin, etc.),
These include ionic bond types (alginic acid, etc.).

【0004】中でもイオン結合型のものは、ゲル材とイ
オンの接触によりゲル化が起こり加熱処理を要しないこ
とから液液反応により各種カプセルを調製したり、熱変
性しやすい成分を取り込むゲル材として用いられる。
Among these, the ionic bond type gels due to contact between the gel material and ions and does not require heat treatment, so it can be used to prepare various capsules through liquid-liquid reactions, and as a gel material that incorporates components that are easily denatured by heat. used.

【0005】この様なイオン結合型ゲルの代表的なゲル
は多価金属イオン架橋型ゲルであるが、例えばアルギン
酸ゲルでは次の調製方法が知られている。
[0005] A typical example of such an ion-binding type gel is a polyvalent metal ion cross-linked type gel, and for example, the following preparation method is known for alginate gel.

【0006】■アルギン酸ナトリウム水溶液をカルシウ
ム塩水溶液中へ滴下する方法(特開昭47−25375
又は特公昭48−31907)。
■Method of dropping a sodium alginate aqueous solution into a calcium salt aqueous solution (Japanese Patent Laid-Open No. 47-25375
or Special Publication No. 48-31907).

【0007】■カルシウム塩水溶液をアルギン酸ナトリ
ウム水溶液中へ滴下する方法(特公昭48−16183
)。
■Method of dropping a calcium salt aqueous solution into a sodium alginate aqueous solution (Japanese Patent Publication No. 48-16183)
).

【0008】■アルギン酸ナトリウム水溶液にグルコノ
デクタラクトン(GDL)とクエン酸カルシウム等を添
加してから温度を上げることでGDLが分解してpHが
上がりクエン酸カルシウム等が解離してアルギン酸カル
シウムゲルを形成する方法(特公昭60−27520)
[0008] After adding gluconodetal lactone (GDL) and calcium citrate etc. to a sodium alginate aqueous solution and raising the temperature, GDL decomposes and the pH increases, dissociating calcium citrate etc. and forming a calcium alginate gel. Method of forming (Special Publication No. 60-27520)
.

【0009】アルギン酸ゲルに限らずその他の多価金属
イオン架橋型ゲルにおいても類似の手法が採用され得る
Similar techniques can be applied not only to alginate gels but also to other polyvalent metal ion crosslinked gels.

【0010】0010

【発明が解決しようとする課題】しかしながら、上記の
方法■,■では専らカプセル状のゲルに限定される。ア
ルギン酸とカルシウムとの反応が速く任意の形状への成
形が困難なためである。■ではこの点を若干改良し得る
が、本質的な反応原理は同一である為、収納容器面から
の制約があり又形状によりゲルが不均一化し得る。更に
■〜■のいずれも、一旦溶液を調製してから反応させゲ
ル化するため手間と時間を要しかつ、溶液の濃度に限度
があるため弾性率の高いゲルの調製が困難である。
[Problems to be Solved by the Invention] However, the above methods (1) and (2) are limited to capsule-shaped gels. This is because the reaction between alginic acid and calcium is fast and it is difficult to mold it into any desired shape. In (2), this point can be slightly improved, but since the essential reaction principle is the same, there are restrictions from the storage container surface, and the gel may become non-uniform depending on the shape. Furthermore, in all of (1) to (2), it is difficult to prepare a gel with a high elastic modulus because a solution is once prepared and then reacted to form a gel, which requires time and effort, and there is a limit to the concentration of the solution.

【0011】本発明は、アルギン酸ゲルに代表される多
価金属イオン架橋型ゲルにおける上記従来技術の実情に
鑑み、極めて簡略化された工程で任意形状に成形可能で
かつ、広範囲でゲル強度の調整が可能な他糖類ゲル製造
技術を提供するものである。
In view of the above-mentioned state of the art regarding polyvalent metal ion crosslinked gels such as alginate gels, the present invention has been developed to enable molding into any desired shape through extremely simplified steps and to adjust gel strength over a wide range. The present invention provides a technology for producing other saccharide gels that is capable of

【0012】0012

【課題を解決するための手段】本発明は、多糖類のゲル
であって高圧処理により強制的にゲル化した多糖類ゲル
であり、又このゲルをゲルの主骨格として含有するゲル
組成物である。更に、本発明は多価金属イオンの作用で
ゲル化し得る多糖類と多価金属塩を所定量混合し高圧処
理することにより実質的なゲル化反応を生起させゲルを
形成する工程を包含する多糖類ゲルの製造方法である。
[Means for Solving the Problems] The present invention is a polysaccharide gel that is forcibly gelled by high-pressure treatment, and a gel composition containing this gel as the main skeleton of the gel. be. Furthermore, the present invention provides a polysaccharide which includes a step of mixing a predetermined amount of a polysaccharide and a polyvalent metal salt that can be gelled by the action of a polyvalent metal ion, and treating the mixture under high pressure to cause a substantial gelation reaction to form a gel. This is a method for producing saccharide gel.

【0013】本発明によれば、多糖類溶液と多価金属イ
オン溶液をそれぞれ調製し液液反応させるという操作が
不要で、ゲル化の全工程をシングルライン化することが
でき、工程の大幅な簡略化を図ることができる。更に、
得られるゲル形状には液液反応に基づく制約は何らなく
、基本的に任意形状とすることが可能で、かつ、ゲル強
度を広い範囲で調整することも可能となる。
According to the present invention, it is not necessary to separately prepare a polysaccharide solution and a polyvalent metal ion solution and cause a liquid-liquid reaction, and the entire gelation process can be performed in a single line, resulting in a significant reduction in process steps. Simplification can be achieved. Furthermore,
There are no restrictions on the shape of the resulting gel based on the liquid-liquid reaction, and it is basically possible to have any shape, and it is also possible to adjust the gel strength within a wide range.

【0014】この様な作用効果を奏する理由は明確では
ないが、多糖類と多価金属塩が水の存在下で高圧処理さ
せると、それぞれ水和反応とイオンの解離が生起し、両
者が同時に促進され、この結果、イオン結合による架橋
反応を強制的に起こすことができるためと考えられる。 従って、従来技術では全く予測しえないような高濃度、
例えば水和に足りるだけの水の存在下においてもゲル化
が可能となる。
The reason for such effects is not clear, but when polysaccharides and polyvalent metal salts are treated at high pressure in the presence of water, hydration reactions and ion dissociation occur, respectively, and both occur simultaneously. This is thought to be due to the fact that the cross-linking reaction due to ionic bonding can be forced to occur. Therefore, high concentrations that could not be predicted using conventional technology,
For example, gelation is possible even in the presence of water sufficient for hydration.

【0015】本発明によれば、広範囲な技術分野におい
て利用可能な多糖類ゲルを容易に提供し得る。即ち、本
発明の多糖類ゲルは高い弾性率を有し、又透明性にも優
れかつ他の成分を含有させることも可能となるため、食
品素材、医薬品の被包材等、更に反応活性物質の担持体
として広く用いることができる。
According to the present invention, a polysaccharide gel that can be used in a wide range of technical fields can be easily provided. That is, the polysaccharide gel of the present invention has a high elastic modulus, excellent transparency, and can contain other ingredients, so it can be used as a food material, a packaging material for pharmaceuticals, and even reactive substances. It can be widely used as a support for.

【0016】以下本発明を詳述する。The present invention will be explained in detail below.

【0017】まず、本発明の多糖類ゲルは高圧処理によ
り強制的にゲル化したものであることを特徴とする。 「高圧処理」とは、被処理物に対し圧力をかけることを
目的とする処理をいう。従って、付随的に加熱されたり
、他の物理的作用、例えば剪断力がかかる等はそれを目
的としないかぎりにおいては許容される。又、「高圧」
とは、その圧力により所望の反応が生ずる程の圧力をい
い、一義的に規定されるものではないが、本発明におい
ては通常100MPa以上の圧力である。高圧処理につ
いては後述する。
First, the polysaccharide gel of the present invention is characterized in that it is forcibly gelled by high pressure treatment. "High-pressure treatment" refers to treatment whose purpose is to apply pressure to an object to be treated. Therefore, incidental heating and other physical effects, such as application of shearing forces, are permissible as long as this is not the intended purpose. Also, “high pressure”
This refers to a pressure sufficient to cause a desired reaction, and although it is not uniquely defined, in the present invention it is usually a pressure of 100 MPa or more. The high pressure treatment will be described later.

