JPH04256885A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPH04256885A
JPH04256885A JP3782891A JP3782891A JPH04256885A JP H04256885 A JPH04256885 A JP H04256885A JP 3782891 A JP3782891 A JP 3782891A JP 3782891 A JP3782891 A JP 3782891A JP H04256885 A JPH04256885 A JP H04256885A
Authority
JP
Japan
Prior art keywords
detector
detectors
view
subject
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3782891A
Other languages
Japanese (ja)
Other versions
JP3108446B2 (en
Inventor
Masatoshi Tanaka
正敏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP3782891A priority Critical patent/JP3108446B2/en
Publication of JPH04256885A publication Critical patent/JPH04256885A/en
Application granted granted Critical
Publication of JP3108446B2 publication Critical patent/JP3108446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To obtain a scintillation camera providing a whole body image and a cross section image showing the distribution of radioisotope in the tested body in a short time and with high image quality. CONSTITUTION:On a disk 2 to rotate a detector around a rotation axis, two gross view detectors 1a and 1b and two detectors 1c and 1d with smaller view than the detector are provided. The gross view detectors 1a and 1b move to access and escape against the rotation axis on the disk 2. The small view detectors 1c and 1d have a detector movement means to slantingly access and escape against the rotation axis on the said disk 2. Thus, a high quality cross section image of the R1 distribution in the head part and body part of the tested body and an R1 distribution image of whole body of the tested body are obtained highly efficiently with a single scintillation camera.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、被検体から放射される
放射線を検出して被検体の断層像や全身像を得るシンチ
レーションカメラに係り、特に複数の検出器を備えたも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scintillation camera that detects radiation emitted from a subject to obtain a tomographic image or a whole body image of the subject, and particularly relates to a scintillation camera equipped with a plurality of detectors.

【0002】0002

【従来の技術】シンチレーションカメラは、被検体内の
ラジオアイソトープ(以下RIと呼ぶ。)から放射され
る放射線を検出して、被検体内のRIの分布を二次元平
面像として得る装置である。さらに、シンチレーション
カメラの検出器を被検体の体軸に沿って移動させて、被
検体の全身のRI分布像を得ることや、検出器を被検体
の周りに回転させて、被検体内のRI分布の断層像を得
ることもできる。これらのRI分布像を得るために要す
る時間(以下、像収集時間と呼ぶ。)は、検出器が一個
のシンチレーションカメラでは約30分である。被検体
である患者の苦痛を少なくする為には像収集時間をでき
るだけ短くする必要があるが、RI分布像の画質は検出
器が検出した放射線の数に依存するため、像収集時間を
あまり短くできない。そこで、近年、像収集時間の短縮
とRI分布像の画質向上のために検出器を複数化したシ
ンチレーションカメラが一般化してきている。すなわち
、検出器を複数化することで検出する放射線の数を実質
的に増加させ、像収集時間の短縮とRI分布像の画質向
上を実現しようとするものである。
2. Description of the Related Art A scintillation camera is a device that detects radiation emitted from radioisotopes (hereinafter referred to as RI) within a subject and obtains the distribution of RI within the subject as a two-dimensional planar image. Furthermore, the detector of the scintillation camera can be moved along the body axis of the subject to obtain an RI distribution image of the whole body of the subject, or the detector can be rotated around the subject to detect the RI distribution within the subject. It is also possible to obtain a tomographic image of the distribution. The time required to obtain these RI distribution images (hereinafter referred to as image collection time) is approximately 30 minutes for a scintillation camera with one detector. In order to reduce the pain of the patient being examined, it is necessary to shorten the image acquisition time as much as possible, but since the quality of the RI distribution image depends on the number of radiations detected by the detector, the image acquisition time should not be too short. Can not. Therefore, in recent years, scintillation cameras with multiple detectors have become popular in order to shorten image collection time and improve the quality of RI distribution images. That is, by providing a plurality of detectors, the number of radiations to be detected is substantially increased, thereby shortening the image collection time and improving the image quality of the RI distribution image.

