JPH04257450A - Ink-jet printer head and its manufacture - Google Patents

Ink-jet printer head and its manufacture

Info

Publication number
JPH04257450A
JPH04257450A JP1908891A JP1908891A JPH04257450A JP H04257450 A JPH04257450 A JP H04257450A JP 1908891 A JP1908891 A JP 1908891A JP 1908891 A JP1908891 A JP 1908891A JP H04257450 A JPH04257450 A JP H04257450A
Authority
JP
Japan
Prior art keywords
heater
ink
printer head
inkjet printer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1908891A
Other languages
Japanese (ja)
Inventor
Hisatoshi Furubayashi
古林 久敏
Kazutaka Uda
和孝 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1908891A priority Critical patent/JPH04257450A/en
Publication of JPH04257450A publication Critical patent/JPH04257450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To increase the response speed and reduce the power consumption by a method wherein heat is prevented from being transferred from a heater, the heat capacity of the heater is made small. CONSTITUTION:A heater is suspended above a base plate. The heater is built in a mictrobridge or a microcantilever construction by utilizing crystal axis anisotropic etching of silicon. Thereby, an ink jet printer that is capable of printing at a high speed and is convenient as a potable type can be offered. And, the heater can be easily and accurately built.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ヒーターの加熱により
インクを沸騰させ、そのエネルギーによってノズルより
インク滴を吐出する、サーマル式インクジェットプリン
ターヘッドの構造およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure and manufacturing method of a thermal ink jet printer head, which boils ink by heating a heater and uses the resulting energy to eject ink droplets from a nozzle.

【0002】0002

【従来の技術】インクジェツト記録方式には、大別して
コンティニアス方式とオンデマンド方式があり、インク
回収が不要で、装置の小型化と低価格化に適したオンデ
マンド方式が主流になりつつある。このオンデマンド方
式には、主としてサーマル式と圧電式があり、両者はイ
ンクの吐出方法で異なっている。サーマル式は発熱によ
るインクの沸騰を利用するもので、圧電式は圧電素子の
振動によるインク室の体積変化を利用するものである。
[Prior Art] Inkjet recording methods can be broadly divided into continuous methods and on-demand methods.The on-demand method is becoming mainstream because it does not require ink collection and is suitable for downsizing and lowering the cost of devices. . This on-demand method mainly includes a thermal method and a piezoelectric method, and both differ in the method of ejecting ink. The thermal type uses ink boiling due to heat generation, and the piezoelectric type uses volume changes in the ink chamber due to vibration of a piezoelectric element.

【0003】サーマル式の代表的なものは、バブルジェ
ット方式で、特公昭61−59912、特公昭61−5
9913、特公昭61−59914、画像電子学会誌 
 第11巻  第2号(1982)などに詳述されてい
る。
A typical thermal type is the bubble jet method, which was developed by the Japanese Patent Publication No. 61-59912 and the Japanese Patent Publication No. 61-5.
9913, Special Publication No. 61-59914, Journal of the Institute of Image Electronics Engineers
It is detailed in Vol. 11, No. 2 (1982).

【0004】バブルジェット方式は、単一ノズルでは応
答速度が遅いので、ノズル数を増やすことにより、プリ
ンターヘッドとしての印字速度を上げている。図6に、
従来方式のバブルジェット方式の例を示す。同図(a)
は、下部基板の平面図、同図(b)は、上下基板の断面
図である。従来の実用上の構造は、ガラスやシリコン等
のベース基板上に、ヒーター4およびノズル隔壁106
を一列に配列して、多数のノズル9を高密度に一体形成
した構造となっている。
Since the bubble jet method has a slow response speed with a single nozzle, the printing speed of the printer head is increased by increasing the number of nozzles. In Figure 6,
An example of a conventional bubble jet method is shown. Figure (a)
1 is a plan view of the lower substrate, and FIG. 3B is a sectional view of the upper and lower substrates. The conventional practical structure includes a heater 4 and a nozzle partition 106 on a base substrate such as glass or silicon.
It has a structure in which a large number of nozzles 9 are arranged in a line and integrally formed with a high density.

【0005】[0005]

【発明が解決しようとする課題】ところでバブルジェッ
ト方式は、ヒーターの加熱、インクの沸騰、冷却の過程
に要する時間により応答速度が制約され、印字速度が遅
いという問題があった。また、圧電式に比較して消費電
力が大きいという問題もあった。
However, the bubble jet method has a problem in that the response speed is limited by the time required for heating the heater, boiling the ink, and cooling the ink, resulting in a slow printing speed. Another problem was that the power consumption was greater than that of the piezoelectric type.

【0006】その原因として、ヒーターが基板面等の壁
面に形成されているために、ヒーターの熱がベース基板
側等に逃げてヒーターの加熱、インクの沸騰に時間がか
かること、また、ヒーター部の熱容量が大きくなり冷却
にも時間がかかること、さらに、これらの結果消費電力
が大きくなってしまうことが考えられる。特に、基板材
料がシリコンのように熱伝導率の大きい場合には、この
影響が大きい。
[0006] The reason for this is that since the heater is formed on the wall surface of the substrate, the heat of the heater escapes to the base substrate side, etc., and it takes time for the heater to heat up and the ink to boil. It is conceivable that the heat capacity of the device will increase and it will take time to cool down, and as a result, the power consumption will increase. This effect is particularly large when the substrate material has high thermal conductivity, such as silicon.

【0007】本発明は上記のような原因を除くことによ
り、応答速度が速く消費電力が小さいサーマル式のイン
クジェツトプリンタヘッド及びその製造方法を提供する
ことを目的とする。
An object of the present invention is to provide a thermal inkjet printer head with a fast response speed and low power consumption, and a method for manufacturing the same, by eliminating the above-mentioned causes.

【0008】[0008]

【課題を解決するための手段】本発明のインクジェツト
プリンタヘッドは、ヒーターの加熱によりインクを沸騰
させ、そのエネルギーによってノズルよりインク滴を噴
射させるサーマル式のインクジェツトプリンタヘッドで
あって、壁面より浮いた位置にヒーターを備えたことを
特徴とする。
[Means for Solving the Problems] The inkjet printer head of the present invention is a thermal type inkjet printer head that boils ink by heating a heater and uses the resulting energy to eject ink droplets from a nozzle. It is characterized by a heater located in a floating position.

【0009】本発明の上記インクジェツトプリンタヘッ
ドの製造方法は、シリコン単結晶基板を用いる製造方法
であって、シリコン単結晶の結晶軸異方性エッチングを
利用することを特徴とする。
The method of manufacturing the inkjet printer head of the present invention uses a silicon single crystal substrate, and is characterized by utilizing crystal axis anisotropic etching of the silicon single crystal.

【0010】0010

【作用】本発明のインクジェツトプリンタヘッドでは、
ヒーターが壁面より浮いた位置にあるために、ヒーター
と壁面との間が熱絶縁されてヒーターの熱の壁面への逃
げが防止され、これとともにヒーター部の熱容量が小さ
くなり、従来サーマル式のインクジェツトプリンタヘッ
ドの応答速度を遅くし、消費電力を大きくしていた原因
が除かれる。
[Operation] In the inkjet printer head of the present invention,
Since the heater is located above the wall surface, thermal insulation is created between the heater and the wall surface, preventing heat from escaping to the wall surface, and at the same time, the heat capacity of the heater section is reduced, making it difficult to use conventional thermal ink. Eliminates the cause of slow jet printer head response speed and high power consumption.

【0011】本発明の製造方法によれば、シリコン単結
晶の面と方位を適当に選択し、所定形状のマスクパター
ンを用いてシリコン単結晶基板をエッチングすることに
より、エッチング速度の異方性の効果によって、自動的
にブリッジ構造、カンチレバー構造等の基板から浮き上
がった構造のヒーター部が形成される。
According to the manufacturing method of the present invention, the plane and orientation of the silicon single crystal are appropriately selected and the silicon single crystal substrate is etched using a mask pattern of a predetermined shape, thereby improving the anisotropy of the etching rate. As a result of this effect, a heater section with a structure lifted from the substrate, such as a bridge structure or a cantilever structure, is automatically formed.

【0012】0012

【実施例】以下、実施例により本発明を説明する。本実
施例は、マイクロブリッジまたはマイクロカンチレバー
構造の支持体の上に、微小なヒーターを形成することに
よって、或いは、ヒーター材料自体で、マイクロブリッ
ジ又は、マイクロカンチレバーを形成することによって
、ヒーター部をベース基板から浮上させようとするもの
である。
[Examples] The present invention will be explained below with reference to Examples. In this example, the heater part is formed as a base by forming a minute heater on a support having a microbridge or microcantilever structure, or by forming a microbridge or microcantilever using the heater material itself. It is intended to be lifted off the substrate.

【0013】実施例1 図1は本実施例のインクジェットプリンターヘッドのヒ
ーター部の構造を説明する概略構造図である。同図(a
)は下部基板部のみの平面図、同図(b)は上下基板を
貼り合わせた後のXーX′断面図である。図2は図1の
ZーZ′断面部でのインク液路の断面図、図3は図1の
YーY′断面部でのノズルの断面図である。尚、断面図
には切断面のみを記した。図4は、その製作工程を説明
する図である。以下、製作工程に従って本実施例のイン
クジェットプリンターヘッド及びその製造方法を説明す
る。
Embodiment 1 FIG. 1 is a schematic structural diagram illustrating the structure of a heater section of an inkjet printer head according to this embodiment. The same figure (a
) is a plan view of only the lower substrate portion, and (b) is a sectional view taken along line X-X' after the upper and lower substrates are bonded together. 2 is a cross-sectional view of the ink liquid path taken along the Z--Z' cross-section in FIG. 1, and FIG. 3 is a cross-sectional view of the nozzle taken along the Y--Y' cross-section in FIG. Note that only the cut surface is shown in the sectional view. FIG. 4 is a diagram explaining the manufacturing process. The inkjet printer head of this embodiment and its manufacturing method will be described below according to the manufacturing process.

【0014】まず、(100)結晶面のシリコン基板1
の両面に熱酸化膜2を形成する。その上にアルミ膜を真
空蒸着又はスパッタリングにより形成する(図4(a)
)。電極3のパターンをフォトレジストで形成し、燐酸
系のエッチャントでエッチングした後、フォトレジスト
を除去するとアルミ膜の電極パターンができる(図1(
a)及び図4(b))。
First, a silicon substrate 1 with a (100) crystal plane is prepared.
A thermal oxide film 2 is formed on both sides of the substrate. An aluminum film is formed thereon by vacuum evaporation or sputtering (Fig. 4(a)).
). After forming the pattern of the electrode 3 with photoresist and etching with a phosphoric acid-based etchant, the photoresist is removed to form an electrode pattern of aluminum film (see Figure 1).
a) and Figure 4(b)).

【0015】次に、白金膜を真空蒸着又はスパッタリン
グで形成し(図4(c))、その上にヒーター4のパタ
ーンをフォトレジストで形成する。スパッタエッチング
により白金膜をエッチングした後、フォトレジストを除
去すると白金膜のヒーターパターンができる(図1(a
)及び図4(d))。この際、リード線取り出し用のパ
ッド部8には、異方性エッチング時にアルミ膜を保護す
るために残したアルミ上の白金膜を残しておくとよい。
Next, a platinum film is formed by vacuum evaporation or sputtering (FIG. 4(c)), and a pattern of the heater 4 is formed thereon using photoresist. After etching the platinum film by sputter etching and removing the photoresist, a heater pattern of the platinum film is created (Fig. 1(a)
) and Figure 4(d)). At this time, it is preferable to leave a platinum film on the aluminum, which was left in order to protect the aluminum film during anisotropic etching, on the pad portion 8 for taking out the lead wire.

【0016】さらに、保護膜5として酸化シリコン膜を
真空蒸着又はスパッタリングで形成し(図4(e))、
フォトレジストでノズル9、ブリッジ10、インク液路
11およびパッド部8のパターンを形成する。弗酸緩衝
液で酸化シリコン膜をエッチングしたのちフォトレジス
トを除去すると、酸化シリコン膜によるマスクパターン
ができる。
Furthermore, a silicon oxide film is formed as a protective film 5 by vacuum evaporation or sputtering (FIG. 4(e)),
Patterns of nozzles 9, bridges 10, ink channels 11, and pad portions 8 are formed using photoresist. When the silicon oxide film is etched with a hydrofluoric acid buffer and the photoresist is removed, a mask pattern is created using the silicon oxide film.

【0017】その後、KOHなどのアルカリエッチャン
トを用いてシリコンを異方性エッチングし、ノズル9、
ブリッジ10およびインク液路11を形成する(g図)
。この際、ノズル9およびインク液路11の方向はシリ
コン基板の結晶軸の<110>方向に一致させ、またブ
リッジ方向はノズル方向とは斜め方向にしておくことに
より、熱酸化膜2、ヒーター4および保護膜5よりなる
ブリッジ10の下部のシリコンが、異方性エッチングに
より除去され、中空のブリッジが形成される。図5は異
方性エッチングによりブリッジが形成される仕組みを説
明する図である。同図(a)に示すように、異方性エッ
チングを用いるとマスク開口形状の最も大きい部分の形
状に合わせてエッチングが進行し、ブリッジ10の下部
にまでエッチング領域(点線部)が広がる。これを利用
して、開口形状が一部重なるまでブリッジ10を斜めに
して形成すると、同図(b)に示すように、ブリッジ1
0下部が完全に除去される。尚、本実施例のように面方
向を選択すると(111)面が現われた時点でほぼエッ
チングが終了する。このように異方性エッチングによれ
ば、浮き構造をつくりやすく、また寸法精度も良くなる
。以上で下部基板が出来上がる。
After that, the silicon is anisotropically etched using an alkaline etchant such as KOH, and the nozzles 9,
Forming the bridge 10 and ink liquid path 11 (Figure g)
. At this time, the directions of the nozzle 9 and the ink liquid path 11 are made to match the <110> direction of the crystal axis of the silicon substrate, and the bridge direction is made oblique to the nozzle direction, so that the thermal oxide film 2, the heater 4 The silicon below the bridge 10 made of the protective film 5 is removed by anisotropic etching, forming a hollow bridge. FIG. 5 is a diagram illustrating a mechanism in which a bridge is formed by anisotropic etching. As shown in FIG. 2A, when anisotropic etching is used, the etching progresses in accordance with the shape of the largest part of the mask opening, and the etched region (dotted line) extends to the lower part of the bridge 10. Utilizing this, if the bridge 10 is formed obliquely until the opening shapes partially overlap, the bridge 10 will be formed as shown in FIG.
0 lower part is completely removed. Note that if the plane direction is selected as in this embodiment, the etching is almost completed when the (111) plane appears. As described above, anisotropic etching makes it easy to create a floating structure and improves dimensional accuracy. With the above steps, the lower board is completed.

【0018】一方、別の(100)結晶面のシリコン基
板には、熱酸化膜7をマスクとして、異方性エッチング
により、ノズル9、インク液路11およびインク導入孔
12を形成し、これを上部基板6とする。上記のように
して加工した2枚の上下シリコン基板を、低融点ガラス
接着や静電接合の方法で貼り合わせると、インクジェッ
トプリンターヘッドが完成する。
On the other hand, on another (100) crystal plane silicon substrate, a nozzle 9, an ink channel 11, and an ink introduction hole 12 are formed by anisotropic etching using the thermal oxide film 7 as a mask. This is referred to as an upper substrate 6. An inkjet printer head is completed by bonding the two upper and lower silicon substrates processed as described above using low-melting glass bonding or electrostatic bonding.

【0019】本実施例では、熱伝導率の大きいシリコン
基板を用いてヘッドを形成したにもかかわらず、ヒータ
ーが酸化膜である2,5に支えられた浮き構造となって
いるため、基板への熱の逃げがほとんどなく、ヒーター
部の熱容量も小さくなっている。さらに、ヒーター4の
両面を有効に利用するので、ヒーター4からインクへの
熱伝達効率も良くなっている。これらの結果、本例のイ
ンクジェットプリンタヘッドは応答速度が速く、消費電
力も小さくなった。
In this example, although the head is formed using a silicon substrate with high thermal conductivity, the heater has a floating structure supported by oxide films 2 and 5, so that it does not reach the substrate. There is almost no heat escape, and the heat capacity of the heater part is small. Furthermore, since both sides of the heater 4 are effectively utilized, the heat transfer efficiency from the heater 4 to the ink is improved. As a result, the inkjet printer head of this example has a fast response speed and low power consumption.

【0020】尚、ブリッジ10はインク液路11のほぼ
上下方向の中央に位置するようにした。これは、ブリッ
ジ上下でのバブルの発生状態を同じにしてインクの吐出
を効率よくするためと、ブリッジ10にかかるバブル発
生による負荷の大きさの釣り合いをとってブリッジ10
の耐久性を増すためである。
The bridge 10 is positioned approximately at the center of the ink channel 11 in the vertical direction. This is done in order to make the state of bubble generation on the upper and lower sides of the bridge the same to make ink ejection more efficient, and to balance the magnitude of the load on the bridge 10 due to bubble generation.
This is to increase the durability of.

【0021】尚、ヒーター材料としては、上記白金の他
に、NiCr、Ta、W等の他の金属材料、あるいは、
サーミスター材料を用いてもよい。また、(110)面
を用いることもできる。
In addition to platinum, other metal materials such as NiCr, Ta, and W may be used as the heater material, or
A thermistor material may also be used. Furthermore, a (110) plane can also be used.

【0022】実施例2 まず、(110)結晶面、N形、高抵抗のシリコン基板
の両面に、熱酸化膜を形成する。フォトレジストにより
ヒーターあるいはブリッジのパターンを形成し、弗酸緩
衝液で熱酸化膜をエッチングし、フォトレジストを除去
すると、熱酸化膜のマスクパターンが出来る。このマス
クをもとに、熱拡散またはイオン注入により、ボロンを
高濃度にドープする。(約1020cm−3)次に、ア
ルミ膜を真空蒸着またはスパッタリングで形成し、その
上にフォトレジストで電極のパターンを形成する。燐酸
系のエッチャントでエッチングした後、フォトレジスト
を除去するとアルミ膜の電極パターンが出来る。
Example 2 First, thermal oxide films are formed on both sides of a (110) crystal plane, N type, high resistance silicon substrate. A heater or bridge pattern is formed using photoresist, the thermal oxide film is etched with a hydrofluoric acid buffer, and the photoresist is removed to form a mask pattern of the thermal oxide film. Based on this mask, boron is doped at a high concentration by thermal diffusion or ion implantation. (approximately 1020 cm-3) Next, an aluminum film is formed by vacuum evaporation or sputtering, and an electrode pattern is formed thereon using photoresist. After etching with a phosphoric acid-based etchant, the photoresist is removed to form an aluminum film electrode pattern.

【0023】さらに、保護膜として酸化シリコン膜を真
空蒸着またはスパッタリングで形成し、フォトレジスト
でリード線取り出し用のパッドパターンを形成し、弗酸
緩衝液で酸化シリコン膜をエッチングする。このパッド
部には、異方性エッチング時にアルミ膜を保護するため
、金膜をバンプで形成しておく。
Furthermore, a silicon oxide film is formed as a protective film by vacuum evaporation or sputtering, a pad pattern for lead wire extraction is formed with photoresist, and the silicon oxide film is etched with a hydrofluoric acid buffer. A gold film is formed as a bump on this pad portion in order to protect the aluminum film during anisotropic etching.

【0024】次に、フォトレジストでノズルおよびイン
ク液路のパターンを形成し、弗酸緩衝液で酸化シリコン
膜をエッチングした後、フォトレジストを除去すると、
酸化シリコン膜のマスクパターンができる。その後、K
OHなどのアルカリエッチャントでシリコンを異方性エ
ッチングし、ノズル部、ブリッジ部およびインク液路部
を形成する。この際、ノズル、インク液路およびブリッ
ジの方向については、実施例1と同様である。以上で下
部基板が出来上がる。
Next, a pattern for a nozzle and an ink liquid path is formed using photoresist, and after etching the silicon oxide film using a hydrofluoric acid buffer, the photoresist is removed.
A mask pattern of silicon oxide film is created. After that, K.
Silicon is anisotropically etched using an alkaline etchant such as OH to form a nozzle portion, a bridge portion, and an ink liquid path portion. At this time, the directions of the nozzle, ink liquid path, and bridge are the same as in Example 1. With the above steps, the lower board is completed.

【0025】一方、別の(100)結晶面のシリコン基
板には、熱酸化膜をマスクとして、異方性エッチングに
より、ノズル、インク液路およびインク導入孔を形成し
、上部基板とする。
On the other hand, on another (100) crystal plane silicon substrate, a nozzle, an ink liquid path, and an ink introduction hole are formed by anisotropic etching using a thermal oxide film as a mask, and the silicon substrate is used as an upper substrate.

【0026】上記のようにして加工した上下2枚のシリ
コン基板を、低融点ガラス接着や静電接合の方法で貼り
合わせて、インクジェットプリンタヘッドが完成する。
The two upper and lower silicon substrates processed as described above are bonded together by low melting point glass bonding or electrostatic bonding to complete an inkjet printer head.

【0027】本実施例において、ボロンドープはボロン
のエッチングストッパーとしての作用を利用するための
ものであり、ブリッジ部にドープすることにより、ドー
プ領域のブリッジ部がエッチングされずに残ることにな
る。さらに、ボロンをドープするとこの部分の低拡が下
がるために、実施例1のようにヒーターとして白金を形
成する必要がなくドープ部分がヒーターとして働く。す
なわち、エッチングされずに残ったボロンドープシリコ
ン部がブリッジ兼ヒーターとなる。
In this embodiment, boron doping is used to utilize the effect of boron as an etching stopper, and by doping the bridge portion, the bridge portion in the doped region remains unetched. Furthermore, doping with boron reduces the expansion of this portion, so there is no need to form platinum as a heater as in Example 1, and the doped portion functions as a heater. That is, the boron-doped silicon portion remaining without being etched serves as a bridge and heater.

【0028】以上の実施例1のようにおよび2では、マ
イクロブリッジ構造について説明したが、マイクロカン
チレバー上にヒーターを設けたり、ボロンドープ層をマ
イクロカンチレバー構造にしたものも、同様に作製出来
る。
In Examples 1 and 2 above, a microbridge structure has been described, but structures in which a heater is provided on a microcantilever or a boron-doped layer has a microcantilever structure can also be produced in the same manner.

【0029】[0029]

【発明の効果】本発明のインクジェットプリンターヘッ
ドによれば、小型で高密度化が容易なサーマル式のイン
クジェットプリンターヘッドを、さらに高速応答化、低
消費電力化することができ、小型で高速印字可能、また
、電池駆動でき携帯に便利なインクジェットプリンター
を提供できる。
[Effects of the Invention] According to the inkjet printer head of the present invention, a thermal inkjet printer head that is small and easy to increase density can be made even faster in response and consumes less power, allowing for small size and high-speed printing. In addition, it is possible to provide an inkjet printer that is battery-powered and convenient to carry.

【0030】また、本発明の製造方法によれば、本発明
のインクジェットプリンターヘッドを精度良く、簡単に
製造できる。
Further, according to the manufacturing method of the present invention, the inkjet printer head of the present invention can be easily manufactured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明実施例1のインクジェットプリンターヘ
ッドのヒーター部の構造を説明する概略構造図である。
FIG. 1 is a schematic structural diagram illustrating the structure of a heater section of an inkjet printer head according to a first embodiment of the present invention.

【図2】インク液路の断面図である。FIG. 2 is a cross-sectional view of an ink liquid path.

【図3】ノズルの断面図である。FIG. 3 is a cross-sectional view of the nozzle.

【図4】製作工程を説明する図である。FIG. 4 is a diagram illustrating the manufacturing process.

【図5】異方性エッチングによりブリッジが形成される
仕組みを説明する図である。
FIG. 5 is a diagram illustrating a mechanism in which a bridge is formed by anisotropic etching.

【図6】従来のバブルジェット方式のインクジェットプ
リンターヘッドの概略構造図である。
FIG. 6 is a schematic structural diagram of a conventional bubble jet type inkjet printer head.

【符号の説明】[Explanation of symbols]

1…下部基板 2…熱酸化膜 3…電極 4…ヒーター 5…保護膜 6…上部基板 7…熱酸化膜 8…パッド部 9…ノズル 10…ブリッジ 11…インク液路 12…インク導入孔 1...Lower board 2...Thermal oxide film 3...Electrode 4...Heater 5...Protective film 6...Top board 7...Thermal oxide film 8...Pad part 9...Nozzle 10...Bridge 11...Ink liquid path 12...Ink introduction hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ヒーターの加熱によりインクを沸騰さ
せ、そのエネルギーによってノズルよりインク滴を噴射
させるサーマル式のインクジェットプリンターヘッドに
おいて、壁面より浮いた位置にヒーターを備えたことを
特徴とするインクジェットプリンターヘッド。
1. A thermal inkjet printer head that boils ink by heating a heater and uses the energy to eject ink droplets from a nozzle, the inkjet printer head comprising a heater at a position floating above a wall surface. .
【請求項2】  シリコン単結晶基板を用いる製造方法
であって、シリコン単結晶の結晶軸異方性エッチングを
利用することを特徴とする請求項1のインクジェットプ
リンターヘッドの製造方法。
2. The method of manufacturing an inkjet printer head according to claim 1, which is a manufacturing method using a silicon single crystal substrate, and the method utilizes crystal axis anisotropic etching of the silicon single crystal.
JP1908891A 1991-02-13 1991-02-13 Ink-jet printer head and its manufacture Pending JPH04257450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1908891A JPH04257450A (en) 1991-02-13 1991-02-13 Ink-jet printer head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1908891A JPH04257450A (en) 1991-02-13 1991-02-13 Ink-jet printer head and its manufacture

Publications (1)

Publication Number Publication Date
JPH04257450A true JPH04257450A (en) 1992-09-11

Family

ID=11989704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1908891A Pending JPH04257450A (en) 1991-02-13 1991-02-13 Ink-jet printer head and its manufacture

Country Status (1)

Country Link
JP (1) JPH04257450A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020043669A (en) * 2000-12-02 2002-06-12 윤종용 Both side bubble type ink-jet print head
EP1213146A1 (en) * 2000-12-05 2002-06-12 Samsung Electronics Co., Ltd. Bubble-jet type ink-jet printhead
EP1565318A1 (en) * 2002-11-23 2005-08-24 Silverbrook Research Pty. Limited Thermal ink jet printhead with suspended beam heater
EP1567351A1 (en) * 2002-11-23 2005-08-31 Silverbrook Research Pty. Limited Thermal ink jet printhead with symmetric bubble formation
EP1567349A1 (en) * 2002-11-23 2005-08-31 Silverbrook Research Pty. Limited Thermal ink jet printhead with low heater mass
US7581822B2 (en) 2002-11-23 2009-09-01 Silverbrook Research Pty Ltd Inkjet printhead with low voltage ink vaporizing heaters

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020043669A (en) * 2000-12-02 2002-06-12 윤종용 Both side bubble type ink-jet print head
EP1213146A1 (en) * 2000-12-05 2002-06-12 Samsung Electronics Co., Ltd. Bubble-jet type ink-jet printhead
US6598961B2 (en) 2000-12-05 2003-07-29 Samsung Electronics Co., Ltd. Bubble-jet type ink-jet printhead
KR100506079B1 (en) * 2000-12-05 2005-08-04 삼성전자주식회사 Bubble-jet type inkjet print head
EP1565318A1 (en) * 2002-11-23 2005-08-24 Silverbrook Research Pty. Limited Thermal ink jet printhead with suspended beam heater
EP1567351A1 (en) * 2002-11-23 2005-08-31 Silverbrook Research Pty. Limited Thermal ink jet printhead with symmetric bubble formation
EP1567349A1 (en) * 2002-11-23 2005-08-31 Silverbrook Research Pty. Limited Thermal ink jet printhead with low heater mass
EP1565318A4 (en) * 2002-11-23 2008-07-09 Silverbrook Res Pty Ltd Thermal ink jet printhead with suspended beam heater
EP1567351A4 (en) * 2002-11-23 2008-07-23 Silverbrook Res Pty Ltd Thermal ink jet printhead with symmetric bubble formation
EP1567349A4 (en) * 2002-11-23 2008-07-30 Silverbrook Res Pty Ltd Thermal ink jet printhead with low heater mass
US7465035B2 (en) 2002-11-23 2008-12-16 Silverbrook Research Pty Ltd Thermal ink jet printhead with drive circuitry on opposing sides of chamber
US7465036B2 (en) 2002-11-23 2008-12-16 Silverbrook Research Pty Ltd Thermal ink jet printhead with bubble nucleation laterally offset from nozzle
US7467856B2 (en) 2002-11-23 2008-12-23 Silverbrook Research Pty Ltd Inkjet printhead with common plane of symmetry for heater element and nozzle
US7467855B2 (en) 2002-11-23 2008-12-23 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit with non-buckling heater element
US7469996B2 (en) 2002-11-23 2008-12-30 Silverbrook Research Pty Ltd Inkjet printhead with ink inlet offset from nozzle axis
US7484832B2 (en) 2002-11-23 2009-02-03 Silverbrook Research Pty Ltd Inkjet printhead having reverse ink flow prevention
US7506968B2 (en) 2002-11-23 2009-03-24 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit having nozzle assemblies with a bubble collapse point close to ink ejection aperture
US7506963B2 (en) 2002-11-23 2009-03-24 Silverbrook Research Pty Ltd Inkjet printhead with planar heater parallel to nozzle
US7510269B2 (en) 2002-11-23 2009-03-31 Silverbrook Research Pty Ltd Thermal ink jet printhead with heater element having non-uniform resistance
US7510270B2 (en) 2002-11-23 2009-03-31 Silverbrook Research Pty Ltd Thermal ink jet printhead with wide heater element
US7520594B2 (en) 2002-11-23 2009-04-21 Silverbrook Research Pty Ltd Inkjet printer with heater that forms symmetrical bubbles
US7524034B2 (en) 2002-11-23 2009-04-28 Silverbrook Research Pty Ltd Heat dissipation within thermal ink jet printhead
US7524030B2 (en) 2002-11-23 2009-04-28 Silverbrook Research Pty Ltd Nozzle arrangement with heater element terminating in oppositely disposed electrical contacts
US7524028B2 (en) 2002-11-23 2009-04-28 Silverbrook Research Pty Ltd Printhead assembly having laminated printing fluid distributors
US7533970B2 (en) 2002-11-23 2009-05-19 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit with suspended heater element spaced from chamber walls
US7533968B2 (en) 2002-11-23 2009-05-19 Silverbrook Research Pty Ltd Nozzle arrangement with sidewall incorporating heater element
US7533964B2 (en) 2002-11-23 2009-05-19 Silverbrook Research Pty Ltd Inkjet printhead with suspended heater mounted to opposing sides of the chamber
US7543916B2 (en) 2002-11-23 2009-06-09 Silverbrook Research Pty Ltd Printer with low voltage vapor bubble generating heaters
US7549729B2 (en) 2002-11-23 2009-06-23 Silverbrook Research Pty Ltd Inkjet printhead for minimizing required ink drop momentum
US7556350B2 (en) 2002-11-23 2009-07-07 Silverbrook Research Pty Ltd Thermal inkjet printhead with low power consumption
US7556354B2 (en) 2002-11-23 2009-07-07 Silverbrook Research Pty Ltd Nozzle arrangement with twin heater elements
US7581822B2 (en) 2002-11-23 2009-09-01 Silverbrook Research Pty Ltd Inkjet printhead with low voltage ink vaporizing heaters
US7588321B2 (en) 2002-11-23 2009-09-15 Silverbrook Research Pty Ltd Inkjet printhead with low loss CMOS connections to heaters
US7611226B2 (en) 2002-11-23 2009-11-03 Silverbrook Research Pty Ltd Thermal printhead with heater element and nozzle sharing common plane of symmetry
US7618127B2 (en) 2002-11-23 2009-11-17 Silverbrook Research Pty Ltd Printer system having planar bubble nucleating heater elements
US7618125B2 (en) 2002-11-23 2009-11-17 Silverbrook Research Pty Ltd Printhead integrated circuit with vapor bubbles offset from nozzle axis
US7645029B2 (en) 2002-11-23 2010-01-12 Silverbrook Research Pty Ltd Inkjet printhead nozzle arrangement having non-coincident electrodes
US7654647B2 (en) 2002-11-23 2010-02-02 Silverbrook Research Pty Ltd Method of ejecting drops from printhead with planar bubble nucleating heater elements
US7669976B2 (en) 2002-11-23 2010-03-02 Silverbrook Research Pty Ltd Ink drop ejection device with non-buckling heater element
US7686430B2 (en) 2002-11-23 2010-03-30 Silverbrook Research Pty Ltd Printer system having wide heater elements in printhead
US7686429B2 (en) 2002-11-23 2010-03-30 Silverbrook Research Pty Ltd Thermal ink jet printhead with low resistance electrodes for heaters
US7695109B2 (en) 2002-11-23 2010-04-13 Silverbrook Research Pty Ltd Printhead having laminated ejection fluid distributors
US7703892B2 (en) 2002-11-23 2010-04-27 Silverbrook Research Pty Ltd Printhead integrated circuit having suspended heater elements
US7726781B2 (en) 2002-11-23 2010-06-01 Silverbrook Research Pty Ltd Micro-electromechanical nozzles having low weight heater elements
US7735972B2 (en) 2002-11-23 2010-06-15 Silverbrook Research Pty Ltd Method of drop ejection using wide heater elements in printhead
US7735969B2 (en) 2002-11-23 2010-06-15 Silverbrook Research Pty Ltd Inkjet printer utilizing low energy titanium nitride heater elements
US7740343B2 (en) 2002-11-23 2010-06-22 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit with suspended heater element spaced from chamber walls
US7740342B2 (en) 2002-11-23 2010-06-22 Silverbrook Research Pty Ltd Unit cell for a thermal inkjet printhead
US7744196B2 (en) 2002-11-23 2010-06-29 Silverbrook Research Pty Ltd Nozzle arrangement having annulus shaped heater elements
US7753494B2 (en) 2002-11-23 2010-07-13 Silverbrook Research Pty Ltd Printhead having low mass bubble forming heaters
US7758170B2 (en) 2002-11-23 2010-07-20 Silverbrook Research Pty Ltd Printer system having printhead with arcuate heater elements
US7771023B2 (en) 2002-11-23 2010-08-10 Silverbrook Research Pty Ltd Method of ejecting drops of fluid from an inkjet printhead
US7775637B2 (en) 2002-11-23 2010-08-17 Silverbrook Research Pty Ltd Nozzle arrangement with ejection apertures having externally projecting peripheral rim
US7775636B2 (en) 2002-11-23 2010-08-17 Silverbrook Research Pty Ltd Nozzle arrangement having partially embedded heated elements
US7841704B2 (en) 2002-11-23 2010-11-30 Silverbrook Research Pty Ltd Inkjet printhead with small nozzle spacing
US7874637B2 (en) 2002-11-23 2011-01-25 Silverbrook Research Pty Ltd Pagewidth printhead assembly having air channels for purging unnecessary ink
US7874641B2 (en) 2002-11-23 2011-01-25 Silverbrook Research Pty Ltd Modular printhead assembly
US7891776B2 (en) 2002-11-23 2011-02-22 Silverbrook Research Pty Ltd Nozzle arrangement with different sized heater elements
US7891774B2 (en) 2002-11-23 2011-02-22 Silverbrook Research Pty Ltd Printhead having low pressure rise nozzles
US7891777B2 (en) 2002-11-23 2011-02-22 Silverbrook Research Pty Ltd Inkjet printhead with heaters mounted proximate thin nozzle layer
US7891778B2 (en) 2002-11-23 2011-02-22 Silverbrook Research Pty Ltd Inkjet printhead assembly for symmetrical vapor bubble formation
US7922310B2 (en) 2002-11-23 2011-04-12 Silverbrook Research Pty Ltd Modular printhead assembly
US7934805B2 (en) 2002-11-23 2011-05-03 Silverbrook Research Pty Ltd Nozzle arrangement having chamber with in collection well
US7934804B2 (en) 2002-11-23 2011-05-03 Silverbrook Research Pty Ltd Nozzle arrangement having uniform heater element conductors
US7946685B2 (en) 2002-11-23 2011-05-24 Silverbrook Research Pty Ltd Printer with nozzles for generating vapor bubbles offset from nozzle axis
US7967417B2 (en) 2002-11-23 2011-06-28 Silverbrook Research Pty Ltd Inkjet printhead with symetrical heater and nozzle sharing common plane of symmetry
US7967420B2 (en) 2002-11-23 2011-06-28 Silverbrook Research Pty Ltd Inkjet printhead nozzle arrangement having non-coincident low mass electrode and heater element
US7971974B2 (en) 2002-11-23 2011-07-05 Silverbrook Research Pty Ltd Printhead integrated circuit with low loss CMOS connections to heaters
US7971970B2 (en) 2002-11-23 2011-07-05 Silverbrook Research Pty Ltd Ink ejection device with circular chamber and concentric heater element
US7980673B2 (en) 2002-11-23 2011-07-19 Silverbrook Research Pty Ltd Inkjet nozzle assembly with low density suspended heater element
US7984974B2 (en) 2002-11-23 2011-07-26 Silverbrook Research Pty Ltd Printhead integrated circuit with low voltage thermal actuators
US7988261B2 (en) 2002-11-23 2011-08-02 Silverbrook Research Pty Ltd Printhead having layered heater elements and electrodes
US7997688B2 (en) 2002-11-23 2011-08-16 Silverbrook Research Pty Ltd Unit cell for thermal inkjet printhead
US8007075B2 (en) 2002-11-23 2011-08-30 Silverbrook Research Pty Ltd Printhead having nozzle plate formed on fluid distributors
US8011760B2 (en) 2002-11-23 2011-09-06 Silverbrook Research Pty Ltd Inkjet printhead with suspended heater element spaced from chamber walls
US8038262B2 (en) 2002-11-23 2011-10-18 Silverbrook Research Pty Ltd Inkjet printhead unit cell with heater element
US8075111B2 (en) 2002-11-23 2011-12-13 Silverbrook Research Pty Ltd Printhead with ink distribution through aligned apertures
US8087751B2 (en) 2002-11-23 2012-01-03 Silverbrook Research Pty Ltd Thermal ink jet printhead
US8100512B2 (en) 2002-11-23 2012-01-24 Silverbrook Research Pty Ltd Printhead having planar bubble nucleating heaters
US8118407B2 (en) 2002-11-23 2012-02-21 Silverbrook Research Pty Ltd Thermal inkjet printhead having annulus shaped heater elements
US8277029B2 (en) 2002-11-23 2012-10-02 Zamtec Limited Printhead integrated circuit having low mass heater elements
US8287096B2 (en) 2002-11-23 2012-10-16 Zamtec Limited Printhead nozzles having low mass heater elements
US8287097B2 (en) 2002-11-23 2012-10-16 Zamtec Limited Inkjet printer utilizing low energy titanium nitride heater elements

Similar Documents

Publication Publication Date Title
US6749762B2 (en) Bubble-jet type ink-jet printhead and manufacturing method thereof
JPH041051A (en) Ink-jet recording device
KR100955963B1 (en) Ink jet print head and method of manufacturing ink jet print head
JP4656670B2 (en) Liquid discharge head and method of manufacturing liquid discharge head
JPH1058685A (en) Ink jet print head having channels arranged on surface in silicon
KR100433530B1 (en) Manufacturing method for monolithic ink-jet printhead
JPH04257450A (en) Ink-jet printer head and its manufacture
JP4256485B2 (en) Inkjet channel wafer and inkjet printhead
US8070265B2 (en) Heater stack in a micro-fluid ejection device and method for forming floating electrical heater element in the heater stack
JP3053936B2 (en) Liquid jet recording head substrate, method of manufacturing the substrate, liquid jet recording head using the substrate, method of manufacturing the recording head, and recording apparatus including the recording head
JP2002321356A (en) Ink jet recording head and method for manufacturing it
JP2003053700A (en) Anisotropic etching method for silicon crystal, method of manufacturing ink channel plate, ink channel plate, ink-jet print head, and ink jet printer
JP3402865B2 (en) Method for manufacturing liquid jet recording head
KR100506080B1 (en) Bubble-jet type ink-jet print head and manufacturing method thereof
JP3942810B2 (en) Electrostatic ink jet head and manufacturing method thereof
KR20080086306A (en) Method for manufacturing ink-jet print head
JPH05220960A (en) Liquid jet recording head
JP3987709B2 (en) Inkjet head
KR100400228B1 (en) Inkjet printhead and manufacturing method thereof
JP2932808B2 (en) Ink jet recording head and method of manufacturing the same
JP2003094664A (en) Ink-jet head
JP2000012507A (en) Manufacture of three-dimensional silicon device
JP2002029053A (en) Electrostatic actuator, method of manufacturing the electrostatic actuator, ink jet recording head with the electrostatic actuator, and ink jet recording apparatus with the ink jet recording head
JP2005028644A (en) Inkjet head, manufacturing method therefor, and inkjet recording apparatus
JP2002029048A (en) Liquid droplet discharge head