【0018】「高圧処理により強制的にゲル化」すると
は、高圧処理を直接の原因としてゲル化し高圧処理を実
施しないかぎりゲル化がおこらないことをいう。従って
、従来技術における液液反応、即ち、多糖類水溶液と多
価金属塩水溶液との反応のように、基本的に混合するの
みで反応が生起しゲル化する場合等を含まない。換言す
れば、そのままではゲル化しない状態にある多糖類、多
価金属塩の混合系に高圧を加えることにより強制的にゲ
ル化させることをいう。但し、高圧処理はゲル化の直接
原因になっている限りゲル化前後に前処理、後処理等と
して高圧処理を施すことを排除するものでない。
[0018] "Forcibly gelled by high-pressure treatment" means that gelation is caused directly by high-pressure treatment and gelation does not occur unless high-pressure treatment is performed. Therefore, the present invention does not include liquid-liquid reactions in the prior art, ie, cases where reaction occurs and gelation occurs simply by mixing, such as the reaction between an aqueous polysaccharide solution and an aqueous polyvalent metal salt solution. In other words, it refers to forcibly gelling a mixed system of polysaccharides and polyvalent metal salts, which do not gel as they are, by applying high pressure. However, as long as high-pressure treatment is a direct cause of gelation, it is not excluded that high-pressure treatment is performed as pre-treatment, post-treatment, etc. before and after gelation.

【0019】ゲル化前に高圧処理すれば、その後、多価
金属イオン添加でゲル化が促進されたり、又、ゲル化後
に高圧処理するとゲル強度を増加させたり形状の再形成
を行い得ることは既に判明している。
If high-pressure treatment is applied before gelation, then gelation can be promoted by adding polyvalent metal ions, and high-pressure treatment after gelation can increase gel strength or reshape the gel. It's already clear.

【0020】「多糖類のゲル」とは、ゲルの主成分が多
価金属イオン架橋型ゲルから成る多糖類ゲルをいう。多
価金属イオンは多糖類の反応基(例えばカルボキシル基
)とイオン結合を生じ、架橋構造を構築する。従って、
ゲルの主成分が多価金属イオン架橋によるものであれば
副次的に生ずる多糖類分子の水素結合による架橋構造等
を含んでいてもよい。多糖類ゲルのゲル構造は複雑であ
り単一のメカニズムにより構成されることは殆どないか
らである。又、該ゲルに他の成分が含有されていてもゲ
ル主成分が多価金属イオンゲルであれば良い。
[0020] "Polysaccharide gel" refers to a polysaccharide gel whose main component is a polyvalent metal ion crosslinked gel. The polyvalent metal ion forms an ionic bond with a reactive group (for example, a carboxyl group) of the polysaccharide, thereby constructing a crosslinked structure. Therefore,
If the main component of the gel is crosslinked with polyvalent metal ions, it may contain a crosslinked structure formed by hydrogen bonding of polysaccharide molecules as a secondary component. This is because the gel structure of polysaccharide gel is complex and is rarely constructed by a single mechanism. Further, even if the gel contains other components, it is sufficient if the main component of the gel is a polyvalent metal ion gel.

【0021】「多価金属イオン」とは、目的とするゲル
により適宜選択されるものであり、例えばカルシウム、
アルミニウム、バリウム、銅、鉄、亜鉛、ストロンチウ
ム、ニッケル等の多価金属イオンをいう。多価金属イオ
ンの種類によりゲル強度等が影響を受け、又、ゲルの用
途によっては使用が実用上困難なものもあるので、この
点を考慮する。実用的でかつイオン結合を形成しやすい
イオンとしてはカルシウムを挙げることができる。これ
ら多価金属イオンは塩や水溶液の形で供給されれば充分
である。製造方法については後述する。
[0021] The "polyvalent metal ion" is selected as appropriate depending on the intended gel, and includes, for example, calcium,
Refers to polyvalent metal ions such as aluminum, barium, copper, iron, zinc, strontium, and nickel. Gel strength etc. are affected by the type of polyvalent metal ion, and some gels may be practically difficult to use depending on their purpose, so this point should be taken into consideration. Calcium is a practical ion that easily forms ionic bonds. It is sufficient if these polyvalent metal ions are supplied in the form of a salt or an aqueous solution. The manufacturing method will be described later.

【0022】「多糖類」とは、多価金属イオン架橋型ゲ
ルを形成し得る多糖類をいう。従って、多価金属イオン
がイオン結合し得る反応基(架橋点)を持つことが必要
である。反応基としては、カルボキシル基、硫酸基、ア
ミノ基等を挙げることができる。これらを分子内に有す
る多糖類としては、酸性ヘテログリカンが代表的であり
、アルギン酸、ペクチン、セルロース誘導体、キトサン
、キサンタンガム、ローカストビーンガム、カードラン
、ジェランガム、トラカントガム等植物性多糖類を挙げ
ることができる。但し、場合によりコンドロイチン等の
動物性多糖類を用いてもよい。  又、高圧処理の観点
からすれば、好ましくは高圧下でゲル組織が脆弱化しな
いものであり、換言すれば、高圧下で架橋点としての多
価金属イオンの活性が促進されたり、保水性等に影響を
与えない等である。表1に高圧によるゲルの弾性率の変
化の一例を示す(ゼラチン以外は酸性ヘテログリカン)
[0022] "Polysaccharide" refers to a polysaccharide capable of forming a polyvalent metal ion crosslinked gel. Therefore, it is necessary for the polyvalent metal ion to have a reactive group (crosslinking point) capable of ionically bonding. Examples of the reactive group include a carboxyl group, a sulfate group, and an amino group. Typical polysaccharides containing these in their molecules are acidic heteroglycans, and include vegetable polysaccharides such as alginic acid, pectin, cellulose derivatives, chitosan, xanthan gum, locust bean gum, curdlan, gellan gum, and tracanth gum. can. However, animal polysaccharides such as chondroitin may be used depending on the case. In addition, from the viewpoint of high-pressure treatment, it is preferable that the gel structure is not weakened under high pressure.In other words, under high pressure, the activity of polyvalent metal ions as crosslinking points is promoted, and water retention etc. etc. does not affect. Table 1 shows an example of changes in elastic modulus of gel due to high pressure (other than gelatin is acidic heteroglycan)
.

【0023】[0023]

【表1】     表1     ─────────────────────
─────      サンプル          
            弾性×10−5[N/m2]
      (濃度)               
       未処理      高圧処理#    
   ──────────────────────
─────      アルギン酸(2%*)    
      1.68        3.10   
         ペクチン(2%*)       
     1.24        2.06    
        ジェランガム(1%*)      
  0.391       0.399      
     κ−カラギーナン(2%)      0.
498       0.432          
 寒天(2%  )                
0.247       0.271        
   ゼラチン(10%)            0
.191       0.236         
─────────────────────────
──      *2%CaCl2         
        #400MPa,30秒この表は常法
に従い所定濃度に調製しゲル化させたもの(1×1×1
cm)に400MPa,30秒の静水圧を加えた際のゲ
ル弾性率(レオナ−RE3305(株)山電にて測定)
の変化を示したものである。この表から高圧処理により
ゲル濃度の増大するものと減少するものがあるのが判る
[Table 1] Table 1 ──────────────────────
────── Sample
Elasticity x 10-5 [N/m2]
(concentration)
Untreated High pressure treated #
──────────────────────
────── Alginic acid (2%*)
1.68 3.10
Pectin (2%*)
1.24 2.06
Gellan gum (1%*)
0.391 0.399
κ-carrageenan (2%) 0.
498 0.432
Agar (2%)
0.247 0.271
Gelatin (10%) 0
.. 191 0.236
──────────────────────────
── *2%CaCl2
#400MPa, 30 seconds This table shows gelatinized gels (1 x 1 x 1
Gel elastic modulus when applying hydrostatic pressure of 400 MPa for 30 seconds to cm) (measured by Leona-RE3305 Yamaden Co., Ltd.)
This shows the changes in From this table, it can be seen that the gel concentration increases in some cases and decreases in others due to high pressure treatment.

【0024】このことより、本発明においては、多価金
属イオンでゲル化し得る多糖類であれば原則的に用い得
るが、ゲル強度の向上の観点からすれば高圧処理により
ゲルが脆弱化しないようなものが好ましい。即ち、高圧
処理により多糖類がゲル化しても高圧化でゲルが脆弱化
すれば、一定以上の強度を有するゲルの調製が困難とな
り、又処理時間も架橋反応に充分なだけとれない場合も
ありうる。表1からも明らかであるが、好ましいヘテロ
グリカンとしてはアルギン酸やペクチン等のウロン酸に
富むポリウロニドである。
From this, in principle, any polysaccharide that can be gelled with polyvalent metal ions can be used in the present invention, but from the viewpoint of improving gel strength, it is necessary to prevent the gel from becoming brittle due to high pressure treatment. Preferably. That is, even if a polysaccharide is gelled by high-pressure treatment, if the gel becomes brittle due to high pressure, it becomes difficult to prepare a gel with strength above a certain level, and the treatment time may not be sufficient for cross-linking reaction. sell. As is clear from Table 1, preferred heteroglycans are polyuronides rich in uronic acids such as alginic acid and pectin.