【0003】従来、複数の検出器を備えたシンチレーシ
ョンカメラとしては、図4,図5及び図6に示すものが
ある。図4に示す従来技術のものは、4個の検出器1が
円板2に取り付けられて90度の角度をもって四角形に
配列され、これら検出器1の間に被検体を入れ、像収集
時、図示しない駆動手段によって円板2を軸4のまわり
に回転駆動させると、それぞれの検出器1が被検体のま
わりに回転することによって断層像が得られるようにし
ている。一方、図5に示す従来技術のものは、円板2に
3個の検出器1を互いに60度の角度をもって正三角形
状に配列したものである。また、図6に示す従来技術の
ものは、円板2に2個の検出器1を互いに対向させて配
列したものである。いずれも、図4の従来例と同じく円
板2により検出器1を軸4まわりに回転することによっ
て断層像が得られる。
Conventional scintillation cameras equipped with a plurality of detectors include those shown in FIGS. 4, 5, and 6. In the conventional technique shown in FIG. 4, four detectors 1 are attached to a disk 2 and arranged in a rectangular shape at an angle of 90 degrees, and a subject is placed between these detectors 1, and when collecting images, When the disk 2 is rotationally driven around the axis 4 by a driving means (not shown), each detector 1 rotates around the subject, thereby obtaining a tomographic image. On the other hand, in the prior art shown in FIG. 5, three detectors 1 are arranged on a disk 2 in an equilateral triangle shape at an angle of 60 degrees to each other. Further, in the prior art shown in FIG. 6, two detectors 1 are arranged on a disk 2 so as to face each other. In either case, a tomographic image is obtained by rotating the detector 1 around the axis 4 using the disc 2, as in the conventional example shown in FIG.

【0004】いずれの従来例も円板2はスタンド3に軸
まわりに回転可能に取り付けられている。また、スタン
ド3全体を被検体の体軸に沿って水平方向に動かす駆動
手段を持つものや、円板2の上で矢印aの如く検出器1
を軸4に対し接近したり遠のいたりするよう動かす検出
器移動手段を持つものもある。
[0004] In both conventional examples, the disc 2 is attached to a stand 3 so as to be rotatable about an axis. In addition, the stand 3 can be moved horizontally along the body axis of the subject, or the detector 1 can be placed on the disc 2 as shown by arrow a.
Some detectors have detector moving means for moving the detector toward or away from the axis 4.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来技術で
述べた如く、シンチレーションカメラの臨床応用には断
層像による診断の他、検出器を回転させずに被検体から
の放射線を検出し、被検体内のRI分布を二次元的に平
面像としてとらえ、その平面像によって診断する方法が
ある。例えば、被検体の骨に集積したRIの分布を見る
ために、検出器を被検体の体軸方向に移動させて被検体
の全身のRI分布像を得、このRI分布像に基づいて診
断する臨床応用が広く行われている。ところが、体内に
投与されたRIから放出される放射線は、被検体内部で
の吸収があるため、平面像の診断に於いても被検体の正
面と背面との両方からのRI分布像を得る必要がある。
[Problems to be Solved by the Invention] As described in the prior art section, scintillation cameras are used in clinical applications to detect radiation from a subject without rotating the detector, in addition to diagnosis using tomographic images. There is a method of capturing the RI distribution in a two-dimensional plane image and diagnosing the plane image. For example, in order to see the distribution of RI accumulated in the bones of a subject, a detector is moved in the direction of the subject's body axis to obtain an RI distribution image of the subject's whole body, and a diagnosis is made based on this RI distribution image. Clinical applications are widespread. However, since the radiation emitted from RI administered into the body is absorbed inside the subject, it is necessary to obtain RI distribution images from both the front and back of the subject even in planar image diagnosis. There is.

【0006】図7に、図6に示す従来技術のものにより
、2検出器でベッド5に横臥した被検体6のRI全身分
布像を得る方法を示す。検出器1は円板2の上で被検体
6に近接するように移動される。検出器1を移動させる
理由は、検出器1を撮影部位に可及的に近づけると、検
出器1の検出面に取り付けたコリメータ7の特性上、検
出器1に対し撮影部位から一定の角度で入射する放射線
を的確に検出でき、RI分布像の分解能が上がるためで
ある。次に、スタンド3が水平に動いて検出器1を被検
体6の体軸に沿って矢印bの如く移動させることにより
、被検体6の正面と背面のRI全身分布像が同時に得ら
れる。図4の従来技術のものも、四検出器の内、上下の
対向する2検出器1を使用することによって被検体6の
正面と背面の二方向からのRI分布像を同時に得ること
ができるので、像収集時間の短縮とRI分布像の画質向
上を実現できる。
FIG. 7 shows a method of obtaining an RI whole body distribution image of a subject 6 lying on a bed 5 using two detectors using the prior art shown in FIG. The detector 1 is moved on the disk 2 so as to be close to the subject 6. The reason for moving the detector 1 is that when the detector 1 is brought as close as possible to the imaging site, due to the characteristics of the collimator 7 attached to the detection surface of the detector 1, it will move at a constant angle from the imaging site to the detector 1. This is because the incident radiation can be detected accurately and the resolution of the RI distribution image is improved. Next, by moving the stand 3 horizontally and moving the detector 1 along the body axis of the subject 6 as shown by arrow b, RI whole-body distribution images of the front and back surfaces of the subject 6 can be obtained simultaneously. The prior art shown in FIG. 4 also uses the upper and lower two opposing detectors 1 among the four detectors, so that it is possible to simultaneously obtain RI distribution images from two directions, the front and back sides of the subject 6. , it is possible to reduce the image acquisition time and improve the image quality of the RI distribution image.

【0007】その点、図5に示す従来技術のものは、被
検体6の全身の平面像を得ようとすると、3個の検出器
1を備えているものの、その検出器が正三角形に配置さ
れているので、いずれか一個の検出器1で正面と背面の
いずれか一方のRI分布像を収集した後、その検出器(
あるいは他の検出器)を正面と背面のいずれか他方に位
置決めして該検出器で残りの方向のRI分布像を収集し
なければならないので、1個の検出器を備えたシンチレ
ーションカメラの場合と同様に像収集に時間がかかり、
像収集効率が悪い問題がある。従って、被検体の正面と
背面の両方向からのRI分布像を得る目的には、図4の
従来例と図6の従来例が有利である。
In this regard, in the prior art shown in FIG. 5, when trying to obtain a planar image of the whole body of the subject 6, although it is equipped with three detectors 1, the detectors are arranged in an equilateral triangle. Therefore, after collecting the RI distribution image of either the front or back side with any one detector 1, that detector (
In the case of a scintillation camera equipped with a single detector, the RI distribution image in the remaining direction must be collected by positioning the detector (or another detector) on either the front or back side and using that detector to collect the RI distribution image in the remaining direction. Similarly, collecting images takes time;
There is a problem with poor image collection efficiency. Therefore, the conventional example shown in FIG. 4 and the conventional example shown in FIG. 6 are advantageous for obtaining RI distribution images from both the front and back sides of the subject.

【0008】次に、検出器1を被検体6の周りに回転さ
せて、被検体6体内のRI分布の断層像を得る場合に於
いては、検出器1の数が多いほど被検体6から放射され
る放射線を検出する効率の点で有利である。しかしなが
ら、RI分布像の画質は検出した放射線の数に依存する
だけでなくRI分布像の分解能にも依存しているので、
検出器1を被検体6の対象部位に可及的に近づける必要
がある。検出器1を被検体6の対象部位に近づける理由
は、前記の如く、検出器1を撮影部位に可及的に近づけ
ると、検出器1の検出面に取り付けたコリメータ7の特
性上、検出器1に対し撮影部位から一定の角度で入射す
る放射線を的確に検出でき、RI分布像の分解能が上が
るためである。図8に、図5に示す従来技術のものによ
り、3検出器で被検体6の頭部のRI分布断層像を得る
方法を示す。
Next, when rotating the detectors 1 around the subject 6 to obtain a tomographic image of the RI distribution inside the subject 6, the larger the number of detectors 1, the more the distance from the subject 6. This is advantageous in terms of efficiency in detecting emitted radiation. However, the image quality of the RI distribution image depends not only on the number of detected radiations but also on the resolution of the RI distribution image.
It is necessary to bring the detector 1 as close as possible to the target region of the subject 6. The reason why the detector 1 is brought close to the target area of the subject 6 is that, as mentioned above, when the detector 1 is brought as close as possible to the imaging area, due to the characteristics of the collimator 7 attached to the detection surface of the detector 1, the detector This is because, compared to No. 1, radiation incident at a certain angle from the imaging site can be accurately detected, and the resolution of the RI distribution image is increased. FIG. 8 shows a method of obtaining an RI distribution tomographic image of the head of the subject 6 using three detectors using the prior art shown in FIG.

【0009】図8に於いて、3個の検出器1が検出器移
動手段により互いに接する位置まで矢印cの如く移動し
て、その3個の検出器1間に頭部を位置決めさせ、その
後検出器1を円板2の駆動によって矢印dの如く回転す
るようにしている。また、被検体6の胴体部の断層像を
得る場合には、図9に示すように、各々の検出器1を被
検体6が入ることができるスペースを確保できるように
矢印eの如く移動させて、検出器1間に被検体6の対象
部位を位置決めさせ、その後、検出器1を回転すること
によって心臓などの断層像を得るようにしている。
In FIG. 8, the three detectors 1 are moved by the detector moving means as shown by the arrow c to a position where they touch each other, the head is positioned between the three detectors 1, and then the detection The container 1 is rotated as shown by the arrow d by driving the disk 2. Furthermore, when obtaining a tomographic image of the torso of the subject 6, as shown in FIG. A target region of the subject 6 is positioned between the detectors 1, and then a tomographic image of the heart or the like is obtained by rotating the detector 1.

【0010】図6の従来技術のものも、2検出器を被検
体6の対象部位に可及的に近づけられて分解能の良いR
I分布像が得られる。しかし、図5の従来例のものに較
べて、検出器1の数が少ない分、被検体6から放射され
る放射線を検出する効果は劣っている。
The conventional technology shown in FIG.
An I distribution image is obtained. However, compared to the conventional example shown in FIG. 5, since the number of detectors 1 is smaller, the effect of detecting radiation emitted from the subject 6 is inferior.

【0011】一方、図4の従来例に於いては、被検体6
の胴体部に応じて検出視野が大きい4個の検出器1を使
用した場合、被検体6の頭部に対しては検出器1を可及
的に近づけることができないために分解能のよいRI分
布像を得られない問題がある。逆に、被検体6の頭部に
可及的に近づけられるように検出器視野が小さい4個の
検出器1を使用した場合、被検体6の胴体部には検出視
野が小さく適さない。従って、図4の従来例のものは、
被検体6から放射される視野線を検出する効率は高いも
のの、被検体6の対象部位毎に検出視野の異なる装置が
必要であることから、汎用性の点に問題がある。本発明
の目的は上記のような問題点をなくした複数検出器のシ
ンチレーションカメラを提供することにある。
On the other hand, in the conventional example shown in FIG.
When four detectors 1 with large detection fields of view are used depending on the body of the subject 6, the RI distribution with good resolution cannot be achieved because the detectors 1 cannot be placed as close as possible to the head of the subject 6. I have a problem where I can't get an image. On the other hand, if four detectors 1 with small detector fields of view are used so that they can be placed as close as possible to the head of the subject 6, the detection field of view is small and is not suitable for the torso of the subject 6. Therefore, the conventional example shown in FIG.
Although the efficiency of detecting the field of view radiated from the subject 6 is high, there is a problem in terms of versatility because a device with a different detection field of view is required for each target part of the subject 6. An object of the present invention is to provide a multi-detector scintillation camera that eliminates the above-mentioned problems.

【0012】0012

【課題を解決するための手段】上記目的を達成するため
、本発明においては、被検体の胴体部のRI分布像を得
るに充分な大きさの検出視野を有する対向する2個の検
出器と、前記2個の検出器の対向軸と直角方向に互いに
対向する位置に配置され前記検出器の約半分の検出視野
を有する2個の検出器とで構成されている。また、検出
器を回転円板上で移動させる検出器移動手段は、大視野
の2個の検出器を回転軸から遠ざけたり、近づけたりす
る移動手段と、小視野の2個の検出器を上下左右に移動
させるか、あるいは、回転軸に対して斜めに移動させる
移動手段を有し、被検体の対象部位に対して前記4個の
検出器を可及的に近づけられるようにしている。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes two opposing detectors each having a detection field of view large enough to obtain an RI distribution image of the torso of a subject. , two detectors arranged at positions facing each other in a direction perpendicular to the opposing axes of the two detectors and having a detection field of view that is about half of the detector. In addition, the detector moving means for moving the detector on the rotating disk includes a moving means for moving the two detectors with a large field of view away from or closer to the rotation axis, and a means for moving the two detectors with a small field of view up and down. It has a moving means for moving left and right or obliquely to the rotation axis, so that the four detectors can be brought as close as possible to the target region of the subject.

【0013】[0013]

【作用】上記の如く、検出器が大視野の2個の検出器と
小視野の2個の検出器で構成され、被検体の頭部に対し
て4個の検出器を可及的に近づけて、RI分布の断層像
を得ることができる。被検体の胴体部に対しては、小視
野の2個の検出器が前記大視野の検出器の視野のそれぞ
れ右半分と左半分に対応するように対向して配置され、
3個の大視野の検出器と同じ放射線検出効率でRI分布
の断層像が得られる。この場合、小視野の2個の検出器
は互いに対向しているので大視野の検出器と同じRI分
布像を一度に得ることはできないが、一方の小視野検出
器が最初の位置から180度回転したときに、対向する
他方の小視野検出器の残り半分の検出視野の位置に当該
検出器が来ることにより、大視野検出器と同じ大きさの
RI分布像が得られる。また、全身のRI分布像を得る
場合には、大視野の2個の検出器は互いに対向している
ので、被検体の正面と背面の二方向からのRI分布像を
同時に得ることができる。
[Operation] As mentioned above, the detector is composed of two detectors with a large field of view and two detectors with a small field of view, and the four detectors are placed as close as possible to the subject's head. Thus, a tomographic image of the RI distribution can be obtained. For the torso of the subject, two detectors with a small field of view are arranged facing each other so as to correspond to the right half and the left half of the field of view of the detector with a large field of view, respectively,
A tomographic image of the RI distribution can be obtained with the same radiation detection efficiency as three large-field detectors. In this case, since the two small field of view detectors face each other, it is not possible to obtain the same RI distribution image at once as the large field of view detector, but one small field of view detector is located 180 degrees from the initial position. When rotated, this detector comes to the position of the remaining half of the detection field of view of the other opposing small field of view detector, thereby obtaining an RI distribution image of the same size as the large field of view detector. Furthermore, when obtaining an RI distribution image of the whole body, since the two large-field detectors face each other, it is possible to obtain RI distribution images from two directions, the front and the back of the subject, at the same time.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1から図3によ
り説明する。図1は本発明によるシンチレーションカメ
ラの一実施例を示す構成図であり、被検体6の胴体部の
RI分布の断層像を得る場合を示す。図2及び図3は、
それぞれ、被検体6の頭部の断層像と全身のRI分布像
を得る場合の説明図である。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a block diagram showing an embodiment of a scintillation camera according to the present invention, and shows a case where a tomographic image of the RI distribution of the torso of a subject 6 is obtained. Figures 2 and 3 are
FIG. 6 is an explanatory diagram for obtaining a tomographic image of the head of the subject 6 and an RI distribution image of the whole body, respectively.

【0015】実施例のシンチレーションカメラは、被検
体6の胴体部のRI分布像を得るに充分な大きさの検出
視野を有する対向する2個の検出器1a,1bと、前記
2個の検出器の対向軸と直角方向に互いに対向する位置
に配置され前記検出器の約半分の検出視野を有する2個
の検出器1c,1dとが円板2に取り付けられ、さらに
、円板2がその中心軸のまわりに回転可能なようにスタ
ンド3に取り付けられた構成である。また、検出器1c
,1dは、その検出視野の検出器1aと接しない側の端
部を結ぶ線が円板2の回転軸を通るように配置する。 図1に於て、検出器1a,1bは、図示しない検出移動
手段によって円板2の上で矢印fの如く回転軸から遠ざ
かったり、近づいたりするように動かされる。また、検
出器1c,1dは、図示しない検出器移動手段によって
円板2の上で矢印gの如く回転軸に対して斜めに動かさ
れる。この検出器1c,1dの検出器移動手段は、構造
は複雑になるが、検出器1c,1dを円板2の上で上下
左右に動かすことにより回転軸に対して斜めに動かすも
のでも良い。
The scintillation camera of the embodiment includes two detectors 1a and 1b facing each other and having a detection field of view large enough to obtain an RI distribution image of the torso of the subject 6; Two detectors 1c and 1d are mounted on the disk 2, and the disk 2 is located at the center of the disk 2. It is configured to be attached to a stand 3 so as to be rotatable around an axis. In addition, the detector 1c
, 1d are arranged so that a line connecting the ends of the detection field of view on the side not in contact with the detector 1a passes through the rotation axis of the disk 2. In FIG. 1, the detectors 1a and 1b are moved on the disk 2 by a detection moving means (not shown) so as to move away from or approach the rotation axis as indicated by an arrow f. Further, the detectors 1c and 1d are moved obliquely with respect to the rotation axis as indicated by an arrow g on the disk 2 by a detector moving means (not shown). The detector moving means for the detectors 1c and 1d may be of a type that moves the detectors 1c and 1d diagonally with respect to the rotation axis by moving them vertically and horizontally on the disk 2, although the structure is complicated.

【0016】このような構成において、被検体6の胴体
部の断層像を得る場合には、図1に示すように、検出器
1a,1b,1c,1dを被検体6が入ることができる
スペースを確保できるように配置し、当該検出器間に被
検体6の対象部位を位置決めさせ、その後、当該検出器
を円板2により回転駆動させる。ある回転角度において
、検出器1c,1dが収集するRI分布像が検出器1a
,1bの半分であるが、その回転角度から180度回転
して検出器1c,1dがそれぞれ1c′,1d′の位置
に来ると、最初の回転角度の検出器1cの残り半分の検
出視野の位置に1d′が、検出器1dの残り半分の検出
視野の位置に1c′が対応し、両方のRI分布像を継ぎ
合わせることにより検出器1a,1bと同じ大きさのR
I分布像が得られる。この結果、検出器1c,1dは、
両方を合わせて一個の大視野検出器に相当することにな
る。
In such a configuration, when obtaining a tomographic image of the torso of the subject 6, as shown in FIG. The target region of the subject 6 is positioned between the detectors, and then the detectors are rotationally driven by the disk 2. At a certain rotation angle, the RI distribution image collected by the detectors 1c and 1d is the same as that of the detector 1a.
, 1b, but when the detectors 1c and 1d are rotated 180 degrees from that rotation angle and come to the positions 1c' and 1d', respectively, the detection field of view of the remaining half of the detector 1c at the initial rotation angle is 1d' corresponds to the position of the detection field of view of the remaining half of the detector 1d, and 1c' corresponds to the position of the detection field of view of the remaining half of the detector 1d.
An I distribution image is obtained. As a result, the detectors 1c and 1d are
The combination of both corresponds to one large field of view detector.

【0017】次に、この実施例により被検体6の頭部の
RI分布の断層像を得る場合を図2に示す。検出器1a
,1bは矢印hの如く、また、検出器1c,1dは矢印
iの如く被検体6の頭部に可及的に近づけて設置され、
4個の検出器によりRI分布断層像が得られる。また、
この実施例により被検体6の全身のRI分布像を得る場
合を図3に示す。検出器1c,1bは矢印jの如く検出
器1a,1bの移動の障害とならない位置に遠ざけられ
、また、検出器1a,1bは矢印kの如く被検体6に可
及的に近づけられて設置される。次に、図7の従来例の
如く、スタンド3を図示しない駆動手段によって水平に
動かし、検出器1a,1bを被検体6の体軸に沿って移
動させることにより、被検体6の正面と背面のRI全身
分布像を同時に得ることができる。
Next, FIG. 2 shows a case where a tomographic image of the RI distribution of the head of the subject 6 is obtained using this embodiment. Detector 1a
, 1b are installed as shown by the arrow h, and the detectors 1c and 1d are installed as close as possible to the head of the subject 6 as shown by the arrow i.
An RI distribution tomogram is obtained by four detectors. Also,
FIG. 3 shows a case where an RI distribution image of the whole body of the subject 6 is obtained by this embodiment. The detectors 1c and 1b are moved away from each other as shown by the arrow j to a position where they do not interfere with the movement of the detectors 1a and 1b, and the detectors 1a and 1b are placed as close as possible to the subject 6 as shown by the arrow k. be done. Next, as in the conventional example shown in FIG. 7, the stand 3 is moved horizontally by a drive means (not shown), and the detectors 1a and 1b are moved along the body axis of the subject 6, thereby detecting the front and back surfaces of the subject 6. RI whole-body distribution images can be obtained at the same time.

【0018】[0018]

【発明の効果】本発明は上記のように構成されているの
で、被検体の頭部のRI分布の断層像を得る場合には4
検出器分の放射線検出効率で、被検体の胴体部のRI分
布の断層像を得る場合には3検出器分の放射線検出効率
でRI分布像を収集でき、また、被検体の全身のRI分
布像を得る場合には、対向する大視野の2検出器で被検
体の正面と背面の両方向からのRI分布像を同時に収集
できるので、被検体の各対象部位に適用できる汎用性を
持ち、且つ、像収集時間の短縮とRI分布像の画質向上
が可能なシンチレーションカメラを提供できる効果があ
る。
Effects of the Invention Since the present invention is configured as described above, when obtaining a tomographic image of the RI distribution of the head of a subject, four
When obtaining a tomographic image of the RI distribution of the torso of a subject with the radiation detection efficiency of one detector, the RI distribution image can be collected with the radiation detection efficiency of three detectors, and the RI distribution of the whole body of the subject can be obtained. When obtaining images, RI distribution images from both the front and back sides of the subject can be collected simultaneously using two large-field-of-view detectors facing each other, making it versatile enough to be applied to each target area of the subject. This has the effect of providing a scintillation camera that can shorten image collection time and improve the quality of RI distribution images.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】被検体の頭部のRI分布の断層像を得る場合の
説明図。
FIG. 2 is an explanatory diagram when obtaining a tomographic image of the RI distribution of the head of a subject.

【図3】被検体の全身のRI分布像を得る場合の説明図
FIG. 3 is an explanatory diagram when obtaining a whole body RI distribution image of a subject.

【図4】従来のシンチレーションカメラの一構成例を示
す全体斜視図。
FIG. 4 is an overall perspective view showing an example of the configuration of a conventional scintillation camera.

【図5】従来のシンチレーションカメラの他の例を示す
全体視野図。
FIG. 5 is an overall view showing another example of a conventional scintillation camera.

【図6】従来のシンチレーションカメラの他の例を示す
全体視野図。
FIG. 6 is an overall view showing another example of a conventional scintillation camera.

【図7】図6の従来例により被検体の全身のRI分布像
を得る場合の説明図。
FIG. 7 is an explanatory diagram when obtaining a whole body RI distribution image of a subject using the conventional example shown in FIG. 6;

【図8】図5の従来例により被検体の頭部の断層像を得
る場合の説明図。
FIG. 8 is an explanatory diagram when obtaining a tomographic image of a subject's head using the conventional example shown in FIG. 5;

【図9】図6の従来例により被検体の胴体部の断層像を
得る場合の説明図である。
FIG. 9 is an explanatory diagram when obtaining a tomographic image of the torso of a subject using the conventional example shown in FIG. 6;

【符号の説明】[Explanation of symbols]

1  検出器 2  円板 3  スタンド 4  回転軸 5  ベッド 6  被検体 7  コリメータ 1a,1b  本発明に使用される大視野検出器1c,
1d  本発明に使用される前記1a,1bの検出器よ
り小視野の検出器
1 Detector 2 Disc 3 Stand 4 Rotating shaft 5 Bed 6 Subject 7 Collimator 1a, 1b Large field of view detector 1c used in the present invention,
1d Detector with a smaller field of view than the detectors 1a and 1b used in the present invention

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】回転円板上に移動可能に取り付けた検出器
と、該検出器を回転円板上で移動する検出器移動手段と
、回転円板を被検体の周りに回転駆動する駆動手段とを
有するシンチレーションカメラにおいて、前記検出器は
被検体の胴体部のRI分布像を得るに充分な大きさの検
出視野を有する対向する2個の検出器と、前記2個の検
出器の対向軸と直角方向に互いに対向する位置に配置さ
れ前記検出器より小さい検出視野を有する2個の検出器
とからなり、前記検出器移動手段によって前記検出器が
被検体の対象部位に対して近接あるいは退避することを
特徴とするシンチレーションカメラ。
1. A detector movably mounted on a rotating disk, a detector moving means for moving the detector on the rotating disk, and a driving means for rotating the rotating disk around a subject. In the scintillation camera, the detector includes two opposing detectors having a detection field of view large enough to obtain an RI distribution image of the torso of the subject, and opposing axes of the two detectors. and two detectors disposed at positions facing each other in a perpendicular direction and having a smaller detection field of view than the detector, and the detector moving means moves the detector closer to or away from the target region of the subject. A scintillation camera that is characterized by:
【請求項2】前記検出器を被検体の胴体部の周りに回転
させる場合において、前記検出器移動手段は、前記小視
野の2個の検出器の視野の大視野の検出器と接しない側
の端部を結ぶ線が回転軸を通るように前記小規野検出器
を移動させることを特徴とする、請求項1記載のシンチ
レーションカメラ。
2. In the case where the detector is rotated around the torso of the subject, the detector moving means moves between the two small field of view detectors on the side that is not in contact with the large field of view detector. 2. The scintillation camera according to claim 1, wherein said small field detector is moved so that a line connecting the ends of said field detector passes through an axis of rotation.
【請求項3】前記検出器移動手段は、前記大視野の2個
の検出器を回転軸から遠ざけたり、近づけたりする移動
手段と、小視野の2個の検出器を上下左右に移動させる
か、あるいは、回転軸に対して斜めに移動させる移動手
段とを具備することを特徴とする、請求項1記載のシン
チレーションカメラ。
3. The detector moving means includes a moving means for moving the two large field of view detectors away from or closer to the rotation axis, and a moving means for moving the two small field of view detectors vertically and horizontally. 2. The scintillation camera according to claim 1, further comprising a moving means for moving the camera obliquely with respect to the rotation axis.
【請求項4】前記小視野検出器の視野の大きさが、前記
大視野検出器の視野の大きさの約半分であることを特徴
とする、請求項1記載のシンチレーションカメラ。
4. The scintillation camera according to claim 1, wherein the field of view of the small field of view detector is approximately half the field of view of the large field of view detector.
JP3782891A 1991-02-08 1991-02-08 Scintillation camera Expired - Fee Related JP3108446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3782891A JP3108446B2 (en) 1991-02-08 1991-02-08 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3782891A JP3108446B2 (en) 1991-02-08 1991-02-08 Scintillation camera

Publications (2)

Publication Number Publication Date
JPH04256885A true JPH04256885A (en) 1992-09-11
JP3108446B2 JP3108446B2 (en) 2000-11-13

Family

ID=12508390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3782891A Expired - Fee Related JP3108446B2 (en) 1991-02-08 1991-02-08 Scintillation camera

Country Status (1)

Country Link
JP (1) JP3108446B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691538A (en) * 1995-06-23 1997-11-25 Hitachi Medical Corporation Twin-detector type scintillation camera apparatus capable of setting detecting directions of detectors in desired direction
US5717212A (en) * 1996-04-25 1998-02-10 Picker International, Inc. Three detector head gamma camera system with independently circumferentially positionable detector heads
USRE37474E1 (en) 1991-05-23 2001-12-18 Adac Laboratories Adjustable dual-detector image data acquisition system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228410B1 (en) 1999-01-28 2001-05-08 Gerry W. Zajac Method and apparatus for extending the freshness of coffee and indicating its freshness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37474E1 (en) 1991-05-23 2001-12-18 Adac Laboratories Adjustable dual-detector image data acquisition system
US5691538A (en) * 1995-06-23 1997-11-25 Hitachi Medical Corporation Twin-detector type scintillation camera apparatus capable of setting detecting directions of detectors in desired direction
US5717212A (en) * 1996-04-25 1998-02-10 Picker International, Inc. Three detector head gamma camera system with independently circumferentially positionable detector heads

Also Published As

Publication number Publication date
JP3108446B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US6455856B1 (en) Gamma camera gantry and imaging method
CN101094609B (en) X-ray computed tomography apparatus to acquire the tomography and three-dimension surface image
JP5920792B2 (en) Molecular breast imaging system
JP3307676B2 (en) Tomography acquisition method comprising two detectors with aiming centers different from the center of rotation
US6469306B1 (en) Method of imaging by SPECT
JP3823150B2 (en) Inclined 3D X-ray CT
US7723674B2 (en) Attenuation correction for SPECT imaging using non-classical orbits of many small gamma cameras
JP2003121549A (en) Nuclear medicine diagnostic equipment
JPH095442A (en) Two-detector type scintillation camera
JPH11311675A (en) Positron emission image forming method and equipment thereof
US5811813A (en) Dual detector gamma camera system
JP4346286B2 (en) Nuclear medicine diagnostic equipment
JP2009031306A (en) Nuclear medical diagnostic device
JP3377098B2 (en) Double head gamma camera device
JP3108446B2 (en) Scintillation camera
EP1921467B1 (en) Tomograph, tomography, tomography program, and computer-readable recording medium where the program is recorded
US20230404496A1 (en) Computed tomography apparatus, manufacturing method thereof and operating method thereof
JP3881403B2 (en) Nuclear medicine diagnostic equipment
JPH0146146B2 (en)
KR101762616B1 (en) Recording and analysis apparatus for radiation image, method therof
JPH11211833A (en) Nuclear medicine diagnostic device
JPH04290982A (en) Radial type tomographic device
JP3061392B2 (en) Gamma camera device
Pellot-Barakat et al. Detection of motion in hybrid PET/SPECT imaging based on the correlation of partial sinograms
JPH10160848A (en) Nuclear medicine diagnostic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees