JPH04255667A - Manufacture of negative electrode for lithium cell - Google Patents

Manufacture of negative electrode for lithium cell

Info

Publication number
JPH04255667A
JPH04255667A JP3039168A JP3916891A JPH04255667A JP H04255667 A JPH04255667 A JP H04255667A JP 3039168 A JP3039168 A JP 3039168A JP 3916891 A JP3916891 A JP 3916891A JP H04255667 A JPH04255667 A JP H04255667A
Authority
JP
Japan
Prior art keywords
lithium
electrode
ultra
fine particles
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3039168A
Other languages
Japanese (ja)
Inventor
Tomohiko Noda
智彦 野田
Shuichi Ido
秀一 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3039168A priority Critical patent/JPH04255667A/en
Publication of JPH04255667A publication Critical patent/JPH04255667A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To simplify an assembling process so as to improve productivity in order to manufacture a hyperthin-sized electrode for a lithium cell excellent in volume efficiency and having the uniform thickness by simultaneously heaping a carbonaceous material and ultra-fine particles of lithium on the same substrate surface. CONSTITUTION:After a pitch group carbonaceous material processed into ultra-fine particles are thrown into an aerosol container 20, helium gas is introduced into the container 20 from a leading-in tube 21 so as to take ultra-fine particles on a helium gas air current and guide them to a first nozzle 11 through an outgoing tube 22 for being sprayed on the surface of a substrate 14. Further, at the same time, lithium 37 in a melting pot 34 is heated and melted by an heater 35 for being vaporized into vapor, and produced ultra-fine particles of lithium are carried by a helium gas flow introduced from a leading-in tube 31 for being guided to a second nozzle so as to be blown on the surface of the substrate 14. Thereby, a deposite of black or gray colors, that is, an electrode consisting of a carbon-helium compound is formed so as to be able to simplify an assembling process of a lithium cell and to obtain a hyperthin-sized negative electrode for the lithium cell having good productivity, being excellent in volume efficiency and having the uniform thickness.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄型のリチウム電池に
用いる負極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a negative electrode for thin lithium batteries.

【0002】0002

【従来技術及びその問題点】近年、リチウム二次電池の
研究開発が盛んである。リチウム二次電池において、負
極に金属リチウムを用いることは、充電時のデンドライ
ト生成に伴なう性能劣化や安全性の点で問題がある。こ
れを解決すべく、負極材料としてリチウムを吸蔵・放出
し得るカーボンを用いることが提案されている。しかし
通常のリチウムインターカレーション型活物質を正極に
用い、カーボン電極を負極として用いたリチウム電池で
は、予めカーボン電極にリチウムをドープしておかねば
ならない。そのためカーボン電極には電槽組込み前にド
ーピング工程という煩雑な工程が必要となり、リチウム
電池の組立工程が煩雑となるという問題があった。
[Prior Art and its Problems] In recent years, research and development of lithium secondary batteries has been active. In lithium secondary batteries, using metallic lithium for the negative electrode has problems in terms of performance deterioration and safety due to dendrite formation during charging. In order to solve this problem, it has been proposed to use carbon that can absorb and release lithium as a negative electrode material. However, in a lithium battery that uses a normal lithium intercalation type active material as a positive electrode and a carbon electrode as a negative electrode, the carbon electrode must be doped with lithium in advance. Therefore, the carbon electrode requires a complicated process of doping before being assembled into a battery case, which poses the problem of complicating the assembly process of the lithium battery.

【0003】0003

【発明の目的】本発明は、カーボン電極の予備ドーピン
グ工程を不要としてリチウム電池の組立工程を簡略化で
きるリチウム電池用負極を提供でき、更にはそのリチウ
ム電池用負極を、生産性良く、体積効率に優れた均一な
厚みの超薄型のものとして得ることができる製造方法を
提供することを目的とする。
OBJECTS OF THE INVENTION The present invention can provide a lithium battery negative electrode that simplifies the lithium battery assembly process by eliminating the need for a preliminary doping process for carbon electrodes, and further provides a lithium battery negative electrode with high productivity and volumetric efficiency. It is an object of the present invention to provide a manufacturing method capable of obtaining an ultra-thin product with excellent uniform thickness.

【0004】0004

【目的を達成するための手段】本発明のリチウム電池用
負極の製造方法は、炭素質材料の超微粒子とリチウムの
超微粒子を、それぞれガス気流に乗せて同一基板表面に
同時に吹付けて堆積させて、基板表面に炭素リチウム化
物からなる薄膜を形成することを特徴とするものである
[Means for achieving the object] The method for manufacturing a negative electrode for a lithium battery of the present invention involves depositing ultrafine particles of carbonaceous material and ultrafine particles of lithium by simultaneously spraying them onto the surface of the same substrate in a gas stream. The method is characterized in that a thin film made of carbon lithium is formed on the surface of the substrate.

【0005】上記炭素質材料としては、カーボン、グラ
ファイト、アセチレンブラック等が用いられる。
[0005] As the carbonaceous material, carbon, graphite, acetylene black, etc. are used.

【0006】また炭素質材料の超微粒子をガス気流に混
入させて送出する方法としては、エアロゾル法、アーク
放電法等が用いられる。エアロゾル法とは、図3に示す
ように、予め用意した炭素質材料の超微粒子をガス気流
に混入させて送出する方法である。図3において、20
はエアロゾル容器、21はキャリアガスを導入する導入
管、22は送出管、23は炭素質材料の超微粒子である
。アーク放電法とは、図4に示すように、2つの炭素質
電極間にアーク放電を起こさせ、生成した炭素質の超微
粒子をガス気流に混入させて送出する方法である。図4
において、40は生成室、41は炭素質電極、42はキ
ャリアガスの導入管、43は送出管、44はポンプであ
る。またその他の方法として、図5に示すように、炭素
質材料を得るための原料となる有機物を供給し、加熱等
の操作を加えて電極としての有効な構造の炭素質材料の
超微粒子を作り、それを順次ガス気流に混入させて送出
する方法がある。図5において、50は生成室、51は
有機物、52はキャリアガスの導入管、53は送出管、
54はポンプ、55は加熱器、56はヒーター電源であ
る。
[0006] Further, as a method of mixing ultrafine particles of carbonaceous material into a gas stream and sending them out, an aerosol method, an arc discharge method, etc. are used. As shown in FIG. 3, the aerosol method is a method in which ultrafine particles of carbonaceous material prepared in advance are mixed into a gas stream and sent out. In Figure 3, 20
2 is an aerosol container, 21 is an introduction pipe for introducing carrier gas, 22 is a delivery pipe, and 23 is ultrafine particles of carbonaceous material. The arc discharge method, as shown in FIG. 4, is a method in which arc discharge is caused between two carbonaceous electrodes, and the generated carbonaceous ultrafine particles are mixed into a gas stream and sent out. Figure 4
, 40 is a generation chamber, 41 is a carbonaceous electrode, 42 is a carrier gas introduction pipe, 43 is a delivery pipe, and 44 is a pump. Another method, as shown in Figure 5, is to supply organic matter as a raw material for obtaining a carbonaceous material, and add operations such as heating to produce ultrafine particles of carbonaceous material with a structure effective as an electrode. There is a method of sequentially mixing it into a gas stream and sending it out. In FIG. 5, 50 is a generation chamber, 51 is an organic substance, 52 is a carrier gas introduction pipe, 53 is a delivery pipe,
54 is a pump, 55 is a heater, and 56 is a heater power source.