【0025】ポリウロニドはウロン酸に富み分子内にイ
オン結合を担うカルボキシル基を持つ。ポリウロニドと
しては、高メトキシペクチン、低メトキシペクチン、ア
ルギン酸とその誘導体、トラカントガム等を挙げる事が
できる。特に、カルボキシル基が多い低メトキシペクチ
ン、アルギン酸が好ましい。これらを用いることにより
高圧処理をより効果的に行うことができ、更にゲル化後
に再度高圧処理を施しゲルを安定化させたり、所望の形
状に再形成することも可能である。従って、一般的な範
ちゅうに入る程度で良い。
[0025] Polyuronide is rich in uronic acid and has carboxyl groups responsible for ionic bonding within the molecule. Examples of polyuronides include high methoxy pectin, low methoxy pectin, alginic acid and its derivatives, tracanth gum, and the like. In particular, low methoxy pectin and alginic acid, which have many carboxyl groups, are preferred. By using these, high-pressure treatment can be performed more effectively, and furthermore, it is also possible to perform high-pressure treatment again after gelation to stabilize the gel or to reform it into a desired shape. Therefore, it is sufficient that it falls within the general range.

【0026】又、アルギン酸ゲルではこれを構成するマ
ンヌロン酸(M)とグルロン酸(G)の比によりゲルの
性質が相違するのでその点を考慮する。例えば、M/G
比が0.2程度では耐塩性を有するが1.0程度になる
と耐塩性を著しく減じる。従って、ゲルの用途に応じて
適宜多糖類を選択する。
[0026]Alginate gel has different properties depending on the ratio of mannuronic acid (M) and guluronic acid (G) that constitute it, so this should be taken into consideration. For example, M/G
When the ratio is about 0.2, salt resistance is achieved, but when the ratio is about 1.0, salt resistance is significantly reduced. Therefore, polysaccharides are appropriately selected depending on the intended use of the gel.

【0027】次に、本発明の「多糖類ゲル」について説
明する。
Next, the "polysaccharide gel" of the present invention will be explained.

【0028】本ゲルは高圧処理により強制的にゲル化し
たものである。従って、多糖類の濃度等は従来技術では
全く予想し得ない程度まで高めることができ、極めて高
いゲル強度のゲルとし得る。これは、高圧処理により強
制的に多糖類を水和し同時に多価金属イオンを解離する
ことにより、架橋反応を起こさせることによる。よって
、従来技術における液液反応等を全く要しない。多糖類
が水和するに足る水が存在すればよいからである。水和
以外に用いられる水、例えば多価金属イオンが溶解する
ための溶媒としての水や均一分散系を形成するための分
散媒としての水は不要である。
[0028] This gel was forcibly gelled by high-pressure treatment. Therefore, the concentration of polysaccharide, etc. can be increased to a degree that could not be predicted using conventional techniques, and a gel with extremely high gel strength can be obtained. This is because the polysaccharide is forcibly hydrated by high-pressure treatment and at the same time polyvalent metal ions are dissociated, thereby causing a crosslinking reaction. Therefore, liquid-liquid reactions and the like in the prior art are not required at all. This is because there is only need to be enough water to hydrate the polysaccharide. Water used for purposes other than hydration, such as water as a solvent for dissolving polyvalent metal ions or water as a dispersion medium for forming a homogeneous dispersion system, is unnecessary.

【0029】従って、所謂粉々混合が可能である。これ
は、本発明においては、少なくともゲルを形成せるに足
る架橋構造を構築するだけの架橋点を水和する水分子と
多価金属イオンが必要な以外は多糖類濃度を高めること
ができる。
Therefore, so-called powder mixing is possible. This is because in the present invention, the polysaccharide concentration can be increased except that water molecules and polyvalent metal ions are required to hydrate at least enough crosslinking points to construct a crosslinked structure sufficient to form a gel.

【0030】但し、ゲル強度、ゲル透明性等のゲル物性
は成分上は本質的に多糖類、多価金属イオン、水の各濃
度の相互関係で決まるため、例えばゲル強度の弱いゲル
を調製するのであれば溶媒又は分散媒として水を適量存
在させる。即ち、前記成分のバランスに応じてゲルの性
状を調整しうる。但し、成分以外でも高圧処理の圧力、
時間によっても大きくゲル性状は変化する。
However, gel physical properties such as gel strength and gel transparency are essentially determined by the mutual relationship between the concentrations of polysaccharides, polyvalent metal ions, and water; therefore, for example, a gel with weak gel strength may be prepared. If so, an appropriate amount of water should be present as a solvent or dispersion medium. That is, the properties of the gel can be adjusted depending on the balance of the components. However, in addition to the ingredients, the pressure of high pressure treatment,
The gel properties change greatly depending on time.

【0031】水の存在量が不充分な場合はその程度によ
りゲル形成不可能な状態から塑性で脆く硬いゲルまで性
状が変わる。
When the amount of water present is insufficient, the properties change from a state in which gel formation is impossible to a plastic, brittle, and hard gel depending on the degree.

【0032】3成分とゲル性状との具体的な関係は用い
る多糖類の種類(架橋点となる反応基の構造及び数等)
、多価金属イオンの種類、水の存在状態により個別的に
決まる。例えば、アルギン酸ではゲル化に要するアルギ
ン酸の濃度は0.4〜4重量%程度であり、低メトキシ
ペクチンでは同様に1〜10重量%程度である。多価金
属イオンの濃度は原理的には多糖類の有する反応基によ
り決まってくるが例えば、アルギン酸をカルシウムイオ
ンで架橋する場合ではアルギン酸分子の繰り返し単位(
マンヌロン酸あるいはグルロン酸)2つに対してカルシ
ウムイオン1つが理論上の当量濃度となる。これは1単
位中にカルボキシル基を1つ持ちカルシウムイオンが2
価であるためである。従って、通常はアルギン酸1モル
に対してカルシウム0.5モルに相当する量関係である
。低メトキシペクチン等の場合も同様の原理に基づいて
実施できる。但し、多価金属イオンを塩から供給する場
合、その解離率は高圧下において100%に達するとは
限らないので、この点を実際上は考慮する。
The specific relationship between the three components and gel properties depends on the type of polysaccharide used (structure and number of reactive groups that serve as crosslinking points, etc.)
, is determined individually depending on the type of polyvalent metal ion and the state of existence of water. For example, with alginic acid, the concentration of alginic acid required for gelation is about 0.4 to 4% by weight, and with low methoxy pectin, it is similarly about 1 to 10% by weight. In principle, the concentration of polyvalent metal ions is determined by the reactive groups possessed by polysaccharides; for example, when alginic acid is crosslinked with calcium ions, the concentration of polyvalent metal ions is
The theoretical equivalent concentration is one calcium ion for two (mannuronic acid or guluronic acid). It has one carboxyl group in one unit and two calcium ions.
This is because it is valuable. Therefore, the amount relationship is usually equivalent to 0.5 mol of calcium per 1 mol of alginic acid. In the case of low methoxy pectin, etc., it can be carried out based on the same principle. However, when polyvalent metal ions are supplied from salt, the dissociation rate does not necessarily reach 100% under high pressure, so this point is taken into consideration in practice.

【0033】ここで、多価金属イオンが最適濃度より少
ない場合はゲル化は弱くなり、一方多い場合はカルシウ
ム等が析出し白い点としてゲル中に残在し均質ゲルにな
りがたい。但し、ゲルの含水量が高い場合はカルシウム
等は析出することなくゲル中のカルシウム濃度を高める
ことが可能である。含水量が高ければゲル強度は低下す
る。
[0033] If the polyvalent metal ion concentration is less than the optimum concentration, the gelation will be weak, whereas if it is higher than the optimum concentration, calcium etc. will precipitate and remain in the gel as white dots, making it difficult to form a homogeneous gel. However, when the water content of the gel is high, it is possible to increase the calcium concentration in the gel without precipitating calcium or the like. The higher the water content, the lower the gel strength.

【0034】多糖類及び多価金属イオン濃度(水を溶媒
又は分散媒とした場合)とゲル性状との関係の一例を次
に示す。
An example of the relationship between polysaccharide and polyvalent metal ion concentrations (when water is used as a solvent or dispersion medium) and gel properties is shown below.

【0035】図1は動的弾性率(縦型自動粘弾性測定装
置VEM−800D,横浜システム研究所)に及ぼすア
ルギン酸及びクエン酸カルシウム濃度の影響を示す。ア
ルギン酸の濃度は大きい程、弾性率は高くなるが、カル
シウム濃度は一定の値で弾性率はピークとなりその後濃
度を上げても弾性率は上昇せず、返って減少するが、全
体として弾性率は5.8×105 dyn/cm2 程
度の範囲まで調整可能なことが判る。
FIG. 1 shows the influence of alginic acid and calcium citrate concentrations on dynamic elastic modulus (vertical automatic viscoelasticity measuring device VEM-800D, Yokohama System Research Institute). The higher the concentration of alginic acid, the higher the elastic modulus, but when the calcium concentration is at a constant value, the elastic modulus peaks, and even if the concentration is increased thereafter, the elastic modulus does not increase and instead decreases, but overall the elastic modulus is It can be seen that adjustment is possible up to a range of about 5.8×105 dyn/cm2.

