JPH04255673A - Manufacture of metal hydride storage battery - Google Patents

Manufacture of metal hydride storage battery

Info

Publication number
JPH04255673A
JPH04255673A JP3017995A JP1799591A JPH04255673A JP H04255673 A JPH04255673 A JP H04255673A JP 3017995 A JP3017995 A JP 3017995A JP 1799591 A JP1799591 A JP 1799591A JP H04255673 A JPH04255673 A JP H04255673A
Authority
JP
Japan
Prior art keywords
hydrogen
negative electrode
battery
electrode
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017995A
Other languages
Japanese (ja)
Inventor
Ikuo Kanekawa
金川 育生
Yoshikazu Ishikura
石倉 良和
Takanao Matsumoto
松本 孝直
Motohiro Miki
三木 基弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3017995A priority Critical patent/JPH04255673A/en
Publication of JPH04255673A publication Critical patent/JPH04255673A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To sufficiently exhibit initial cycle performance of a metal hydride battery and enhance a cycle lifetime by using a negative electrode made of a hydrogen occluding alloy. CONSTITUTION:A hydrogen occluding alloy electrode is used as a negative electrode. Hydrogen is previously occluded in an alloy for the negative electrode in a hydrogen atmosphere in an activating treatment. Hydrogen is discharged until a hydrogen occluding quantity of the hydrogen occluded alloy becomes 1% or less than a nominal volume of the negative electrode. Consequently, it is possible to delay full charge of the negative electrode at the time of overcharge so as to sufficiently consume gas flowing from a positive electrode in the negative electrode, thus obtaining an adequate battery capacity after an initial cycle and enhancing an overcharge characteristic and a cycle characteristic.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水素を可逆的に吸蔵及
び放出することのできる水素吸蔵合金を負極とする金属
水素化物蓄電池の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal hydride storage battery whose negative electrode is a hydrogen storage alloy capable of reversibly absorbing and desorbing hydrogen.

【0002】0002

【従来の技術】従来からよく用いられているニッケル−
カドミウム蓄電池に代わる新しい密閉型アルカリ蓄電池
として、近年、高エネルギー密度化及び長寿命化が行え
る可能性があるということで、負極に水素吸蔵合金を用
いる金属水素化物蓄電池の開発が行われている。ところ
で、水素を可逆的に吸蔵及び放出する水素吸蔵合金から
なる負極と、金属酸化物を活物質とする正極とを備えた
この種金属水素化物蓄電池は、一般的に、初期容量が低
く、活性化処理を行う必要があると考えられている。
[Prior art] Nickel, which has been commonly used in the past.
As a new sealed alkaline storage battery to replace cadmium storage batteries, metal hydride storage batteries that use a hydrogen storage alloy for the negative electrode have recently been developed because of their potential for higher energy density and longer life. By the way, this type of metal hydride storage battery, which is equipped with a negative electrode made of a hydrogen storage alloy that reversibly absorbs and releases hydrogen and a positive electrode whose active material is a metal oxide, generally has a low initial capacity and a low activation rate. It is believed that it is necessary to carry out a chemical treatment.

【0003】ここで、活性化処理を行う方法として、例
えば、特開平1−204371号公報等では、水素雰囲
気下で水素の吸蔵及び放出を少なくとも1回行い、その
後、水素吸蔵合金中にいくらかの水素を残存した状態で
活性化処理工程を終了する方法が提案されている。
[0003] As a method for carrying out the activation treatment, for example, in Japanese Patent Application Laid-Open No. 1-204371, hydrogen is absorbed and released at least once in a hydrogen atmosphere, and then some amount of hydrogen is absorbed into the hydrogen storage alloy. A method has been proposed in which the activation treatment step is completed with hydrogen remaining.