【0007】またリチウムの超微粒子をガス気流に混入
させて送出する方法としては、原料の金属リチウムを入
れた坩堝を適当な雰囲気下で加熱してリチウム蒸気を生
成させて凝集させ、できた微粒子をキャリアガスの気流
に混入させて送出する方法が適当に用いられる。
[0007] Furthermore, as a method for sending out ultrafine particles of lithium by mixing them into a gas stream, a crucible containing metal lithium as a raw material is heated in an appropriate atmosphere to generate lithium vapor and agglomerate the resulting fine particles. A method is suitably used in which the carrier gas is mixed with the carrier gas and delivered.

【0008】なお電池用電極として好ましい炭素リチウ
ム化物電極が得られていることの確認は、第1にその電
極が非水電解液中で示す電位、第2に非水電解液中でそ
の電極から電気化学的にリチウムを出し入れ(脱ドープ
−ドープ)し得る電気量、によって判断される。
[0008] Confirmation that a carbon lithium-ion electrode suitable for use as a battery electrode has been obtained is firstly determined by the potential exhibited by the electrode in a non-aqueous electrolyte and secondly by the potential exhibited by the electrode in a non-aqueous electrolyte. It is judged by the amount of electricity that can electrochemically take in and take out lithium (dedoping-doping).

【0009】[0009]

【作用】本発明により得られるリチウム電池用負極は、
炭素リチウム化物からなり、既にリチウムを含んでいる
ので、従来のカーボン電極のように電槽組込み前にリチ
ウムをドーピングする必要はない。従ってこのリチウム
電池用負極を用いれば、煩雑な予備ドーピング工程は不
要となる。
[Function] The negative electrode for lithium batteries obtained by the present invention is
Since it is made of carbon lithium compound and already contains lithium, there is no need to dope it with lithium before assembling it into a battery case, unlike conventional carbon electrodes. Therefore, if this negative electrode for lithium batteries is used, a complicated preliminary doping step is not necessary.

【0010】また本発明では、ガスデポジション法によ
り薄膜のリチウム電池用負極を得るようにしたので、膜
厚の調整、均一化は容易であり、薄膜は密度の高いもの
となる。
Further, in the present invention, since a thin film negative electrode for a lithium battery is obtained by a gas deposition method, the film thickness can be easily adjusted and made uniform, and the thin film has a high density.

【0011】[0011]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明の製造方法を実施するのに用いる製造
装置を示す概略図である。図1において、10はデポジ
ション室、20はエアロゾル容器、30は生成室、31
はキャリアガスを導入する導入管、32は送出管、33
はポンプ、34は坩堝、35は加熱器、36はヒーター
電源、21はキャリアガスを導入する導入管、22は送
出管、11は送出管22先端の第1ノズル、12は送出
管32先端の第2ノズル、13はガス導入管、14はス
テンレス箔の基板である。両ノズル11、12先端の開
口の大きさはともに0.8×10mmである。また両ノ
ズル11、12は基板14上の同一箇所に吹付けるよう
設置されている。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. FIG. 1 is a schematic diagram showing a manufacturing apparatus used to carry out the manufacturing method of the present invention. In FIG. 1, 10 is a deposition chamber, 20 is an aerosol container, 30 is a generation chamber, and 31
32 is an introduction pipe for introducing carrier gas, 33 is a delivery pipe.
is a pump, 34 is a crucible, 35 is a heater, 36 is a heater power supply, 21 is an introduction pipe for introducing carrier gas, 22 is a delivery pipe, 11 is a first nozzle at the tip of the delivery pipe 22, and 12 is a first nozzle at the tip of the delivery pipe 32. The second nozzle, 13, is a gas introduction pipe, and 14 is a stainless steel foil substrate. The sizes of the openings at the tips of both nozzles 11 and 12 are both 0.8 x 10 mm. Further, both nozzles 11 and 12 are installed so as to spray onto the same location on the substrate 14.

【0012】まず0.1〜0.3μmの超微粒子に加工
したピッチ系炭素質材料をエアロゾル容器20に投入し
た。一方、生成室30内の坩堝34に市販の金属リチウ
ムを入れた。次にエアロゾル容器20に導入管21から
ヘリウムガスを導入し、超微粒子23をヘリウムガス気
流に乗せて送出管22を通して第1ノズル11に導き、
基板14表面に吹付けた。それと同時に、坩堝34のリ
チウム37を加熱器35により加熱溶融して気化させて
蒸気とし、この蒸気が0.1〜0.3μmの大きさまで
凝集してできたリチウムの超微粒子を、導入管31から
導入したヘリウムガス気流に乗せて送出管32を通して
第2ノズル12に導き、基板14表面に吹付けた。この
とき両ノズル11、12から吹付ける超微粒子の量は、
エアロゾル容器20内及び生成室30内の圧力を調整す
ることにより調整した。これによって、基板14表面に
、幅10mm、長さ10mm、厚さ約100μmの黒色
〜灰色の堆積物15即ち炭素リチウム化物からなる電極
が形成された。この堆積物はガスデポジション法により
得られたものであり、強固なものである。
First, a pitch-based carbonaceous material processed into ultrafine particles of 0.1 to 0.3 μm was charged into an aerosol container 20 . Meanwhile, commercially available metallic lithium was placed in the crucible 34 in the generation chamber 30 . Next, helium gas is introduced into the aerosol container 20 from the introduction pipe 21, and the ultrafine particles 23 are carried on the helium gas flow and guided to the first nozzle 11 through the delivery pipe 22.
It was sprayed onto the surface of the substrate 14. At the same time, the lithium 37 in the crucible 34 is heated and melted by the heater 35 and vaporized into vapor, and this vapor is aggregated to a size of 0.1 to 0.3 μm to form ultrafine particles of lithium, which are transferred to the inlet tube 31. The helium gas was introduced into the helium gas stream through the delivery pipe 32 to the second nozzle 12, and was sprayed onto the surface of the substrate 14. At this time, the amount of ultrafine particles sprayed from both nozzles 11 and 12 is:
The pressure was adjusted by adjusting the pressure inside the aerosol container 20 and the generation chamber 30. As a result, a black to gray deposit 15, ie, an electrode made of carbon lithium, was formed on the surface of the substrate 14, with a width of 10 mm, a length of 10 mm, and a thickness of about 100 μm. This deposit was obtained by a gas deposition method and is strong.

【0013】こうして得られた電極を不活性雰囲気中に
取出し、重量を測定した後、一部を化学分析に供した。 また残りを電極性能の調査用に供した。得られた電極を
1cm2 の面積になるよう切出し、これを作用極とし
、対極として金属リチウムを用い、参照極としても金属
リチウムを用い、電解液としてプロピレンカーボネート
とエチレンカーボネートの混合物に六フッ化砒酸リチウ
ムを溶解させたものを用いて、電気化学セルを組立てた
。このセルによって単電池としての性能を評価した。な
お参照極と作用極との電位差は0.003Vであった。 まず参照極によって作用極の電位をモニターしながら、
作用極と対極との間に電流を流し即ち脱ドープし、参照
極の電位が1.000Vになるまでの電気量を測定し、
これによって電極としての容量を求めた。その結果は2
44mAh/g であった。引続き、ドープ−脱ドープ
を繰返すサイクル試験を行なった。ドープは、作用極と
対極との間をリード線で接続し、作用極の電位が0Vに
なるまで放置する方法により行なった。脱ドープ容量を
上記と同様の方法で測定し、サイクル数にともなう変化
を調べたところ、図2に示すようになった。80サイク
ル経過時において226mAh/g の容量を保ってい
る。これらの結果は、リチウム電池用電極として、従来
のシート化による方法で得られた電極と比べて劣らない
ものである。次に電極の容量を体積当りに換算して評価
した。電極の厚みの測定は、電子顕微鏡により断面を観
察することにより行なった。この結果、第1回目の容量
は346mAh/cm3 であった。従来のシート化に
よる方法による場合は270〜280mAh/cm3 
であるので、上記方法により得られた電極は体積当りの
容量が大幅に向上していることがわかる。
The electrode thus obtained was taken out into an inert atmosphere, its weight was measured, and a portion was subjected to chemical analysis. The remaining portion was used for investigating electrode performance. The obtained electrode was cut out to have an area of 1 cm2, and this was used as a working electrode. Metallic lithium was used as a counter electrode. Metallic lithium was also used as a reference electrode. Arsenic hexafluoride was added to a mixture of propylene carbonate and ethylene carbonate as an electrolyte. An electrochemical cell was assembled using dissolved lithium. The performance of this cell as a single cell was evaluated. Note that the potential difference between the reference electrode and the working electrode was 0.003V. First, while monitoring the potential of the working electrode using the reference electrode,
A current is passed between the working electrode and the counter electrode, that is, dedoping, and the amount of electricity is measured until the potential of the reference electrode reaches 1.000 V,
From this, the capacitance as an electrode was determined. The result is 2
It was 44mAh/g. Subsequently, a cycle test was conducted in which doping and dedoping were repeated. Doping was carried out by connecting the working electrode and the counter electrode with a lead wire, and leaving them until the potential of the working electrode reached 0V. When the dedoping capacity was measured in the same manner as above and the change with the number of cycles was investigated, the result was as shown in FIG. 2. After 80 cycles, a capacity of 226 mAh/g was maintained. These results are comparable to electrodes for lithium batteries obtained by conventional sheet-forming methods. Next, the capacitance of the electrode was evaluated in terms of volume. The thickness of the electrode was measured by observing the cross section using an electron microscope. As a result, the first capacity was 346 mAh/cm3. 270-280mAh/cm3 when using the conventional sheeting method
Therefore, it can be seen that the electrode obtained by the above method has a significantly improved capacity per volume.

【0014】また炭素リチウム化物電極は、ポロシティ
ーが低い(充填密度が高い)ほど体積エネルギー効率の
よい電極となる。しかし電極として作用させるためには
、電極材料が適度に電解質に接して電解質中のイオンの
吸放出が効率良くできねばならない。ポロシティーが低
すぎると、電解質との接触面積が制限されるため、電気
化学的に効率の良い電極とはならない。従ってポロシテ
ィーには最適値が存在する。従来の炭素質電極は、炭素
質粉末をバインダーを用いてシート化する方法により製
造するのが一般的であったが、ポロシティーは約40〜
60%であった。しかしながら上記実施例の方法によれ
ば、ポロシティーを自在にコントロールすることができ
る。即ち上記方法によれば、生成室30とデポジション
室10の圧力差を調整することによって基板14に吹付
ける流速を連続的に調整でき、これによってポロシティ
ーを最低略0%まで下げることができる。
[0014] Furthermore, the lower the porosity (higher the packing density) of the carbon lithium-ion electrode, the better the volumetric energy efficiency of the electrode becomes. However, in order to function as an electrode, the electrode material must be in proper contact with the electrolyte and must be able to absorb and release ions in the electrolyte efficiently. If the porosity is too low, the contact area with the electrolyte is limited, resulting in an electrode that is not electrochemically efficient. Therefore, there is an optimal value for porosity. Conventional carbonaceous electrodes were generally manufactured by forming carbonaceous powder into a sheet using a binder, but the porosity was approximately 40 to
It was 60%. However, according to the method of the above embodiment, the porosity can be freely controlled. That is, according to the above method, by adjusting the pressure difference between the generation chamber 30 and the deposition chamber 10, the flow rate sprayed onto the substrate 14 can be continuously adjusted, thereby making it possible to lower the porosity to at least approximately 0%. .

【0015】このように上記方法は、結着剤を用いない
ので、乾式で清浄な方法である。また上記方法によれば
、生産性良く、体積効率に優れた均一な厚みの超薄型の
リチウム電池用負極を製造することができる。しかも得
られたリチウム電池用負極は、既にリチウムを含んでい
るので、従来のカーボン電極のように電槽組込み前にリ
チウムをドーピングする必要はない。従ってこのリチウ
ム電池用負極を用いれば、煩雑な予備ドーピング工程を
不要とでき、リチウム電池の組立工程を簡略化できる。
[0015] As described above, the above method does not use a binder, so it is a dry and clean method. Further, according to the above method, it is possible to manufacture an ultra-thin negative electrode for a lithium battery with good productivity and excellent volumetric efficiency and a uniform thickness. Moreover, since the obtained negative electrode for a lithium battery already contains lithium, there is no need to dope it with lithium before assembling it into a battery case, unlike conventional carbon electrodes. Therefore, by using this negative electrode for lithium batteries, a complicated preliminary doping process can be eliminated and the assembly process of lithium batteries can be simplified.

【0016】なお上記実施例では、炭素質材料の超微粒
子をガス気流に混入させて送出する方法として、図3に
示すエアロゾル法を採用しているが、図4に示すアーク
放電法、図5に示すその他の方法を採用してもよい。
In the above embodiment, the aerosol method shown in FIG. 3 is used as a method for mixing ultrafine particles of carbonaceous material into a gas stream and sending them out. However, the arc discharge method shown in FIG. Other methods shown in may also be adopted.

【0017】[0017]

【発明の効果】以上のように本発明の製造方法によれば
、カーボン電極の予備ドーピング工程を不要としてリチ
ウム電池の組立工程を簡略化できるリチウム電池用負極
を提供でき、更にはそのリチウム電池用負極を、生産性
良く、体積効率に優れた均一な厚みの超薄型のものとし
て得ることができる。
As described above, according to the manufacturing method of the present invention, it is possible to provide a negative electrode for a lithium battery that can simplify the assembly process of a lithium battery by eliminating the need for a preliminary doping process for carbon electrodes, and furthermore, The negative electrode can be obtained as an ultra-thin negative electrode with a uniform thickness and excellent volumetric efficiency with good productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の製造方法を実施するのに用いる製造装
置を示す概略図である。
FIG. 1 is a schematic diagram showing a manufacturing apparatus used to carry out the manufacturing method of the present invention.

【図2】本発明により得られたリチウム電池用負極の充
放電サイクル試験の結果を示す図である。
FIG. 2 is a diagram showing the results of a charge/discharge cycle test of the negative electrode for a lithium battery obtained according to the present invention.

【図3】炭素質材料の超微粒子をガス気流に混入させて
送出するためのエアロゾル法の実施に用いる装置を示す
概略図である。
FIG. 3 is a schematic diagram showing an apparatus used to carry out an aerosol method for delivering ultrafine particles of carbonaceous material mixed into a gas stream.

【図4】炭素質材料の超微粒子をガス気流に混入させて
送出するためのアーク放電法の実施に用いる装置を示す
概略図である。
FIG. 4 is a schematic diagram showing an apparatus used to carry out an arc discharge method for discharging ultrafine particles of carbonaceous material mixed into a gas stream.

【図5】炭素質材料の超微粒子をガス気流に混入させて
送出するためのその他の方法の実施に用いる装置を示す
概略図である。
FIG. 5 is a schematic diagram illustrating an apparatus used to carry out another method for dispensing ultrafine particles of carbonaceous material into a gas stream.

【符号の説明】[Explanation of symbols]

10  デポジション室 11  第1ノズル 12  第2ノズル 13  ガス導入管 14  基板 20  エアロゾル容器 30  生成室 21、31  導入管 22、32  送出管 34  坩堝 10 Deposition room 11 First nozzle 12 Second nozzle 13 Gas introduction pipe 14 Board 20 Aerosol container 30 Generation chamber 21, 31 Introductory pipe 22, 32 Delivery pipe 34 Crucible

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素質材料の超微粒子とリチウムの超微粒
子を、それぞれガス気流に乗せて同一基板表面に同時に
吹付けて堆積させて、基板表面に炭素リチウム化物から
なる薄膜を形成することを特徴とするリチウム電池用負
極の製造方法。
Claim 1: Forming a thin film made of carbon lithium on the substrate surface by simultaneously spraying and depositing ultrafine particles of carbonaceous material and ultrafine particles of lithium on the surface of the same substrate in a gas stream. Features: A method for producing a negative electrode for lithium batteries.
JP3039168A 1991-02-08 1991-02-08 Manufacture of negative electrode for lithium cell Pending JPH04255667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039168A JPH04255667A (en) 1991-02-08 1991-02-08 Manufacture of negative electrode for lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039168A JPH04255667A (en) 1991-02-08 1991-02-08 Manufacture of negative electrode for lithium cell

Publications (1)

Publication Number Publication Date
JPH04255667A true JPH04255667A (en) 1992-09-10

Family

ID=12545589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039168A Pending JPH04255667A (en) 1991-02-08 1991-02-08 Manufacture of negative electrode for lithium cell

Country Status (1)

Country Link
JP (1) JPH04255667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589300A (en) * 1993-09-27 1996-12-31 Arthur D. Little, Inc. Small particle electrodes by aerosol process
JP2006156248A (en) * 2004-11-30 2006-06-15 Tottori Univ Electrode for lithium secondary battery and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589300A (en) * 1993-09-27 1996-12-31 Arthur D. Little, Inc. Small particle electrodes by aerosol process
JP2006156248A (en) * 2004-11-30 2006-06-15 Tottori Univ Electrode for lithium secondary battery and its manufacturing method
JP4626966B2 (en) * 2004-11-30 2011-02-09 国立大学法人鳥取大学 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
EP0741426B1 (en) Manufacturing method for electrode
KR101001827B1 (en) Method for producing negative electrode for lithium ion secondary battery
CN100423327C (en) Negative pole for lithium ion secondary battery and producing method thereof
CN108649190A (en) Vertical graphene with three-dimensional porous array structure/titanium niobium oxygen/sulphur carbon composite and its preparation method and application
CN103733394B (en) With highdensity negative electrode active material and preparation method thereof
CN110534706B (en) Passivated lithium powder and preparation method and application thereof
CN111490252A (en) Lithium metal protective layer, preparation method thereof and battery with same
CN108923037A (en) A kind of Silicon-rich SiOx-C material and its preparation method and application
CN108281627B (en) Germanium-carbon composite negative electrode material for lithium ion battery and preparation method thereof
JPH07302588A (en) Negative electrode for lithium secondary battery and its manufacture
WO2022016554A1 (en) Metal carbide catalyst, preparation method therefor, and use thereof in lithium oxygen battery
JP3204291B2 (en) Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
KR20240032753A (en) Method of making particles containing metal and active battery material for electrode fabrication
US11005091B2 (en) Composite electrode material and method for manufacturing the same
Cai et al. Novel Ni and Al doped manganese oxide (Ni x Al y Mn z O 2) ternary catalyst materials synthesized by a homogeneous precipitation method for high performance air electrodes of lithium–oxygen batteries
CN109309234B (en) Metallic lithium negative electrode, method of preparing the same, and lithium battery including the same
JPH04255667A (en) Manufacture of negative electrode for lithium cell
CN115207303A (en) High-energy quick-charging graphite cathode composite material and preparation method thereof
KR101104237B1 (en) Negative composition for Lithium secondary battery using lithium vanadium oxide and manufacturing method thereof
JP2642223B2 (en) Battery electrode and method of manufacturing the same
JP3869609B2 (en) Method for producing electrode for lithium secondary battery
JP2861329B2 (en) Manufacturing method of electrode for lithium battery
US9997770B2 (en) Lithium-sulfur secondary battery
WO2024024753A1 (en) Electrode for power storage device, secondary battery, and method for manufacturing electrode for power storage device
CN117976912A (en) Preparation method of lithium battery negative electrode film material and lithium battery with high cycle performance