【0036】参考写真は図1に相当する濃度において得
られた本発明のゲルの外観を示す写真である。ゲルの透
明性はカルシウム濃度により依存し、カルシウム濃度が
高い場合は塑性の脆いゲルとなる傾向があることが判る
。この様な透明性は従来技術では得ることが困難なもの
であった。
The reference photograph is a photograph showing the appearance of the gel of the present invention obtained at a concentration corresponding to that shown in FIG. It can be seen that the transparency of the gel depends on the calcium concentration, and when the calcium concentration is high, the gel tends to be plastic and brittle. Such transparency has been difficult to obtain with conventional techniques.

【0037】又、例えば、アルギン酸を用いたゲルでは
アルギン酸1〜15%、カルシウム0.5mM〜2mM
程度の範囲においてゼラチン風の外観及びテクスチャー
を有するものとなる。
[0037] For example, in a gel using alginic acid, alginic acid 1 to 15%, calcium 0.5mM to 2mM
It has a gelatin-like appearance and texture within a range of degrees.

【0038】このゲルは耐熱性であるから、従来のゼラ
チン及びアルギン酸ゲルではみられなかった特性を有す
るゲルである。
Since this gel is heat resistant, it has properties not seen in conventional gelatin and alginate gels.

【0039】更に、本発明のゲル組織構造を透析法によ
るゲルと電子顕微鏡を用い対比観察したものを図2及び
図3に示す。透析法とは、透析チューブにアルギン酸ナ
トリウム水溶液を密封し塩化カルシウム水溶液等の中に
浸漬することで透析チューブを介してアルギン酸カルシ
ウムゲルを形成する方法である。透析法のものはアルギ
ン酸ナトリウム3%、塩化カルシウム3%、一方、本発
明のもの(1000MPa,30分間処理)はアルギン
酸ナトリウム1%、クエン酸カルシウム1%であり、ア
ルギン酸はどちらもM/G比が0.2である。本発明の
ゲルでは透析法に比し、アルギン酸濃度が1/3にすぎ
ないのに、ネットワークは緻密で、均一な組織を認める
ことができる。但し、高圧処理の圧力の大きさ、処理時
間によりネットワークの性状は当然相違するので、本発
明のすべてのゲルにおいてこれと同じネットワークが観
察できる訳ではないが、同一傾向を明確に認めることが
できる。なお、図2及び3の電子顕微鏡写真はスリーズ
レプリカ法によりサンプル処理し観察したものである。
Further, FIGS. 2 and 3 show comparative observations of the gel tissue structure of the present invention using a dialysis gel and an electron microscope. The dialysis method is a method in which a dialysis tube is sealed with a sodium alginate aqueous solution and immersed in a calcium chloride aqueous solution or the like to form a calcium alginate gel through the dialysis tube. The dialysis method contains 3% sodium alginate and 3% calcium chloride, while the method of the present invention (processed at 1000 MPa for 30 minutes) contains 1% sodium alginate and 1% calcium citrate, and both alginic acids have a M/G ratio. is 0.2. In the gel of the present invention, although the alginate concentration is only 1/3 of that in the dialysis method, the network is dense and a uniform structure can be observed. However, since the properties of the network naturally differ depending on the pressure level and processing time of the high-pressure treatment, the same network cannot be observed in all gels of the present invention, but the same tendency can be clearly recognized. . Note that the electron micrographs in FIGS. 2 and 3 were obtained by processing and observing samples using the Three's replica method.

【0040】本発明のゲルのもう1つの特徴は多価金属
イオンの供給源として用いるその塩にある。即ち、本発
明においては、高圧処理により強制的にゲルを形成する
ため、多価金属塩は、必ずしも可溶性であることを要し
ない。従来の液液反応に基づく方法や透析法においては
、まず多価金属イオンがゲル化反応の前に解離していな
ければならないため、前提として用いる塩は水可溶性で
ある。例えば、クエン酸カルシウムの溶解度は0.1%
程度であるので、これを用いてカルシウム濃度をそれ以
上上げることは困難で、従って、多糖類濃度も一定以上
増加させることができず、ゲルの弾性を調製できる範囲
は限定的なものとなる。一方、本発明においては、高圧
処理により多価金属イオンの解離が促進されるので、水
難溶性の塩を用いることが可能である。
Another feature of the gel of the present invention is its salt, which serves as a source of polyvalent metal ions. That is, in the present invention, since a gel is forcibly formed by high pressure treatment, the polyvalent metal salt does not necessarily need to be soluble. In conventional methods based on liquid-liquid reactions and dialysis methods, the polyvalent metal ions must first be dissociated before the gelation reaction, so the salt used as a premise is water-soluble. For example, the solubility of calcium citrate is 0.1%
Therefore, it is difficult to increase the calcium concentration any further using this method, and therefore, the polysaccharide concentration cannot be increased beyond a certain level, and the range in which the elasticity of the gel can be adjusted is limited. On the other hand, in the present invention, since dissociation of polyvalent metal ions is promoted by high-pressure treatment, it is possible to use a salt that is sparingly water-soluble.

【0041】この点において、本発明のゲルは従来のも
のと大きく相違し、これはゲル中に存在するアニオン化
合物を分析することで検証し得るものである。
In this respect, the gel of the present invention is significantly different from conventional gels, and this can be verified by analyzing the anionic compounds present in the gel.

【0042】次の上記多糖類ゲルの製造方法について説
明する。
[0042] Next, the method for producing the above polysaccharide gel will be explained.

【0043】本発明の方法は基本的に、多価金属イオン
の作用でゲル化し得る多糖類と多価金属塩を所定量混合
し水の存在下で高圧処理することにより実質的なゲル化
反応を生起させゲルを形成する工程を包含する多糖類ゲ
ルの製造方法である。
The method of the present invention basically involves mixing a predetermined amount of a polysaccharide and a polyvalent metal salt that can be gelled by the action of polyvalent metal ions, and treating the mixture at high pressure in the presence of water to cause a substantial gelation reaction. This is a method for producing a polysaccharide gel, which includes a step of generating a polysaccharide gel to form a gel.

【0044】ここに「多価金属イオンの作用でゲル化し
得る多糖類」とは前述した多糖類と同義である。「多価
金属塩」とは、前述した多価金属イオンの供給源となり
得る塩をいい、例えば、クエン酸、乳酸、グルコン酸、
リンゴ酸等の有機酸塩、塩化物、リン酸塩等の無機化合
物を挙げることができる。カルシウムを例にとれば、ク
エン酸カルシウム、リン酸水素カルシウム、乳酸カルシ
ウム、グルコン酸カルシウム、塩化カルシウムを好まし
いものとして挙げ得る。これらは、高圧処理により多糖
類の実質的ゲル化が始まるべく、高圧下で金属イオン(
カルシウム)を解離するからである。クエン酸カルシウ
ム、リン酸水素カルシウムは、一般的に難水溶性である
が、高圧下では金属イオンを解離する。乳酸カルシウム
、グルコン酸カルシウムは加熱すれば容易に可溶化し、
一般には可溶性として分類されるものの溶解率は低いも
のである。
[0044] The term "polysaccharide that can be gelled by the action of polyvalent metal ions" herein has the same meaning as the polysaccharide described above. "Polyvalent metal salt" refers to a salt that can be a source of the aforementioned polyvalent metal ions, such as citric acid, lactic acid, gluconic acid,
Examples include organic acid salts such as malic acid, and inorganic compounds such as chlorides and phosphates. Taking calcium as an example, preferred examples include calcium citrate, calcium hydrogen phosphate, calcium lactate, calcium gluconate, and calcium chloride. These metal ions (
This is because it dissociates calcium). Calcium citrate and calcium hydrogen phosphate are generally poorly water soluble, but dissociate metal ions under high pressure. Calcium lactate and calcium gluconate are easily solubilized by heating.
Although they are generally classified as soluble, their dissolution rate is low.

【0045】水溶解性の低い多価金属塩を用いた場合は
、多糖類との混合において水分散系を採用しても高圧処
理前にゲル化反応が進行することがないので、取扱いが
便利であり、高圧処理に至るまでに多糖類と充分に均一
混合することが可能である。ここで「水溶解性が低い」
とは、高圧処理に至る前に水分散系とした場合の溶解性
が低いことをいう。従って、該水分散系の温度、pHの
値等により金属塩の溶解性が抑制されているものでもよ
い。
When a polyvalent metal salt with low water solubility is used, it is convenient to handle because the gelation reaction does not proceed before high pressure treatment even if an aqueous dispersion system is used for mixing with polysaccharides. Therefore, it is possible to mix sufficiently and uniformly with the polysaccharide before high-pressure treatment. Here, "low water solubility"
This means that the solubility is low when it is made into an aqueous dispersion system before high-pressure treatment. Therefore, the solubility of the metal salt may be suppressed by the temperature, pH value, etc. of the aqueous dispersion system.