【0004】また、特開昭61−39461号公報等で
は、電解液の注液前に水素雰囲気下で水素吸蔵合金に水
素ガスを吸蔵及び放出させて活性化処理し、その後、水
素雰囲気下で電解液を注液する方法が提案されている。
Furthermore, in Japanese Patent Application Laid-Open No. 61-39461, an activation treatment is performed by occluding and releasing hydrogen gas in a hydrogen storage alloy in a hydrogen atmosphere before pouring an electrolyte solution, and then an activation treatment is performed in a hydrogen atmosphere. A method of injecting electrolyte has been proposed.

【0005】しかしながら、上記いずれの方法において
も、電池組立て後、最大電池容量を得るまでに数サイク
ル〜数十サイクルの充放電処理を行う必要がある。これ
は、初期においては水素吸蔵合金の可逆性が低く、負極
容量が十分に発揮されず正極容量に比べて小さくなるか
らである。このため、放電時、負極が先に過放電状態と
なり、負極側から酸素ガスが発生して、水素吸蔵合金を
酸化し水素吸蔵合金電極の表面に強固な酸化被膜ができ
るために水素吸蔵合金電極の特性が低下する。
However, in any of the above methods, after the battery is assembled, it is necessary to perform several to several tens of cycles of charging and discharging before the maximum battery capacity is obtained. This is because the reversibility of the hydrogen storage alloy is low in the initial stage, and the negative electrode capacity is not fully exhibited and becomes smaller than the positive electrode capacity. Therefore, during discharging, the negative electrode becomes over-discharged first, and oxygen gas is generated from the negative electrode side, which oxidizes the hydrogen storage alloy and forms a strong oxide film on the surface of the hydrogen storage alloy electrode. properties deteriorate.

【0006】また、初期において水素吸蔵合金電極に水
素を多く吸蔵させておくと負極が速く満充電状態となり
、過充電特性やサイクル寿命を低下させる。さらに、注
液時や組立時に空気中の酸素と水素吸蔵合金が反応しや
すい状態となるため、水素吸蔵合金の酸化が速まり、水
素吸蔵合金電極表面に酸化被膜ができ電池特性が低下す
るという問題が生じる。
[0006] Furthermore, if a large amount of hydrogen is stored in the hydrogen storage alloy electrode at the initial stage, the negative electrode will quickly reach a fully charged state, reducing overcharging characteristics and cycle life. Furthermore, during injection and assembly, the oxygen in the air and the hydrogen storage alloy tend to react, which accelerates the oxidation of the hydrogen storage alloy and forms an oxide film on the surface of the hydrogen storage alloy electrode, reducing battery characteristics. A problem arises.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の如き
問題を解決し、初回の活性化処理時から、最大電池容量
を得ることができ、過充電特性及びサイクル特性の良好
な金属水素化物蓄電池の製造方法を提供するものである
[Problems to be Solved by the Invention] The present invention solves the above problems and provides a metal hydride that can obtain maximum battery capacity from the initial activation treatment and has good overcharge characteristics and cycle characteristics. A method for manufacturing a storage battery is provided.

【0008】[0008]

【課題を解決するための手段】本発明の金属水素化物蓄
電池の製造方法は、水素吸蔵合金電極からなる負極に、
水素雰囲気下で水素を吸蔵させた後、負極の公称容量の
1%以下に相当する量の水素を含んだ状態まで水素を放
出させた状態にして、電池に組み立てることを特徴とす
るものである。
[Means for Solving the Problems] The method for manufacturing a metal hydride storage battery of the present invention includes a negative electrode made of a hydrogen storage alloy electrode,
After storing hydrogen in a hydrogen atmosphere, hydrogen is released until it contains hydrogen in an amount equivalent to 1% or less of the nominal capacity of the negative electrode, and then assembled into a battery. .

【0009】ここで、水素吸蔵合金電極からなる負極の
電位は、参照電極(Hg/HgO)に対して−0.9V
以上−0.7V以下とすることが好ましい。
Here, the potential of the negative electrode made of a hydrogen storage alloy electrode is -0.9V with respect to the reference electrode (Hg/HgO).
It is preferable that the voltage is -0.7 V or more.

【0010】0010

【作用】本発明の製造方法によれば、水素吸蔵合金電極
の水素吸蔵量を負極の公称容量の1%以下にすることに
よって、過充電時において、負極が正極より速く満充電
状態にならないため、正極から発生する酸素ガスを負極
で十分に消費することができる。したがって、酸素ガス
発生によって電池内圧が上昇し、弁作動することで電解
液が漏れ、電池重量が減少して電極特性が低下するとい
ったこともなくなり、酸素ガスによる水素吸蔵合金電極
の酸化も抑制することができる。
[Function] According to the manufacturing method of the present invention, by setting the hydrogen storage capacity of the hydrogen storage alloy electrode to 1% or less of the nominal capacity of the negative electrode, the negative electrode does not become fully charged faster than the positive electrode during overcharging. , oxygen gas generated from the positive electrode can be sufficiently consumed at the negative electrode. Therefore, the internal pressure of the battery increases due to the generation of oxygen gas, the electrolyte leaks due to valve operation, the weight of the battery decreases, and the electrode characteristics deteriorate. This also prevents the oxidation of the hydrogen storage alloy electrode due to oxygen gas. be able to.

【0011】また、水素吸蔵合金は、水素を吸蔵及び放
出させると反応性が増し活性化する。この活性化処理時
に負極の公称容量の1%以下まで水素吸蔵量を減少させ
ると、水素吸蔵合金はそのほとんどが活性化される。そ
のため負極容量は十分に発揮され、この水素吸蔵合金を
負極として電池に組んだときに、サイクル初期から十分
に高い電池容量が得ることができる。
[0011] Furthermore, when hydrogen storage alloys are allowed to store and release hydrogen, their reactivity increases and they become activated. When the hydrogen storage amount is reduced to 1% or less of the nominal capacity of the negative electrode during this activation treatment, most of the hydrogen storage alloy is activated. Therefore, the negative electrode capacity is fully exhibited, and when this hydrogen storage alloy is used as a negative electrode in a battery, a sufficiently high battery capacity can be obtained from the beginning of the cycle.

【0012】0012

【実施例】本発明の一実施例を以下に説明する。[Example] An example of the present invention will be described below.

【0013】市販のミッシュメタルMm(La、Ce、
Nd、Prなどの希土類元素の混合物)、Ni、Co及
びAlを一定の元素比、Mm:Ni:CO:Alが1:
3:1.5:0.5になるように秤量して混合する。
Commercially available misch metal Mm (La, Ce,
A mixture of rare earth elements such as Nd and Pr), Ni, Co and Al in a constant element ratio, Mm:Ni:CO:Al being 1:
Weigh and mix so that the ratio is 3:1.5:0.5.

【0014】次に、この混合物をアルゴンアーク溶解炉
により加熱溶解させ、MmNi3C o1.5Al0.
5 の組成を有する合金を製造した。
Next, this mixture was heated and melted in an argon arc melting furnace to form MmNi3C o1.5Al0.
An alloy having a composition of 5 was produced.

【0015】次いで、この合金を通常の機械的な粉砕に
よって、50μm以下の微粉末とした。
[0015] Next, this alloy was made into a fine powder of 50 μm or less by ordinary mechanical pulverization.

【0016】この微粉末に結着剤としてのポリテトラフ
ルオロエチレン(PTFE)ディスパージョンを添加し
、均一に混合し、水を加えてペースト状にする。
A polytetrafluoroethylene (PTFE) dispersion as a binder is added to this fine powder, mixed uniformly, and water is added to form a paste.

【0017】このペーストを、ニッケルメッキを施した
パンチングメタル集電体の両面に圧着して水素吸蔵合金
負極を作製した。
[0017] This paste was pressed onto both sides of a nickel-plated punched metal current collector to produce a hydrogen storage alloy negative electrode.

【0018】この水素吸蔵合金からなる負極と、公知の
焼結式ニッケル正極とを、不織布から成るセパレータを
介して渦巻状に巻取って電極体を作製し、電池缶に挿入
した。この上部を開放状態にしたままの電池缶を耐圧ガ
スケースに入れ、水素ガスを導入し、10kg/cm2
の圧力に保った。この状態で、水素吸蔵合金1g当り1
00 ccの水素を吸蔵させた。
[0018] The negative electrode made of this hydrogen storage alloy and the known sintered nickel positive electrode were spirally wound with a separator made of nonwoven fabric interposed therebetween to prepare an electrode body, and the electrode body was inserted into a battery can. Place the battery can with the top open in a pressure-resistant gas case, and introduce hydrogen gas to a pressure of 10 kg/cm2.
pressure was maintained. In this state, 1 g of hydrogen storage alloy
00 cc of hydrogen was absorbed.

【0019】その後、耐圧ガスケースを80℃に加温し
、真空ポンプで真空度2torrまで吸引し、水素を放
出させた。この状態では、水素吸蔵合金電極の水素吸蔵
量は負極の公称容量の1%以下である。
[0019] Thereafter, the pressure-resistant gas case was heated to 80°C and suctioned to a vacuum level of 2 torr using a vacuum pump to release hydrogen. In this state, the hydrogen storage capacity of the hydrogen storage alloy electrode is 1% or less of the nominal capacity of the negative electrode.

【0020】次に、耐圧ガスケース内より電池缶を取り
出し、電池缶に電解液を注液した。尚、電解液には30
wt%の水酸化カリウム水溶液を用いる。
Next, the battery can was taken out from inside the pressure-resistant gas case, and electrolyte was poured into the battery can. In addition, the electrolyte contains 30
A wt% potassium hydroxide aqueous solution is used.

【0021】電解液注液後、電池缶の封口を行い完全に
密閉し、金属水素化物蓄電池を作製した。このように作
製した金属水素化物蓄電池を電池Aとする。
After injecting the electrolyte, the battery can was sealed and completely sealed to produce a metal hydride storage battery. The metal hydride storage battery produced in this manner is referred to as battery A.

【0022】次に、真空ポンプでの真空度を10tor
rで行う以外は、電池Aと同一条件で、電池Bを作製し
た。 この場合の水素吸蔵合金電極の水素吸蔵量は負極の公称
容量の約3%に相当する。
Next, the degree of vacuum in the vacuum pump is set to 10 torr.
Battery B was produced under the same conditions as Battery A, except that the battery B was used under the same conditions as Battery A. In this case, the hydrogen storage capacity of the hydrogen storage alloy electrode corresponds to about 3% of the nominal capacity of the negative electrode.

【0023】また、真空ポンプでの真空度を20tor
rで行う以外は、電池Aと同一条件で、電池Cを作製し
た。 この場合の水素吸蔵合金電極の水素吸蔵量は負極の公称
容量の約10%に相当する。
[0023] Also, the degree of vacuum in the vacuum pump is set to 20 torr.
Battery C was produced under the same conditions as Battery A, except that the battery was run at r. In this case, the hydrogen storage capacity of the hydrogen storage alloy electrode corresponds to about 10% of the nominal capacity of the negative electrode.

【0024】さらにまた、耐圧ガスケース内に電池缶を
入れず水素を吸蔵及び放出(活性化処理)しない以外は
電池Aと同一条件で、電池Dを作製した。
Furthermore, Battery D was produced under the same conditions as Battery A, except that the battery can was not placed in the pressure-resistant gas case and hydrogen was not absorbed and released (activated).

【0025】これらの電池A乃至Dについて、それぞれ
サイクル特性の評価を行った。サイクル特性の測定条件
は、25℃の雰囲気下で0.3Cの電流で4時間充電し
た後、0.3Cの電流で電池電圧が1.0Vに達するま
で放電するものであり、サイクル特性は、この条件で充
放電を繰り返して測定を行った。
The cycle characteristics of these batteries A to D were evaluated. The measurement conditions for cycle characteristics were to charge for 4 hours with a current of 0.3C in an atmosphere of 25°C, and then discharge with a current of 0.3C until the battery voltage reached 1.0V.The cycle characteristics were as follows. Measurements were performed by repeating charging and discharging under these conditions.

【0026】図1に、電池A乃至電池Dの初期から10
サイクルまでのサイクル数と放電容量の関係を示す。
FIG. 1 shows battery A to battery D starting from the beginning.
The relationship between the number of cycles and discharge capacity is shown.

【0027】図1より、明らかなように、水素を吸蔵及
び放出させる活性化処理工程を行った電池A、B及びC
は、電池Dに比べ初期から、放電容量が公称容量の10
0%となることが判る。これは、活性化処理することに
より負極の活性化が行われ、負極の電極性能が初期から
十分発揮されているからである。これに対して、活性化
処理を行わなかった電池Dは、負極の活性化が十分でな
いために、数サイクル後に容量が回復しているが、公称
容量の100%の放電容量は出ていない。
As is clear from FIG. 1, batteries A, B, and C were subjected to the activation treatment step for occluding and desorbing hydrogen.
Compared to battery D, the discharge capacity was 10% of the nominal capacity from the beginning.
It turns out that it is 0%. This is because the negative electrode is activated by the activation treatment, and the electrode performance of the negative electrode is fully exhibited from the beginning. On the other hand, in battery D, which was not subjected to the activation treatment, the negative electrode was not sufficiently activated, so the capacity recovered after several cycles, but the discharge capacity was not 100% of the nominal capacity.

【0028】次に、電池A乃至電池D各々に使用した負
極を水酸化カリウム(30%)水溶液中に浸漬後、0.
1Cの電流で放電させ、参照電極(Hg/HgO)との
電位差を調べ図2に示した。ここで、−0.5Vに達す
るまでは、負極中の水素吸蔵合金の放電反応が行われる
が、−0.5Vより卑な電位では極板内では前記放電反
応は行われず不可逆的な酸化反応が起こるため、−0.
5Vに到達するまでの放電容量を放電可能量とした。
Next, the negative electrodes used in each of Batteries A to D were immersed in a potassium hydroxide (30%) aqueous solution.
It was discharged with a current of 1 C, and the potential difference with the reference electrode (Hg/HgO) was investigated and is shown in FIG. Here, until reaching -0.5V, a discharge reaction of the hydrogen storage alloy in the negative electrode takes place, but at a potential less noble than -0.5V, the above-mentioned discharge reaction does not take place in the electrode plate, resulting in an irreversible oxidation reaction. occurs, -0.
The discharge capacity until reaching 5V was defined as the dischargeable amount.

【0029】図2より、電気化学的に放電可能量を電池
A、B、及びCについて各々求めると、電池Aは公称容
量の1%以下の放電容量をもち、電池Bは公称容量の3
%の放電容量をもち、電池Cは公称容量の10%の放電
容量をもつことが判る。
From FIG. 2, when the electrochemical discharge capacity is determined for batteries A, B, and C, battery A has a discharge capacity of 1% or less of the nominal capacity, and battery B has a discharge capacity of 3% of the nominal capacity.
It can be seen that battery C has a discharge capacity of 10% of its nominal capacity.

【0030】次に、図3に電池A乃至電池Dの1000
サイクルまでのサイクル数と放電容量の関係を示す。
Next, FIG. 3 shows 1000 cells of batteries A to D.
The relationship between the number of cycles and discharge capacity is shown.

【0031】図3より真空度2torrで水素の放出を
行い負極の公称容量の1%以下の放電容量を持つ電池A
は、水素を吸蔵及び放出した後の水素吸蔵量が多く負極
の公称容量の3%及び10%の放電容量を持つ電池B及
びCに比べ、充電時に負極が満充電になるのが遅いため
、負極からのガス発生が見られず、負極で行う正極から
発生するガスの消費が良好になるためサイクル寿命が向
上している。
From FIG. 3, battery A releases hydrogen at a vacuum level of 2 torr and has a discharge capacity of 1% or less of the nominal capacity of the negative electrode.
Compared to Batteries B and C, which have a large amount of hydrogen storage after storing and desorbing hydrogen, and have a discharge capacity of 3% and 10% of the negative electrode's nominal capacity, the negative electrode is slower to reach full charge during charging. No gas is generated from the negative electrode, and the gas generated from the positive electrode is better consumed by the negative electrode, resulting in an improved cycle life.

【0032】以上より、電池Aは、サイクル初期から公
称容量の100%の放電容量を持ち、かつサイクル寿命
も長く優れた電池であることが判る。
From the above, it can be seen that Battery A is an excellent battery having a discharge capacity of 100% of the nominal capacity from the beginning of the cycle and a long cycle life.

【0033】次に、水素吸蔵合金の水素の放出量を規制
して水素吸蔵量が負極の公称容量の1%以下でかつ負極
板の電位が参照電極(Hg/HgO)に対して、それぞ
れ−0.5、−0.7、−0.8、−0.9及び−0.
93Vの電位差を持つ負極を用い、電池Aと同一条件で
それぞれ電池E、F、G、H及びIを作製した。この時
の電位測定温度は20℃で行った。
Next, the amount of hydrogen released from the hydrogen storage alloy is regulated so that the amount of hydrogen storage is 1% or less of the nominal capacity of the negative electrode and the potential of the negative electrode plate is - with respect to the reference electrode (Hg/HgO). 0.5, -0.7, -0.8, -0.9 and -0.
Batteries E, F, G, H, and I were produced under the same conditions as Battery A using negative electrodes with a potential difference of 93V. The potential measurement temperature at this time was 20°C.

【0034】図4に、電池E乃至電池Iの1000サイ
クルまでのサイクル数と放電容量の関係を示す。
FIG. 4 shows the relationship between the number of cycles up to 1000 cycles and the discharge capacity of batteries E to I.

【0035】図4から判るように、電池E、F及びGは
サイクル性能が良好である。このことは、水素吸蔵合金
電極の電位が−0.7Vより貴な電位であると酸化電位
となり水素吸蔵合金の劣化が進行するためである。した
がって、サイクル数が進行するにつれて放電容量は低下
している。また、水素吸蔵合金電極の電位が−0.9V
未満であると水素吸蔵合金が平衡圧状態の電位となるた
め、水素の吸蔵及び放出量が低下するために、この水素
吸蔵合金を負極とする電池はサイクル寿命の低下を引き
起こす。このため、水素吸蔵合金の電位を−0.9V以
上−0.7V以下にすることが好ましい。
As can be seen from FIG. 4, batteries E, F, and G have good cycle performance. This is because if the potential of the hydrogen storage alloy electrode is nobler than -0.7V, it becomes an oxidation potential and the deterioration of the hydrogen storage alloy progresses. Therefore, as the number of cycles progresses, the discharge capacity decreases. In addition, the potential of the hydrogen storage alloy electrode is -0.9V
If the hydrogen storage alloy is less than 100%, the potential of the hydrogen storage alloy is at an equilibrium pressure state, and the amount of hydrogen storage and release decreases, resulting in a reduction in the cycle life of a battery using this hydrogen storage alloy as a negative electrode. For this reason, it is preferable that the potential of the hydrogen storage alloy is -0.9V or more and -0.7V or less.

【0036】[0036]

【発明の効果】以上より、水素吸蔵合金電極からなる負
極を活性化処理して水素吸蔵量を公称容量の1%以下に
した負極を用いた電池は、初期充放電時より公称容量の
100%の放電容量が得られ、サイクル寿命が向上され
、その工業的価値は極めて大である。
[Effects of the Invention] As described above, a battery using a negative electrode made of a hydrogen-absorbing alloy electrode which has been activated to reduce the amount of hydrogen storage to 1% or less of the nominal capacity can achieve 100% of the nominal capacity from the initial charge/discharge. The discharge capacity is obtained, the cycle life is improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】電池A乃至Dの10サイクルまでの放電容量と
サイクル数の関係を示す図である。
FIG. 1 is a diagram showing the relationship between discharge capacity and cycle number up to 10 cycles for batteries A to D.

【図2】電池A乃至Dの電池組立て時の水素吸蔵合金電
極容量を示す図である。
FIG. 2 is a diagram showing the capacity of hydrogen storage alloy electrodes when batteries A to D are assembled.

【図3】電池A乃至Dの1000サイクルまでの放電容
量とサイクル数の関係を示す図である。
FIG. 3 is a diagram showing the relationship between discharge capacity and cycle number up to 1000 cycles for batteries A to D.

【図4】電池E乃至Iの1000サイクルまでの放電容
量とサイクル数の関係を示す図である。
FIG. 4 is a diagram showing the relationship between discharge capacity and cycle number up to 1000 cycles for batteries E to I.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  水素吸蔵合金電極からなる負極を用い
る金属水素化物蓄電池の製造方法において、この水素吸
蔵合金電極を水素雰囲気下で水素を吸蔵させた後、負極
の公称容量の1%以下に相当する量の水素を含んだ状態
まで水素を放出させた状態にして、電池に組み立てるこ
とを特徴とする金属水素化物蓄電池の製造方法。
Claim 1: In a method for manufacturing a metal hydride storage battery using a negative electrode made of a hydrogen storage alloy electrode, after the hydrogen storage alloy electrode is allowed to store hydrogen in a hydrogen atmosphere, the hydrogen storage battery has a hydrogen storage capacity equivalent to 1% or less of the nominal capacity of the negative electrode. A method for manufacturing a metal hydride storage battery, which comprises assembling the metal hydride storage battery into a battery after releasing hydrogen to a state containing a certain amount of hydrogen.
【請求項2】  前記水素吸蔵合金電極からなる負極の
電位が参照電極(Hg/HgO)に対して−0.9V以
上−0.7V以下であることを特徴とする請求項1記載
の金属水素化物蓄電池の製造方法。
2. The metal hydrogen according to claim 1, wherein the potential of the negative electrode made of the hydrogen storage alloy electrode is −0.9 V or more and −0.7 V or less with respect to a reference electrode (Hg/HgO). Method for manufacturing a compound storage battery.
JP3017995A 1991-02-08 1991-02-08 Manufacture of metal hydride storage battery Pending JPH04255673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017995A JPH04255673A (en) 1991-02-08 1991-02-08 Manufacture of metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017995A JPH04255673A (en) 1991-02-08 1991-02-08 Manufacture of metal hydride storage battery

Publications (1)

Publication Number Publication Date
JPH04255673A true JPH04255673A (en) 1992-09-10

Family

ID=11959309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017995A Pending JPH04255673A (en) 1991-02-08 1991-02-08 Manufacture of metal hydride storage battery

Country Status (1)

Country Link
JP (1) JPH04255673A (en)

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2764502B2 (en) Manufacturing method of sealed storage battery using hydrogen storage electrode and hydrogen storage alloy for the electrode
US4702978A (en) Electrochemical cell
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0582024B2 (en)
JPH04255673A (en) Manufacture of metal hydride storage battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JP3192694B2 (en) Alkaline storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2975755B2 (en) Activation method of metal hydride storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2679441B2 (en) Nickel-metal hydride battery
JPH028419B2 (en)
JP3070081B2 (en) Sealed alkaline storage battery
JPH0322365A (en) Formation for sealed alkaline storage battery using hydrogen storage alloy negative electrode
JPS60175367A (en) Production of negative electrode for closed storage battery
JPH0562706A (en) Metal oxide-hydrogen storage battery and manufacture thereof
JPH05174867A (en) Metal-hydrogen alkaline storage battery
JPH0517659B2 (en)
JP3482478B2 (en) Nickel-metal hydride storage battery