【0046】又、用いる多価金属イオンの種類によりゲ
ル性状が異なるが、更に塩の種類によっても異なる。例
えば、アルギン酸にクエン酸カルシウムを用いると弾力
性に富むゲルとなり、塩化カルシウムを用いると硬いゲ
ルとなる等である。
[0046] Furthermore, the gel properties vary depending on the type of polyvalent metal ion used, and further vary depending on the type of salt. For example, when calcium citrate is used in alginic acid, a highly elastic gel is obtained, and when calcium chloride is used, a hard gel is obtained.

【0047】この他、高圧処理時の金属イオンの解離を
促進し、その前の段階では解離を抑制するという観点か
ら、又、ゲル自体の食品としての価値を高めるという観
点から各種塩類を含む食品素材、例えば粉乳、チーズ、
濃縮乳、香辛料など塩類の含量が比較的高く、それを添
加することによって必要な多価金属イオンを最終的に供
給できるものであれば用いることができ、これらのもの
も本発明でいう多価金属塩に含める。
[0047] In addition, foods containing various salts are used from the viewpoint of promoting the dissociation of metal ions during high-pressure treatment and suppressing the dissociation in the previous stage, and from the viewpoint of increasing the value of the gel itself as a food. Ingredients, such as powdered milk, cheese,
Any product can be used as long as it has a relatively high salt content, such as concentrated milk or spices, and by adding it, the necessary polyvalent metal ions can be finally supplied. Included in metal salts.

【0048】次に、多糖類と多価金属塩を「所定量」混
合するとは、前述した通りの関係に基づいて調製する意
である。
Next, "mixing a predetermined amount" of a polysaccharide and a polyvalent metal salt means that they are prepared based on the relationship as described above.

【0049】「混合し水の存在下で高圧処理する」とは
、少なくとも高圧処理時には水を含有した混合系を成し
ていることをいう。多価金属イオンの解離と多糖類の水
和が高圧下で同時進行し得る限り、事前に均一な水分散
に調製してもよいし、一方を水に分散して、後他方を加
え更に混合してもよい。但し、高圧処理前のゲル化反応
を抑制するという観点から、粉粉混合後水に分散するこ
とが好ましい。粉粉混合によれば、この段階でゲル化に
実質的悪影響を及ぼさないか、又は意図的に何らかの影
響を付与するような成分を添加することができる。例え
ば、栄養強化のための鉄、銅等の微量元素等である。 他の成分の添加は粉粉混合に限らず、分散媒中に事前に
溶解、分散させておいてもよい。
[0049] "Mixing and high-pressure treatment in the presence of water" means that a mixed system containing water is formed at least during high-pressure treatment. As long as the dissociation of polyvalent metal ions and the hydration of polysaccharides can proceed simultaneously under high pressure, a uniform water dispersion may be prepared in advance, or one may be dispersed in water and then the other added and further mixed. You may. However, from the viewpoint of suppressing the gelation reaction before high-pressure treatment, it is preferable to disperse the powder in water after mixing the powder. According to powder mixing, it is possible to add components at this stage that either do not have a substantial adverse effect on gelation, or may intentionally have some effect on gelation. For example, trace elements such as iron and copper for nutritional enrichment. The addition of other components is not limited to powder mixing, and may be dissolved and dispersed in a dispersion medium in advance.

【0050】ゲル化補剤としてゼラチン等、呈味成分と
して糖類、アミノ酸等、pH調整剤としてリン酸塩、ク
エン酸塩等、又着香料、着色剤等、所望により添加し得
る。但し、これらの添加重量は、多糖類の濃度計算には
含めないこととする。これらの混合系は、各種水溶液、
乳化液、懸濁液を含み、例えば牛乳等を用いることがで
きる。  高圧処理における被処理物の含水率は前述し
た通り、多糖類の水和に充分な量であり、多糖類の種類
等により個別的に定まるが、例えば、アルギン酸ナトリ
ウムであれば濃度20%以下となるような含水率であり
、低メトキシペクチンでは濃度10%以下となるような
含水率である。但し、多価金属イオンも含有されるので
、この量も勘案し、更に、その塩が水和水を有する場合
はこれも勘案する。分散媒としての水の温度、pH等に
は特に制限はない。多価金属塩の溶解性との関連でそれ
を調整するべく温度、pHを調整してもよい。
Gelatin, etc. may be added as a gelling agent, sugars, amino acids, etc. as taste components, phosphates, citrates, etc. as pH adjusters, flavoring agents, coloring agents, etc. may be added as desired. However, these added weights are not included in the polysaccharide concentration calculation. These mixed systems include various aqueous solutions,
It includes emulsions and suspensions, and for example, milk and the like can be used. As mentioned above, the moisture content of the material to be treated during high-pressure treatment is sufficient to hydrate the polysaccharide, and is determined individually depending on the type of polysaccharide. For example, in the case of sodium alginate, the concentration is 20% or less. The moisture content is such that the concentration is 10% or less for low methoxy pectin. However, since polyvalent metal ions are also contained, this amount should also be taken into consideration, and if the salt has hydration water, this should also be taken into consideration. There are no particular restrictions on the temperature, pH, etc. of water as a dispersion medium. Temperature and pH may be adjusted in relation to the solubility of the polyvalent metal salt.

【0051】水に分散した混合系は、加水量により異な
るが、スラリーから塑性の保形性有るドウ状まで、目的
とするゲルにより様々な性状であり得る。従って、ドウ
状であれば、この段階で所望形状に成形可能である。従
来技術によるものでは所望形状への成形は不可能であっ
た。更に、スラリー状のものではこれを所望形状のチュ
ーブ等に収納すれば、同様にして成形可能となる。
The mixed system dispersed in water can have various properties depending on the desired gel, from a slurry to a dough having plastic shape retention properties, depending on the amount of water added. Therefore, if it is dough-shaped, it can be molded into a desired shape at this stage. It has been impossible to mold the material into a desired shape using conventional techniques. Furthermore, if the slurry is stored in a tube or the like of a desired shape, it can be molded in the same manner.

【0052】混合手段、分散手段等は公知技術に基づき
実施すればよい、水に分散後、高圧処理までの時間は、
通常数分〜数時間程度である。長ければゲル化反応が開
始する可能性があり、短ければ多糖類の水和が不充分と
なり得るが、短い場合は高圧処理の時間を調整すること
で、調整が可能であるため、水分散後の時間はまったく
とらなくてもよい。
Mixing means, dispersion means, etc. may be carried out based on known techniques.The time from dispersion in water to high pressure treatment is as follows:
It usually takes several minutes to several hours. If it is too long, a gelation reaction may start, and if it is too short, the polysaccharide may not be sufficiently hydrated, but if it is too short, this can be adjusted by adjusting the high-pressure treatment time. It doesn't have to take any time at all.

【0053】次に「高圧処理する」とは、ゲル化に充分
な圧力を被処理物に対し付与することをいう。該圧力が
付与される限りにおいては圧力分布及び時間変化は特に
限定されないが、剪断力、研磨力等、その他の物理的影
響が少ないものがよい。弾性のある均一ゲルを成形する
ためである。従って、予め多糖類の均一分散液を調製し
ておき、高圧処理中は静的に多糖類の水和を促進し、同
時に多価金属イオンの解離を促進させるとよい。又、高
圧処理中に被処理物中の気泡が抜けていくという効果も
認められ、白濁化しにくいゲルを形成し易くなる。
[0053] Next, "high-pressure treatment" means applying sufficient pressure to the object to be treated to gel it. As long as the pressure is applied, the pressure distribution and time change are not particularly limited, but it is preferable that the pressure is less affected by other physical effects such as shearing force and polishing force. This is to form an elastic and uniform gel. Therefore, it is preferable to prepare a homogeneous dispersion of polysaccharides in advance, and statically promote the hydration of the polysaccharides during high-pressure treatment, and at the same time promote the dissociation of polyvalent metal ions. In addition, the effect that air bubbles in the treated object are removed during high-pressure treatment is also observed, making it easier to form a gel that is less likely to become cloudy.

【0054】多糖類の種類により異なるが、概ね、処理
圧力としては好ましくは100MPa以上、更に好まし
くは400MPa以上である。100MPaより小さい
圧力では多糖類の強制的水和と多価金属イオンの強制的
解離が同時的に充分に促進されないため、架橋構造を形
成しにくく、又気泡を包含した白濁傾向のあるゲルにな
り易くなる。処理圧力は一般に高い方が好ましく架橋反
応は促進され、400MPa以上では広範な多糖類濃度
にわたって、弾力性に富む極めて強度の高いゲルが得ら
れる。高圧処理を行う具体的手段としては高圧が達成で
きるものであればその形状、方式も問わないが、例えば
、冷間等方圧加圧装置などによって行い得る。
Although it varies depending on the type of polysaccharide, the processing pressure is generally preferably 100 MPa or more, more preferably 400 MPa or more. At a pressure lower than 100 MPa, forced hydration of polysaccharides and forced dissociation of polyvalent metal ions are not sufficiently promoted at the same time, making it difficult to form a crosslinked structure and resulting in a gel that tends to be cloudy and contains bubbles. It becomes easier. Generally, the higher the treatment pressure, the better the crosslinking reaction will be promoted, and at 400 MPa or higher, a highly elastic and extremely strong gel can be obtained over a wide range of polysaccharide concentrations. The specific means for carrying out the high-pressure treatment may be any shape or method as long as it can achieve high pressure; for example, it may be carried out using a cold isostatic pressurization device.

【0055】上記装置等による高圧処理では被処理物に
対しほぼ均等に圧力が付与されつつ、基本的に静的処理
である静水圧による処理が、ゲル形成上は好ましい。剪
断力等が必要以上に被処理物にかからないからである。 但し、高圧化でゲル強度が増加し、結着能を有するゲル
では、静水圧でなくとも、ゲル化後に再度高圧処理を施
すことにより、成形可能である。
[0055] In high-pressure treatment using the above-mentioned apparatus, pressure is applied almost uniformly to the object to be treated, and treatment using hydrostatic pressure, which is basically static treatment, is preferable from the viewpoint of gel formation. This is because shearing force and the like are not applied to the object to be processed more than necessary. However, gel strength increases with high pressure, and gels that have binding ability can be molded by applying high pressure treatment again after gelation, even if not under hydrostatic pressure.

【0056】一方、高圧処理時間もゲル化に影響を及ぼ
す。通常数秒〜30分間程度であり、所望のゲルが形成
されるまで実施すればよい。ここで処理時間とは所定の
圧力に達して後、その圧力が維持される時間をいう。高
圧処理によりゲル強度が低減するものでは長時間行うこ
とはゲルの脆弱化を招くが、そうでないものは長時間実
施してもゲル強度等を保持するので問題はない。これら
のゲルの具体例は前出表1に例示したものを挙げること
ができる。高圧下では強度が増大するものはゲル化後も
適宜時間を調整してゲル強度を調整し行う。処理時間が
短ければゲル化は充分進行しない。
On the other hand, the high-pressure treatment time also affects gelation. It usually takes about several seconds to 30 minutes, and may be carried out until the desired gel is formed. Here, the processing time refers to the time during which the pressure is maintained after reaching a predetermined pressure. For products whose gel strength is reduced by high-pressure treatment, long-term treatment may cause the gel to become brittle, but for other products, gel strength is maintained even after long-term treatment without any problem. Specific examples of these gels include those illustrated in Table 1 above. If the strength increases under high pressure, the gel strength may be adjusted by adjusting the time appropriately even after gelation. If the treatment time is short, gelation will not proceed sufficiently.

【0057】次に「高圧処理により実質的にゲル化反応
を起こす」とは、高圧処理前にある程度ゲル化の反応が
開始していてもよいが、高圧処理前にゲルを形成するま
でに至るような反応までは起こさず、高圧処理中に圧力
の作用でゲルを形成させることをいう。従って、高圧処
理前に水分散系を調製すれば、多価金属塩によっては若
干ゲル化反応がスタートするが、これは許容される。
[0057] Next, "the gelation reaction is substantially caused by the high pressure treatment" means that the gelation reaction may have started to some extent before the high pressure treatment, but it does not mean that the gelation reaction does not reach the point where a gel is formed before the high pressure treatment. This refers to the formation of a gel by the action of pressure during high-pressure treatment without causing such a reaction. Therefore, if an aqueous dispersion system is prepared before high-pressure treatment, some polyvalent metal salts may start a gelation reaction, but this is acceptable.

【0058】「工程を含有する」とはゲル化物を得るに
あたり高圧処理以外の操作、例えば、加熱処理、乳化処
理、再形成処理等の処理操作を高圧処理の前又は後に実
施してもよいことをいう。
[0058] "Containing a step" means that operations other than high-pressure treatment may be performed before or after high-pressure treatment, such as heat treatment, emulsification treatment, reformation treatment, etc., in order to obtain a gelled product. means.

【0059】再成形に関しては、ゲルを形成後、ゲルを
任意の形状の成形用器(通常の高圧容器でよい)に入れ
、好ましくはこれを100MPa以上に加圧すれば、成
形用型通り成形ができ、更に複数の種類のゲルを混合又
は積層して高圧処理し再成形することもできる。
Regarding re-molding, after forming the gel, put it into a molding container of any shape (an ordinary high-pressure container may be used) and pressurize it preferably to 100 MPa or more, so that it can be molded according to the molding mold. Furthermore, it is also possible to mix or laminate multiple types of gels, process them under high pressure, and re-shape them.

【0060】以上説明した様に、本発明の多糖類ゲルは
従来の多糖類ゲルでは得られない機能を発揮し、これを
ゲルの主骨格とすることにより様々なゲル状組成物を構
成することができる。ここで「多糖類ゲルをゲルの主骨
格とする」とは、他の成分によるゲルとの併存が可能で
本発明の多糖類ゲルをゲルの主成分として含有する限り
は、制限なく、他成分を含有させ得ることをいい、又、
ゲル以外の分散媒等は任意に用いることができる。更に
外観上はゲルでなくとも例えばW/O又はO/W型の乳
化物に本発明のゲルを含有させ、安定化、離水防止を図
ることもできる。
As explained above, the polysaccharide gel of the present invention exhibits functions that cannot be obtained with conventional polysaccharide gels, and by using this as the main skeleton of the gel, various gel-like compositions can be constructed. Can be done. Here, "using polysaccharide gel as the main skeleton of the gel" means that it can be used together with gels made of other components, and as long as the polysaccharide gel of the present invention is contained as the main component of the gel, other components can be used without limitation. It means that it can contain, and
Any dispersion medium other than gel can be used. Furthermore, even if the emulsion does not appear to be a gel, the gel of the present invention can be incorporated into a W/O or O/W type emulsion to stabilize it and prevent syneresis.

【0061】又「ゲル状組成物」とは、例えば、食品分
野では各種粘弾性特性のゲルを設計できる為、新たなテ
クスチャーを持ったゲル食品やカルシウム強化食品、微
量元素(Ca,Fe,Cu,Zr)含有ゲル、食塩やし
ょう油中でもゲルが崩壊しないで形を保っている耐塩性
ゲル、酸性では溶解しないがアルカリ性で溶解する腸溶
性ゲル等を挙げることができる。腸溶性ゲルでは、具体
例としてダイエタリー食品として、高カルシウム含有ア
ルギン酸ゲルを挙げることができる。アルギン酸カルシ
ウムは胃でアルギン酸とカルシウムに分離し、カルシウ
ムは腸で吸収される。
[0061] Also, the term "gel-like composition" refers to, for example, gels with various viscoelastic properties in the food field, so gel foods with new textures, calcium-enriched foods, trace elements (Ca, Fe, Cu), etc. , Zr)-containing gel, salt-resistant gel that maintains its shape without collapsing even in salt or soy sauce, and enteric gel that does not dissolve in acid but dissolves in alkaline. As a specific example of enteric gel, high calcium-containing alginate gel can be mentioned as a dietary food. Calcium alginate separates into alginic acid and calcium in the stomach, and calcium is absorbed in the intestines.

【0062】医薬品分野では、本発明のゲルは耐熱性も
あるので熱などで変性しやすい医薬品を取り込むゲル材
等に好適である。
[0062] In the pharmaceutical field, the gel of the present invention is also heat resistant, so it is suitable for use as a gel material that incorporates pharmaceuticals that are easily denatured by heat.

【0063】固定化担体分野では、酸素や微生物を固定
化するゲルに好適である。このものは長期連続運転にも
耐えることができる。
In the field of immobilization carriers, it is suitable for gels that immobilize oxygen and microorganisms. This product can withstand long-term continuous operation.

【0064】[0064]

【実施例】実施例1. アルギン酸ナトリウム(350G、紀文フードケミファ
(株))1gとクエン酸カルシウム(鹿1級、関東化学
(株))1gを粉粉混合してから水98gを加え良く分
散させスラリー状にしてからビニール袋に入れた。外見
はクエン酸カルシウムの白い粒が一様に分散した不均質
な系である。このビニール袋に入れたスラリーを三菱冷
間等方圧加圧装置(MCT150,三菱重工(株))を
用いて100MPa,200MPa,300MPaおよ
び400MPaでそれぞれ5分間加圧した。いずれもゲ
ルを形成することができたが、圧力が100MPa,2
00MPaでは未溶解のクエン酸カルシウムが一部残り
ゲル中に白点として残った。一方、圧力が300MPa
や400MPaでは一様で透明な適度の弾力を持ったゲ
ルとなった。このゲルを10%食塩水に浸漬し、耐塩性
を調べた結果、浸漬3日後でもゲルの崩壊がなく耐塩性
が認められた。 実施例2. アルギン酸ナトリウム(350G,紀文フードケミファ
(株))1gとグルコン酸カルシウム一水和物(和光特
級、和光純薬工業(株))1.13gを粉粉混合してか
ら水6gを加え良く分散させスラリー状にしてからビニ
ール袋に入れた。外見はグルコン酸カルシウムの白い粒
が一様に分散した不均質な系である。このスラリーを三
菱冷間等方圧加圧装置(MCT150,三菱重工(株)
)を用いて990MPaで15分間加圧した。加圧後、
スラリーは透明で一様な適度の弾力を持ったゲルとなっ
た。このゲルを10%食塩水に浸漬し、耐塩性を調べた
結果、浸漬3日後でもゲルの崩壊がなく耐塩性が認めら
れた。 実施例3. アルギン酸ナトリウム(350G,紀文フードケミファ
(株))1gとDL−乳酸カルシウム五水和物(和光一
級、和光純薬工業(株))0.8gを粉粉混合してから
水6gを加え良く分散させスラリー状にしてからビニー
ル袋に入れた。外見は乳酸カルシウムの白い粒が一様に
分散した不均質な系である。このスラリーを三菱冷間等
方圧加圧装置(MCT150,三菱重工(株))を用い
て990MPaで15分間加圧した。加圧後、スラリー
は微小な白点が分散した硬いゲルとなった。このゲルを
10%食塩水に浸漬し、耐塩性を調べた結果、浸漬3日
後でもゲルの崩壊がなく耐塩性が認められた。 実施例4. アルギン酸ナトリウム(350G,紀文フードケミファ
(株))1gと塩化カルシウム2水塩(和光特級、和光
純薬工業(株))0.3gを粉粉混合してから水6gを
加え良く分散させスラリー状にしてからビニール袋に入
れた。外見は乳酸カルシウムの白い粒が一様に分散した
不均質な系である。このスラリーを三菱冷間等方圧加圧
装置(MCT150,三菱重工(株))を用い990M
Paで15分間加圧した。加圧後、スラリーは一様に白
濁した非常に硬いゲルとなった。このゲルを10%食塩
水に浸漬し、耐塩性を調べた結果、浸漬3日後でもゲル
の崩壊がなく耐塩性がみとめられた。 実施例5. 低メトキシルペクチン(Red3g,雪印食品(株))
1gとクエン酸カルシウム(鹿1級、関東化学(株))
0.2gを粉粉混合してから水18.8gを加え良く分
散させスラリー状にしてからビニール袋に入れた。この
スラリーを三菱冷間等方加圧装置(MCT150,三菱
重工(株))を用いて700MPaで30分間加圧した
。加圧後、スラリーは一様なゲルとなった。 実施例6. 低メトキシペクチン(LMSN325,雪印食品(株)
)2gとクエン酸カルシウム(鹿1級、関東化学(株)
)0.4gを粉粉混合してから水17.6gを加え良く
分散させスラリー状にしてからビニール袋に入れた。こ
のスラリーを三菱冷間等方圧加圧装置(MCT150,
三菱重工(株))を用いて700MPaで30分間加圧
した。加圧後、スラリーは一様で硬いゲルとなった。
[Example] Example 1. Mix 1 g of sodium alginate (350G, Kibun Food Chemifa Co., Ltd.) and 1 g of calcium citrate (Shika 1 grade, Kanto Kagaku Co., Ltd.) into powder, then add 98 g of water, disperse well, make a slurry, and then bag it in a plastic bag. I put it in. The appearance is a heterogeneous system in which white particles of calcium citrate are uniformly dispersed. The slurry placed in the plastic bag was pressurized for 5 minutes at 100 MPa, 200 MPa, 300 MPa, and 400 MPa using a Mitsubishi cold isostatic pressure device (MCT150, Mitsubishi Heavy Industries, Ltd.), respectively. Both were able to form a gel, but the pressure was 100 MPa, 2
At 00 MPa, some undissolved calcium citrate remained in the gel as white spots. On the other hand, the pressure is 300MPa
At 400 MPa, it became a uniform, transparent gel with moderate elasticity. This gel was immersed in a 10% saline solution to examine salt resistance. As a result, the gel did not collapse even after 3 days of immersion, and salt resistance was observed. Example 2. Mix 1 g of sodium alginate (350G, Kibun Food Chemifa Co., Ltd.) and 1.13 g of calcium gluconate monohydrate (Wako special grade, Wako Pure Chemical Industries, Ltd.) into powder, then add 6 g of water and disperse well. It was made into a slurry and then placed in a plastic bag. The appearance is a heterogeneous system in which white particles of calcium gluconate are uniformly dispersed. This slurry was processed using a Mitsubishi cold isostatic pressure device (MCT150, Mitsubishi Heavy Industries, Ltd.).
) for 15 minutes at 990 MPa. After pressurizing,
The slurry became a transparent, uniform gel with moderate elasticity. This gel was immersed in a 10% saline solution to examine salt resistance. As a result, the gel did not collapse even after 3 days of immersion, and salt resistance was observed. Example 3. Mix 1 g of sodium alginate (350G, Kibun Food Chemifa Co., Ltd.) and 0.8 g of DL-calcium lactate pentahydrate (Wako Grade 1, Wako Pure Chemical Industries, Ltd.) into powder, then add 6 g of water and disperse well. It was made into a slurry and then placed in a plastic bag. The appearance is a heterogeneous system in which white particles of calcium lactate are uniformly dispersed. This slurry was pressurized at 990 MPa for 15 minutes using a Mitsubishi cold isostatic pressurizer (MCT150, Mitsubishi Heavy Industries, Ltd.). After pressurization, the slurry became a hard gel with minute white dots dispersed therein. This gel was immersed in a 10% saline solution to examine salt resistance. As a result, the gel did not collapse even after 3 days of immersion, and salt resistance was observed. Example 4. Mix 1 g of sodium alginate (350G, Kibun Food Chemifa Co., Ltd.) and 0.3 g of calcium chloride dihydrate (Wako special grade, Wako Pure Chemical Industries, Ltd.) into powder, then add 6 g of water to disperse well to form a slurry. Then I put it in a plastic bag. The appearance is a heterogeneous system in which white particles of calcium lactate are uniformly dispersed. This slurry was heated to 990M using a Mitsubishi cold isostatic pressurizer (MCT150, Mitsubishi Heavy Industries, Ltd.).
Pressure was applied at Pa for 15 minutes. After pressurization, the slurry turned into a very hard gel that was uniformly cloudy. This gel was immersed in a 10% saline solution to examine its salt resistance. As a result, the gel did not collapse even after 3 days of immersion, indicating salt resistance. Example 5. Low methoxyl pectin (Red3g, Snow Brand Foods Co., Ltd.)
1g and calcium citrate (Deer Grade 1, Kanto Kagaku Co., Ltd.)
After mixing 0.2 g of powder, 18.8 g of water was added to disperse it well to form a slurry, which was then placed in a plastic bag. This slurry was pressurized at 700 MPa for 30 minutes using a Mitsubishi cold isostatic presser (MCT150, Mitsubishi Heavy Industries, Ltd.). After pressurization, the slurry became a uniform gel. Example 6. Low methoxy pectin (LMSN325, Snow Brand Foods Co., Ltd.)
) 2g and calcium citrate (Deer Grade 1, Kanto Kagaku Co., Ltd.)
) 0.4 g was mixed into powder, 17.6 g of water was added, and the slurry was well dispersed, and the slurry was placed in a plastic bag. This slurry was applied to a Mitsubishi cold isostatic pressurizer (MCT150,
Pressure was applied at 700 MPa for 30 minutes using Mitsubishi Heavy Industries, Ltd. After pressurization, the slurry became a uniform hard gel.

【0065】[0065]

【発明の効果】以上説明したように高圧処理により強制
的にゲル化した多糖類の多価金属イオンゲルは高圧処理
という製造法上の特徴から、透析法など通常行われてい
るゲル調製法では不可能な、高濃度の多糖類ゲルも調製
できるだけでなく、多糖類及び金属イオンの濃度を変え
ることで、各種弾性率のゲルをワンパスで調製すること
ができる。
[Effects of the Invention] As explained above, polyvalent metal ion gels of polysaccharides that are forcibly gelled by high-pressure treatment cannot be produced using commonly used gel preparation methods such as dialysis because of the manufacturing method of high-pressure treatment. Not only can highly concentrated polysaccharide gels be prepared, but also gels with various elastic moduli can be prepared in one pass by changing the concentrations of polysaccharides and metal ions.

【0066】又、該ゲルは基本的に任意形状に成形する
ことができ、更にテクスチャーはゼラチン風であって、
カルシウム等の微量元素や各種栄養成分、薬効成分を高
濃度に含有できるため、食品、医薬品、さらに固定化単
体等の分野でゲル材として極めて有用である。
[0066] Furthermore, the gel can basically be molded into any shape, and the texture is gelatin-like.
Because it can contain trace elements such as calcium, various nutritional components, and medicinal components in high concentrations, it is extremely useful as a gel material in the fields of food, medicine, and immobilization alone.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるアルギン酸カルシウムゲルの動的
弾性率とアルギン酸及びクエン酸カルシウム濃度の関係
を示す模式図である。
FIG. 1 is a schematic diagram showing the relationship between the dynamic elastic modulus of a calcium alginate gel according to the present invention and the concentrations of alginic acid and calcium citrate.

【図2】本発明によるアルギン酸カルシウムゲルの繊維
の形状を示す図面に代る電子顕微鏡写真である。
FIG. 2 is an electron micrograph in place of a drawing showing the shape of fibers of calcium alginate gel according to the present invention.

【図3】従来法(透析法)によるアルギン酸カルシウム
ゲルの繊維の形状を示す図面に代る電子顕微鏡写真であ
る。
FIG. 3 is an electron micrograph in place of a drawing showing the shape of fibers of calcium alginate gel obtained by a conventional method (dialysis method).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  多糖類のゲルであって高圧処理により
強制的にゲル化した多糖類ゲル。
1. A polysaccharide gel that is forcibly gelled by high-pressure treatment.
【請求項2】  多糖類がポリウロニドである請求項1
に記載の多糖類ゲル。
[Claim 2] Claim 1 wherein the polysaccharide is a polyuronide.
The polysaccharide gel described in .
【請求項3】  請求項1に記載の多糖類ゲルをゲルの
主骨格として含有するゲル状組成物。
3. A gel composition containing the polysaccharide gel according to claim 1 as a main skeleton of the gel.
【請求項4】  多価金属イオンの作用でゲル化し得る
多糖類と多価金属塩を所定量混合し高圧処理することに
より実質的なゲル化反応を生起させゲルを形成する行程
を包含する多糖類ゲルの製造方法。
4. A polysaccharide that includes a step of mixing a predetermined amount of a polysaccharide and a polyvalent metal salt that can be gelled by the action of polyvalent metal ions, and treating the mixture under high pressure to cause a substantial gelation reaction and form a gel. Method for producing saccharide gel.
【請求項5】  高圧処理を、多糖類と多価金属塩を所
定量粉々混合後、水に分散して実施する請求項4に記載
の多糖類ゲルの製造方法。
5. The method for producing a polysaccharide gel according to claim 4, wherein the high-pressure treatment is carried out by pulverizing a predetermined amount of the polysaccharide and polyvalent metal salt and then dispersing the mixture in water.
【請求項6】  高圧処理の圧力が100MPa以上で
ある請求項4に記載の多糖類ゲルの製造方法。
6. The method for producing a polysaccharide gel according to claim 4, wherein the pressure of the high-pressure treatment is 100 MPa or more.
JP04089291A 1991-02-12 1991-02-12 Polysaccharide gel and method for producing the same Expired - Fee Related JP3164831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04089291A JP3164831B2 (en) 1991-02-12 1991-02-12 Polysaccharide gel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04089291A JP3164831B2 (en) 1991-02-12 1991-02-12 Polysaccharide gel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04258260A true JPH04258260A (en) 1992-09-14
JP3164831B2 JP3164831B2 (en) 2001-05-14

Family

ID=12593167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04089291A Expired - Fee Related JP3164831B2 (en) 1991-02-12 1991-02-12 Polysaccharide gel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3164831B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678817B2 (en) 2005-06-03 2010-03-16 Medrx Co., Ltd. Enteric medicinal composition for oral use
JP4450863B1 (en) * 2009-08-12 2010-04-14 篤良 村上 Method for producing functional jelly
WO2011018865A1 (en) * 2009-08-12 2011-02-17 小山かすみ Method for manufacturing a functional gel
JP2011173083A (en) * 2010-02-25 2011-09-08 Atsuyoshi Murakami Method for manufacturing functional gel
JP2012080806A (en) * 2010-10-08 2012-04-26 Ina Food Industry Co Ltd Rice-like food and method for producing the same
JP2013046592A (en) * 2011-08-29 2013-03-07 Sanei Gen Ffi Inc Sauce used for container-filled two-layered food product and container-filled two-layered food product
JP2015050954A (en) * 2013-09-06 2015-03-19 株式会社紀文食品 Noodle-like food product and manufacturing method thereof
JP2016202101A (en) * 2015-04-24 2016-12-08 森永製菓株式会社 Method for promoting gelation of gellan gum, and method for producing gel
JP2017051133A (en) * 2015-09-09 2017-03-16 森永製菓株式会社 Protein-containing gellan gum gel and production method thereof
CN113197329A (en) * 2021-05-18 2021-08-03 云南中烟工业有限责任公司 Preparation method and application of compound polysaccharide humectant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678817B2 (en) 2005-06-03 2010-03-16 Medrx Co., Ltd. Enteric medicinal composition for oral use
JP4450863B1 (en) * 2009-08-12 2010-04-14 篤良 村上 Method for producing functional jelly
WO2011018865A1 (en) * 2009-08-12 2011-02-17 小山かすみ Method for manufacturing a functional gel
JP2011057659A (en) * 2009-08-12 2011-03-24 Atsuyoshi Murakami Method of manufacturing functional jelly
JP2011173083A (en) * 2010-02-25 2011-09-08 Atsuyoshi Murakami Method for manufacturing functional gel
JP2012080806A (en) * 2010-10-08 2012-04-26 Ina Food Industry Co Ltd Rice-like food and method for producing the same
JP2013046592A (en) * 2011-08-29 2013-03-07 Sanei Gen Ffi Inc Sauce used for container-filled two-layered food product and container-filled two-layered food product
JP2015050954A (en) * 2013-09-06 2015-03-19 株式会社紀文食品 Noodle-like food product and manufacturing method thereof
JP2016202101A (en) * 2015-04-24 2016-12-08 森永製菓株式会社 Method for promoting gelation of gellan gum, and method for producing gel
JP2017051133A (en) * 2015-09-09 2017-03-16 森永製菓株式会社 Protein-containing gellan gum gel and production method thereof
CN113197329A (en) * 2021-05-18 2021-08-03 云南中烟工业有限责任公司 Preparation method and application of compound polysaccharide humectant
CN113197329B (en) * 2021-05-18 2022-07-22 云南中烟工业有限责任公司 Preparation method and application of compound polysaccharide humectant

Also Published As

Publication number Publication date
JP3164831B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
Hu et al. Ions-induced gelation of alginate: Mechanisms and applications
Turgeon et al. Protein+ polysaccharide coacervates and complexes: from scientific background to their application as functional ingredients in food products
US6455090B1 (en) Liquid additive for thickener
JP3512184B2 (en) A method for producing milky fine particles by changing the chemical composition of the dispersed phase after emulsification
CN101481404B (en) Zymohydrolysis lactoprotein ferrous complex compound microcapsule iron supplement agent and preparation thereof
JP2007526211A (en) Uniform and thermoreversible gel film delivery system containing kappa-2 carrageenan
JPH04258260A (en) Polysaccharide gel and its production
US20100203124A1 (en) Kappa-2 Carrageenan Composition and Products Made Therefrom
WO2007146004A1 (en) Kappa-2 carrageenan composition and products made therefrom
CN107183308A (en) A kind of nano particle for embedding active peptide and preparation method thereof
CN101928355B (en) Aminated alginic acid and preparation method thereof
ZA200508251B (en) Homogeneous, thermoreversible gel film containing kappa-2 carrageenan and soft capsules made therefrom
WO2015108057A1 (en) Jelly-like food containing collagen peptides
JP2004501235A (en) Preparation process of chitosan particles
JP2001008634A (en) Soluble polymerized gelatin, its production and method for adjusting its solubility
JP2010106068A (en) New chemical modification method for polysaccharide
CN111603437A (en) Delivery compound containing drug or live bacteria and preparation method thereof
JP6775930B2 (en) Gellan gum gel containing protein and its manufacturing method
JP3507603B2 (en) Composition for stabilizing dispersion for food
JP3106406B2 (en) Gel modification method
JPH09275915A (en) Production of jelly food including different kind of jelly
JP3405843B2 (en) Gel food and method for producing the same
JP2899989B2 (en) Gel molding method
JP2671226B2 (en) Silk fibroin aqueous solution having excellent storage stability and method for producing the same
JP6784557B2 (en) Gel consisting of gellan gum and protein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees