JPH04254862A - Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body - Google Patents

Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body

Info

Publication number
JPH04254862A
JPH04254862A JP3027774A JP2777491A JPH04254862A JP H04254862 A JPH04254862 A JP H04254862A JP 3027774 A JP3027774 A JP 3027774A JP 2777491 A JP2777491 A JP 2777491A JP H04254862 A JPH04254862 A JP H04254862A
Authority
JP
Japan
Prior art keywords
photoreceptor
comparative
electrophotographic
oxytitanium phthalocyanine
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3027774A
Other languages
Japanese (ja)
Inventor
Takakazu Tanaka
孝和 田中
Akihiro Senoo
章弘 妹尾
Norihiro Kikuchi
憲裕 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3027774A priority Critical patent/JPH04254862A/en
Publication of JPH04254862A publication Critical patent/JPH04254862A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photosensitive body with sufficient sensitivity in laser diode oscillation wave length area and stable electric potential in repeated use by providing a specified crystal type oxytitanium phthalocyanine as charge producing substance and providing a photosensitive layer in which a specified carbonyl compound is used as charge transport substance. CONSTITUTION:A crystal type oxytitanium phthalocyanine with strong peaks at Bragg angles 2theta+ or -0.2 deg. of 9.0 deg., 14.2 deg., 23.9 deg., and 27.1 deg. in a X-ray diffraction of CuKalpha is contained, and also at least one kind of carbonyl compounds shown in the formula is contained. In the formula, Ar through Ar4 represent aryl group which may have substitute, and R1 and R2 represent hydrogen atom or alkyl group.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子写真感光体、該電子
写真感光体を備えた電子写真装置並びにファクシミリに
関し、詳しくは特定の電荷発生物質と特定の電荷輸送物
質を含有する感光層を有する電子写真感光体、該電子写
真感光体を備えた電子写真装置並びにファクシミリに関
する。
[Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor, an electrophotographic device equipped with the electrophotographic photoreceptor, and a facsimile, and more particularly, the present invention relates to an electrophotographic photoreceptor, and more particularly, it has a photosensitive layer containing a specific charge-generating substance and a specific charge-transporting substance. The present invention relates to an electrophotographic photoreceptor, an electrophotographic apparatus equipped with the electrophotographic photoreceptor, and a facsimile.

【0002】0002

【従来の技術】従来、電子写真感光体としてはセレン、
硫化カドミウム、酸化亜鉛などの無機光導電性物質を主
成分とする感光層を有する無機感光体が広く用いられて
きた。これらは熱安定性、耐湿性、耐久性などにおいて
必ずしも満足し得るものではなく、特にセレンおよび硫
化カドミウムは毒性のために製造上並びに取り扱い上に
制約があった。
[Prior Art] Conventionally, electrophotographic photoreceptors include selenium,
Inorganic photoreceptors having photosensitive layers mainly composed of inorganic photoconductive substances such as cadmium sulfide and zinc oxide have been widely used. These materials are not necessarily satisfactory in terms of thermal stability, moisture resistance, durability, etc. In particular, selenium and cadmium sulfide have limitations in production and handling due to their toxicity.

【0003】一方、有機光導電性化合物を主成分とする
感光層を有する有機感光体は無機感光体の上記欠点を補
うなど多くの利点を有し、近年注目を集めている。この
ような有機感光体としてはポリ−N−ビニルカルバゾ−
ルに代表される光導電性ポリマ−およびこれと2,4,
7−トリニトロ−9−フルオレノンなどのルイス酸とか
ら形成される電荷移動錯体を主成分とする感光層を有す
る電子写真感光体は既に実用化されている。しかしこの
電子写真感光体は感度および耐久性において必ずしも満
足できるものではない。そして、電荷発生機能と電荷輸
送機能とをそれぞれ別個の物質に分担させた機能分離型
電子写真感光体が、従来の有機感光体の欠点とされてい
た感度や耐久性に著しい改善をもたらした。このような
機能分離型電子写真感光体は電荷発生物質、電荷輸送物
質の各々の材料選択範囲が広く、任意の特性を有する電
子写真感光体を比較的容易に作成し得るという利点を有
している。
On the other hand, organic photoreceptors having a photosensitive layer containing an organic photoconductive compound as a main component have many advantages such as compensating for the above-mentioned drawbacks of inorganic photoreceptors, and have attracted attention in recent years. As such an organic photoreceptor, poly-N-vinylcarbazo-
Photoconductive polymers typified by
Electrophotographic photoreceptors having a photosensitive layer mainly composed of a charge transfer complex formed with a Lewis acid such as 7-trinitro-9-fluorenone have already been put into practical use. However, this electrophotographic photoreceptor is not necessarily satisfactory in sensitivity and durability. Functionally separated electrophotographic photoreceptors, in which charge generation and charge transport functions are performed by separate materials, have brought about significant improvements in sensitivity and durability, which were considered to be shortcomings of conventional organic photoreceptors. Such a functionally separated electrophotographic photoreceptor has the advantage that there is a wide selection range of materials for each of charge-generating substances and charge-transporting substances, and an electrophotographic photoreceptor having arbitrary characteristics can be produced relatively easily. There is.

【0004】近年、電子写真感光体が複写機のみならず
、電子写真技術を応用したノンインパクト型のプリンタ
−への使用が急速に増加してきている。これらは主とし
てレ−ザ−光を光源とするレ−ザ−ビ−ムプリンタ−で
あり、その光源としてはコスト、装置の大きさの点から
半導体レ−ザ−が用いられる。現在主として用いられて
いる半導体レ−ザ−はその発振波長が790±20nm
と長波長のため、これらの長波長の光に十分な感度を有
する電子写真感光体の開発が進められてきた。長波長側
での感度は電荷発生材料の種類によって変わるものであ
り、多くの電荷発生材料が検討されている。代表的な電
荷発生材料としてはフタロシアニン顔料、アゾ顔料、シ
アニン顔料、アズレン顔料、スクアリリウム染料などが
ある。一方、長波長光に対して感度を有する電荷発生材
料として、近年、アルミクロルフタロシアニン、クロロ
インジウムフタロシアニン、オキシバナジウムフタロシ
アニン、クロロガリウムフタロシアニン、マグネシウム
フタロシアニン、オキシチタニウムフタロシアニンなど
の金属フタロシアニンあるいは無金属フタロシアニンに
ついての研究が多くなってきている。このうち多くのフ
タロシアニン化合物では多形の存在が知られており、例
えば無金属フタロシアニンではα型、β型、γ型、δ型
、ε型、τ型、χ型などがあり、銅フタロシアニンでは
α型、β型、γ型、δ型、χ型などが知られている。 また、結晶形の違いが電子写真特性(感度、耐久時の電
位安定性など)および塗料化した場合の塗料特性にも大
きな影響を与えることも知られている。特に長波長の光
に対して高感度を有するオキシチタニウムフタロシアニ
ンに関しても上述の無金属フタロシアニンや銅フタロシ
アニンなど他のフタロシアニンと同様に多形が存在する
。例えば特開昭59−49544号公報(USP4,4
44,861)、特開昭59−166959号公報、特
開昭61−239248号公報(USP4,728,5
92)、特開昭62−67094号公報(USP4,6
64,997)、特開昭63−366号公報、特開昭6
3−116158号公報、特開昭63−198067号
公報および特開昭64−17066号公報に各々結晶形
の異なるオキシチタニウムフタロシアニンが報告されて
いる。しかしこれらのオキシチタニウムフタロシアニン
は感度が十分でない、繰り返し使用時の電位安定性が悪
い、帯電能が悪い、使用環境の変化による画像劣化が見
られるなど実際の使用上問題となる点がいくつかあり、
いまだ十分満足できるものがない。ところで、一般に電
子写真感光体においてはある特定の電荷発生物質に対し
て有効な電荷輸送物質が他の電荷発生物質に対して有効
であるとは限らず、また、逆にある特定の電荷輸送物質
に有効な電荷発生物質が他の電荷輸送物質に対して有効
であるとは限らない。すなわち、電荷の受け渡しをする
これらの電荷発生物質と電荷輸送物質には必ず適当な組
み合わせがある。不適当な組み合わせでは感度低下や残
留電位の上昇を生じたり、繰り返し使用時の電位安定性
の悪化や帯電能の低下などの多くの問題を生じる。 従って電荷発生物質と電荷輸送物質との組み合わせは極
めて重要であるが、一般的な法則は存在せず、特定の電
荷発生物質に適合した電荷輸送物質の発見は容易なこと
ではない。
In recent years, the use of electrophotographic photoreceptors not only in copying machines but also in non-impact type printers applying electrophotographic technology has rapidly increased. These are mainly laser beam printers that use laser light as a light source, and a semiconductor laser is used as the light source from the viewpoint of cost and size of the device. The oscillation wavelength of the semiconductor lasers currently mainly used is 790±20nm.
Because of these long wavelengths, progress has been made in the development of electrophotographic photoreceptors that have sufficient sensitivity to these long wavelengths of light. Sensitivity on the long wavelength side varies depending on the type of charge-generating material, and many charge-generating materials are being studied. Typical charge generating materials include phthalocyanine pigments, azo pigments, cyanine pigments, azulene pigments, and squarylium dyes. On the other hand, as charge-generating materials sensitive to long wavelength light, metal phthalocyanines or metal-free phthalocyanines such as aluminum lophthalocyanine, chloroindium phthalocyanine, oxyvanadium phthalocyanine, chlorogallium phthalocyanine, magnesium phthalocyanine, and oxytitanium phthalocyanine have recently been developed. More and more research is being done. Among these, many phthalocyanine compounds are known to have polymorphisms; for example, metal-free phthalocyanine has α-type, β-type, γ-type, δ-type, ε-type, τ-type, χ-type, etc., and copper phthalocyanine has α-type, Types such as type, β type, γ type, δ type, and χ type are known. It is also known that differences in crystal form have a large effect on electrophotographic properties (sensitivity, potential stability during durability, etc.) and coating properties when made into a paint. Oxytitanium phthalocyanine, which is particularly sensitive to long-wavelength light, has polymorphisms like other phthalocyanines such as the above-mentioned metal-free phthalocyanine and copper phthalocyanine. For example, Japanese Patent Application Laid-Open No. 59-49544 (USP 4,4
44,861), JP-A-59-166959, JP-A-61-239248 (USP 4,728,5)
92), Japanese Unexamined Patent Publication No. 62-67094 (USP 4,6
64,997), JP-A-63-366, JP-A-6
Oxytitanium phthalocyanine having different crystal forms has been reported in JP-A No. 3-116158, JP-A-63-198067, and JP-A-64-17066. However, these oxytitanium phthalocyanines have several problems in actual use, such as insufficient sensitivity, poor potential stability during repeated use, poor charging ability, and image deterioration due to changes in the usage environment. ,
I still don't have anything that satisfies me. By the way, in general, in electrophotographic photoreceptors, a charge transporting material that is effective for a certain charge-generating substance is not necessarily effective for other charge-generating substances; A charge-generating substance that is effective against other charge-transporting substances may not necessarily be effective against other charge-transporting substances. That is, there is always a suitable combination of these charge-generating substances and charge-transporting substances that transfer charges. Inappropriate combinations may cause a number of problems such as a decrease in sensitivity and an increase in residual potential, deterioration in potential stability during repeated use, and a decrease in charging ability. Therefore, the combination of a charge-generating substance and a charge-transporting substance is extremely important, but there are no general rules and it is not easy to find a charge-transporting substance that is compatible with a specific charge-generating substance.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的はレ−ザ
−ダイオ−ド発振波長域で十分な高感度を有する電子写
真感光体を提供すること、繰り返し使用時の電位が安定
に維持され、かつ、使用環境(温度、湿度)によらず安
定した電位特性と画像特性を示す電子写真感光体を提供
すること、該電子写真感光体を備えた電子写真装置並び
にファクシミリを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor having sufficiently high sensitivity in the laser diode oscillation wavelength range, and which maintains a stable potential during repeated use. The object of the present invention is to provide an electrophotographic photoreceptor that exhibits stable potential characteristics and image characteristics regardless of the usage environment (temperature, humidity), and to provide an electrophotographic apparatus and facsimile equipped with the electrophotographic photoreceptor. .

【0006】[0006]

【課題を解決する手段】本発明はCuKαのX線回折に
おけるブラッグ角2θ±0.2°が9.0°、14.2
°、23.9°および27.1°に強いピ−クを有する
結晶形のオキシチタニウムフタロシアニンを含有し、か
つ、下記一般式(1)で示すカルボニル化合物の少なく
とも1種を含有することを特徴とする電子写真感光体か
ら構成される。 一般式(1) 化2 式中、Ar1、Ar2、Ar3およびAr4は置換基を
有してもよいアリ−ル基を示しR1およびR2は水素原
子またはアルキル基を示す。具体的にはアリ−ル基とし
てはフェニル、ナフチル、ピリジルなどの基、アルキル
基としてはメチル、エチル、プロピルなどの基が挙げら
れる。 置換基としてはメチル、エチル、プロピルなどのアルキ
ル基、メトキシ、エトキシなどのアルコキシ基、フッ素
原子、塩素原子、臭素原子などのハロゲン原子フェニル
などのアリ−ル基または水酸基などが挙げられる。
[Means for Solving the Problem] The present invention provides that the Bragg angle 2θ±0.2° in X-ray diffraction of CuKα is 9.0° and 14.2°.
It is characterized by containing crystalline oxytitanium phthalocyanine having strong peaks at 23.9°, 23.9° and 27.1°, and at least one carbonyl compound represented by the following general formula (1). It consists of an electrophotographic photoreceptor. General formula (1) Chemical formula 2 In the formula, Ar1, Ar2, Ar3 and Ar4 represent an aryl group which may have a substituent, and R1 and R2 represent a hydrogen atom or an alkyl group. Specifically, examples of the aryl group include phenyl, naphthyl, and pyridyl, and examples of the alkyl group include methyl, ethyl, and propyl. Examples of the substituent include alkyl groups such as methyl, ethyl and propyl, alkoxy groups such as methoxy and ethoxy, halogen atoms such as fluorine, chlorine and bromine atoms, aryl groups such as phenyl, and hydroxyl groups.

【0007】本発明におけるオキシチタニウムフタロシ
アニンのX線回折パタ−ンは第1図、第2図および第3
図に示すようにブラッグ角(2θ±0.2°)の9.0
°、14.2°、23.9°および27.1°の位置に
強いピ−クを示す。上記ピ−クはピ−ク強度の強い上位
4点を採ったものであり、主要なピ−クとなっている。 第1図、第2図および第3図のX線回折図において特徴
的なことは、上記4点のピ−クのうち、27.1°のピ
−クが一番強く、9.0°のピ−クが二番目に強い。ま
た、17.9°の位置に上記4点より弱いピ−クさらに
弱いピ−クが13.3°の位置にある。また10.5°
〜13.0°、14.8°〜17.4°および18.2
°〜23.2°の範囲には実質的にピ−クがない。
The X-ray diffraction patterns of oxytitanium phthalocyanine in the present invention are shown in FIGS. 1, 2 and 3.
As shown in the figure, the Bragg angle (2θ±0.2°) is 9.0
Strong peaks are shown at positions of 14.2°, 23.9° and 27.1°. The above peaks are the top four points with the highest peak intensities, and are the main peaks. What is characteristic about the X-ray diffraction diagrams in Figures 1, 2, and 3 is that among the four peaks mentioned above, the peak at 27.1° is the strongest, and the peak at 9.0° The peak is the second strongest. Further, there is a peak weaker than the above four points at a position of 17.9°, and an even weaker peak at a position of 13.3°. Also 10.5°
~13.0°, 14.8° ~17.4° and 18.2
There is virtually no peak in the range of 23.2° to 23.2°.

【0008】なお、本発明においてX線回折のピ−ク形
状は製造時における条件の相違によって、また、測定条
件などによって僅かではあるが異なり、例えば各ピ−ク
の先端部はスプリットする場合もあり得る。第1図の場
合には8.9°のピ−クの山は9.4°付近に、また、
14.2°のピ−クの山は14.1°付近に別のスプリ
ットしたピ−クが見られる。
[0008] In the present invention, the shape of the X-ray diffraction peaks differs slightly due to differences in manufacturing conditions and measurement conditions. For example, the tip of each peak may be split. could be. In the case of Figure 1, the peak at 8.9° is near 9.4°, and
The peak at 14.2° has another split peak near 14.1°.

【0009】オキシチタニウムフタロシアニンの構造は
下記式で表わされる。 化3 式中、X1、X2、X3およびX4はClまたはBrを
示し、n、m、jおよびkは0〜4の整数である。
The structure of oxytitanium phthalocyanine is represented by the following formula. Chemical formula 3 In the formula, X1, X2, X3 and X4 represent Cl or Br, and n, m, j and k are integers of 0 to 4.

【0010】また、本発明は前記本発明の電子写真感光
体を備えた電子写真装置から構成される。
The present invention also comprises an electrophotographic apparatus equipped with the electrophotographic photoreceptor of the present invention.

【0011】また、本発明は前記本発明の電子写真感光
体を備えた電子写真装置およびリモ−ト端末からの画像
情報を受信する受信手段を有するファクシミリから構成
される。
The present invention also comprises an electrophotographic apparatus equipped with the electrophotographic photoreceptor of the present invention, and a facsimile machine having a receiving means for receiving image information from a remote terminal.

【0012】以下に本発明の一般式(1)で示すカルボ
ニル化合物の代表的な具体例を表1〜6に挙げる。ただ
し、これらの化合物に限定されるものではない。
Typical specific examples of the carbonyl compound represented by the general formula (1) of the present invention are listed below in Tables 1 to 6. However, it is not limited to these compounds.

【0013】表1 表2 表3 表4 表5 表6Table 1 Table 2 Table 3 Table 4 Table 5 Table 6

【0014】本発明における特定の結晶形のオキシチタ
ニウムフタロシアニンと特定のカルボニル化合物との組
み合わせは、おそらくイオン化ポテンシャルの適合また
は電荷発生物質と電荷輸送物質の界面での立体的重なり
が良いなどの理由で、電荷発生物質から電荷輸送物質へ
の電荷の注入が良好に行われるため、感度が良好で、残
留電位も小さく、繰り返し使用時の電位安定性にも優れ
ているものと思われる。本発明において用いる結晶形の
オキシチタニウムフタロシアニンの製造法について例示
的に説明すると、例えば四塩化チタンとオルトフタロジ
ニトリルをα−クロロナフタレン中で反応させ、ジクロ
ルチタニウムフタロシアニンを得る。これをα−クロロ
ナフタレン、トリクロロベンゼン、ジクロロベンゼン、
N−メチルピロリドン、N,N−ジメチルホルムアミド
などの溶剤で洗浄し、次いで、メタノ−ル、エタノ−ル
などの溶剤で洗浄した後、熱水により加水分解してオキ
シチタニウムフタロシアニン結晶を得る。
[0014] The combination of a specific crystalline oxytitanium phthalocyanine and a specific carbonyl compound in the present invention is probably due to the compatibility of the ionization potential or the good steric overlap at the interface between the charge generating substance and the charge transporting substance. Since charge is well injected from the charge-generating substance to the charge-transporting substance, the sensitivity is good, the residual potential is small, and the potential stability during repeated use is considered to be excellent. To exemplify the method for producing crystalline oxytitanium phthalocyanine used in the present invention, for example, titanium tetrachloride and orthophthalodinitrile are reacted in α-chloronaphthalene to obtain dichlorotitanium phthalocyanine. α-chloronaphthalene, trichlorobenzene, dichlorobenzene,
After washing with a solvent such as N-methylpyrrolidone or N,N-dimethylformamide, and then washing with a solvent such as methanol or ethanol, the product is hydrolyzed with hot water to obtain oxytitanium phthalocyanine crystals.

【0015】こうして得られた結晶は種々の多形の混合
物であることが多く、この混合物を処理しても本発明で
用いる結晶形のオキシチタニウムフタロシアニンを得る
のは通常は難しい。そこで、本発明で用いるに適せしむ
るため、アシツドペ−シテイング法により処理して非晶
質のオキシチタニウムフタロシアニンに一旦変換してお
く。得られた非晶質のオキシチタニウムフタロシアニン
に室温、加熱あるいは煮沸下、好ましくは1時間以上の
メタノ−ル処理を施した後、減圧乾燥し、さらにn−プ
ロピルエ−テル、n−ブチルエ−テル、iso−ブチル
エ−テル、sec−ブチルエ−テル、n−アミルエ−テ
ル、n−ブチルメチルエ−テル、n−ブチルエチルエ−
テル、エチレングリコ−ル−n−ブチルエ−テルなどの
エ−テル系溶剤またはテルピノレン、ピネンなどのモノ
テルペン系炭化水素溶剤や流動パラフィンなどの溶剤を
分散媒として用いて5時間以上、好ましくは10時間以
上のミリング処理を行うことによって本発明で用いる結
晶形のオキシチタニウムフタロシアニンが得られる。こ
こでメタノ−ル処理とは、例えばメタノ−ル中における
オキシチタニウムフタロシアニンの懸濁撹拌処理をいう
。ミリング処理とは、例えばガラスビ−ズ、スチ−ルビ
−ズ、アルミナボ−ルなどの分散メディアとともにサン
ドミル、ボ−ルミルなどのミリング装置を用いて行う処
理をいう。
The crystals thus obtained are often a mixture of various polymorphs, and even if this mixture is processed, it is usually difficult to obtain the crystalline form of oxytitanium phthalocyanine used in the present invention. Therefore, in order to make it suitable for use in the present invention, it is first converted into amorphous oxytitanium phthalocyanine by treatment using an acid pacifying method. The obtained amorphous oxytitanium phthalocyanine is treated with methanol at room temperature, under heating or boiling, preferably for at least 1 hour, and then dried under reduced pressure, and further treated with n-propyl ether, n-butyl ether, iso-butyl ether, sec-butyl ether, n-amyl ether, n-butyl methyl ether, n-butyl ethyl ether
For at least 5 hours, preferably 10 hours, using an ether solvent such as ester, ethylene glycol-n-butyl ether, a monoterpene hydrocarbon solvent such as terpinolene or pinene, or a solvent such as liquid paraffin as a dispersion medium. The crystalline oxytitanium phthalocyanine used in the present invention can be obtained by milling for more than 1 hour. Here, the methanol treatment refers to, for example, a suspension stirring treatment of oxytitanium phthalocyanine in methanol. The milling process is a process performed using a milling device such as a sand mill or a ball mill together with a dispersion medium such as glass beads, steel beads, or alumina balls.

【0016】本発明の結晶形のオキシチタニウムフタロ
シアニンと特定のカルボニル化合物を用いた電子写真感
光体について説明すると、まず、電子写真感光体の代表
的な層構成は、単一層の感光層は、該層が電荷発生物質
と電荷輸送物質を同一層中に含有しており、感光層は導
電性支持体上に形成されている。積層型の感光層は、電
荷発生物質を含有する電荷発生層と電荷輸送物質を含有
する電荷輸送層とが導電性支持体上に順次積層された構
造をとり、この場合電荷発生層と電荷輸送層の積層関係
は逆であってもよい。
[0016] To explain the electrophotographic photoreceptor using crystalline oxytitanium phthalocyanine and a specific carbonyl compound of the present invention, first, the typical layer structure of the electrophotographic photoreceptor is that the single layer photosensitive layer is The layer contains a charge generating material and a charge transporting material in the same layer, and the photosensitive layer is formed on a conductive support. A laminated photosensitive layer has a structure in which a charge generation layer containing a charge generation substance and a charge transport layer containing a charge transport substance are sequentially laminated on a conductive support. The stacking relationship of the layers may be reversed.

【0017】導電性支持体としては導電性を有するもの
であればよく、アルミニウム、ステンレスなどの金属や
合金、導電層を設けた金属、合金、プラスチック、紙な
どが用いられ、形状は円筒状またはフィルム状などがあ
る。
The conductive support may be any material as long as it has conductivity, and metals and alloys such as aluminum and stainless steel, metals with conductive layers, alloys, plastics, paper, etc. are used, and the shape is cylindrical or There are film forms.

【0018】導電性支持体と感光層の間にはバリヤ−機
能と接着機能を有する下引き層を形成することもできる
。下引き層の材料としてはポリビニルアルコ−ル、ポリ
エチレンオキシド、エチルセルロ−ス、メチルセルロ−
ス、カゼイン、ポリアミド、にかわ、ゼラチンなどが用
いられる。材料を適当な溶剤に溶解して導電性支持体上
に塗布される。膜厚は0.2〜3.0μmである。
A subbing layer having barrier and adhesive functions may also be formed between the conductive support and the photosensitive layer. Materials for the undercoat layer include polyvinyl alcohol, polyethylene oxide, ethyl cellulose, and methyl cellulose.
Examples of materials used include casein, polyamide, glue, and gelatin. The material is dissolved in a suitable solvent and applied onto a conductive support. The film thickness is 0.2 to 3.0 μm.

【0019】単一層からなる感光層は、本発明に用いる
オキシチタニウムフタロシアニン結晶の電荷発生物質と
特定のカルボニル化合物である電荷輸送物質を適当なバ
インダ−樹脂溶液中に混合して塗布乾燥することにより
形成される。積層構造からなる感光層は、電荷発生層は
本発明に用いるオキシチタニウムフタロシアニン結晶の
電荷発生物質を適当なバインダ−樹脂溶液とともに分散
し、塗布乾燥することにより形成し、この場合、バイン
ダ−樹脂はなくてもよい。バインダ−樹脂としては、例
えばポリエステル、アクリル樹脂、ポリビニルカルバゾ
−ル、フェノキシ樹脂、ポリカ−ボネ−ト、ポリビニル
ブチラ−ル、ポリスチレン、ポリビニルアセテ−ト、ポ
リスルホン、ポリアリレ−ト、塩化ビニリデン・アクリ
ロニトリルコポリマ−などが主として用いられる。電荷
輸送層は本発明に用いるカルボニル化合物の電荷輸送物
質とバインダ−樹脂とを溶剤中に溶解させた塗料を塗布
乾燥して形成される。バインダ−樹脂としては前述のバ
インダ−樹脂と同様のものを用いることができる。感光
層の塗布方法としては浸漬コ−テイング法、スプレ−コ
−テイング法、スピンナ−コ−テイング法、ビ−ドコ−
テイング法、ブレ−ドコ−テイング法、ビ−ムコ−テイ
ング法などの方法が挙げられる。感光層が単一層の場合
、膜厚は5〜40μm、好ましくは10〜30μmであ
る。また、感光層が積層構造の場合、電荷発生層の膜厚
は0.01〜10μm、好ましくは0.05〜5μmで
あり、電荷輸送層の膜厚は5〜40μm、好ましくは1
0〜30μmである。さらに、これら感光層を外部の衝
撃から保護するために感光層の表面に薄い保護層を設け
てもよい。
The photosensitive layer consisting of a single layer is prepared by mixing the charge generating substance of the oxytitanium phthalocyanine crystal used in the present invention and the charge transporting substance which is a specific carbonyl compound in a suitable binder resin solution, and then coating and drying the mixture. It is formed. In the photosensitive layer having a laminated structure, the charge generation layer is formed by dispersing the charge generation substance of oxytitanium phthalocyanine crystal used in the present invention together with a suitable binder resin solution, and coating and drying. In this case, the binder resin is You don't have to. Examples of the binder resin include polyester, acrylic resin, polyvinyl carbazole, phenoxy resin, polycarbonate, polyvinyl butyral, polystyrene, polyvinyl acetate, polysulfone, polyarylate, vinylidene chloride/acrylonitrile. Copolymers and the like are mainly used. The charge transport layer is formed by applying and drying a paint in which a carbonyl compound charge transport material used in the present invention and a binder resin are dissolved in a solvent. As the binder resin, the same binder resins as those described above can be used. Coating methods for the photosensitive layer include dip coating, spray coating, spinner coating, and bead coating.
Examples of methods include coating method, blade coating method, and beam coating method. When the photosensitive layer is a single layer, the film thickness is 5 to 40 μm, preferably 10 to 30 μm. Further, when the photosensitive layer has a laminated structure, the thickness of the charge generation layer is 0.01 to 10 μm, preferably 0.05 to 5 μm, and the thickness of the charge transport layer is 5 to 40 μm, preferably 1 μm.
It is 0 to 30 μm. Furthermore, a thin protective layer may be provided on the surface of the photosensitive layer in order to protect the photosensitive layer from external impact.

【0020】本発明のオキシチタニウムフタロシアニン
結晶を電荷発生物質として用いる場合、その目的に応じ
て他の電荷発生物質と混合して用いることも可能である
When the oxytitanium phthalocyanine crystal of the present invention is used as a charge generating substance, it can be mixed with other charge generating substances depending on the purpose.

【0021】本発明の電子写真感光体はレ−ザ−ビ−ム
プリンタ−、LEDプリンタ−、CRTプリンタ−など
のプリンタ−のみならず、通常の電子写真複写機、ファ
クシミリその他電子写真応用分野に広く適用することが
できる。
The electrophotographic photoreceptor of the present invention can be used not only in printers such as laser beam printers, LED printers, and CRT printers, but also in ordinary electrophotographic copying machines, facsimile machines, and other electrophotographic application fields. Can be widely applied.

【0022】次に、本発明の電子写真感光体を備えた電
子写真装置並びにファクシミリについて説明する。
Next, an electrophotographic apparatus and a facsimile equipped with the electrophotographic photoreceptor of the present invention will be explained.

【0023】次に、本発明の電子写真感光体を備えた電
子写真装置並びにファクシミリについて説明する。第1
0図に本発明のドラム型感光体を用いた一般的な転写式
電子写真装置の概略構成を示した。図において、1は像
担持体としてのドラム型感光体であり軸1aを中心に矢
印方向に所定の周速度で回転駆動される。該感光体1は
その回転過程で帯電手段2によりその周面に正または負
の所定電位の均一帯電を受け、次いで露光部3にて不図
示の像露光手段により光像露光L(スリット露光・レ−
ザ−ビ−ム走査露光など)を受ける。これにより感光体
周面に露光像に対応した静電潜像が順次形成されていく
。その静電潜像は、次いで現像手段4でトナ−現像され
、そのトナ−現像像が転写手段5により不図示の給紙部
から感光体1と転写手段5との間に感光体1の回転と同
期取りされて給送された転写材Pの面に順次転写されて
いく。像転写を受けた転写材Pは感光体面から分離され
て像定着手段8へ導入されて像定着を受けて複写物(コ
ピ−)として機外へプリントアウトされる。像転写後の
感光体1の表面はクリ−ニング手段6にて転写残りトナ
−の除去を受けて清浄面化され、前露光手段7により除
電処理がされて繰り返して像形成に使用される。感光体
1の均一帯電手段2としてはコロナ帯電装置が一般に広
く使用されている。また、転写装置5もコロナ転写手段
が一般に広く使用されている。電子写真装置として、上
述の感光体や現像手段、クリ−ニング手段などの構成要
素のうち、複数のものを装置ユニットとして一体に結合
して構成し、このユニットを装置本体に対して着脱自在
に構成しても良い。例えば、感光体1とクリ−ニング手
段6とを一体化してひとつの装置ユニットとし、装置本
体のレ−ルなどの案内手段を用いて着脱自在の構成にし
てもよい。このとき、上記の装置ユニットのほうに帯電
手段および/または現像手段を伴って構成してもよい。 また、光像露光Lは、電子写真装置を複写機やプリンタ
−として使用する場合には、原稿からの反射光や透過光
、あるいは、原稿を読み取り信号化し、この信号により
レ−ザ−ビ−ムの走査、発光ダイオ−ドアレイの駆動、
または液晶シャッタ−アレイの駆動などにより行われる
Next, an electrophotographic apparatus and a facsimile equipped with the electrophotographic photoreceptor of the present invention will be explained. 1st
FIG. 0 shows a schematic configuration of a general transfer type electrophotographic apparatus using the drum-type photoreceptor of the present invention. In the figure, reference numeral 1 denotes a drum-type photoreceptor as an image carrier, which is rotated at a predetermined circumferential speed in the direction of the arrow around an axis 1a. During the rotation process, the photoreceptor 1 is uniformly charged to a predetermined positive or negative potential on its circumferential surface by the charging means 2, and then subjected to light image exposure L (slit exposure/ Ray
laser beam scanning exposure, etc.). As a result, electrostatic latent images corresponding to the exposed images are sequentially formed on the circumferential surface of the photoreceptor. The electrostatic latent image is then developed with toner by a developing means 4, and the toner-developed image is transferred by a transfer means 5 from a paper feed section (not shown) between the photoreceptor 1 and the transfer means 5, when the photoreceptor 1 is rotated. The images are sequentially transferred onto the surface of the transfer material P that is fed in synchronization with the image data. The transfer material P that has undergone the image transfer is separated from the photoreceptor surface and introduced into the image fixing means 8, where the image is fixed and printed out outside the machine as a copy. After the image has been transferred, the surface of the photoreceptor 1 is cleaned by a cleaning means 6 to remove residual toner after transfer, and is subjected to a charge removal process by a pre-exposure means 7 and used repeatedly for image formation. As the uniform charging means 2 for the photoreceptor 1, a corona charging device is generally widely used. Further, as for the transfer device 5, a corona transfer means is generally widely used. An electrophotographic apparatus is constructed by combining a plurality of components such as the above-mentioned photoreceptor, developing means, and cleaning means into an apparatus unit, and this unit is detachably attached to the main body of the apparatus. It may be configured. For example, the photoreceptor 1 and the cleaning means 6 may be integrated into one apparatus unit, and may be configured to be detachable using a guide means such as a rail on the main body of the apparatus. At this time, the above-mentioned device unit may include a charging means and/or a developing means. In addition, when the electrophotographic apparatus is used as a copying machine or a printer, the light image exposure L is the reflected light or transmitted light from the original, or the original is read and converted into a signal, and this signal is used to generate a laser beam. scanning, driving light emitting diode array,
Alternatively, this may be performed by driving a liquid crystal shutter array.

【0024】また、ファクシミリのプリンタ−として使
用する場合には、光像露光Lは受信デ−タをプリントす
るための露光になる。第11図は、この場合の1例をブ
ロック図で示したものである。コントロ−ラ10は画像
読取部9とプリンタ−18を制御する。コントロ−ラ1
0の全体はCPU16により制御されている。画像読取
部からの読取りデ−タは、送信回路12を通して相手局
に送信される。相手局から受けたデ−タは受信回路11
を通してプリンタ−18に送られる。画像メモリには所
定の画像デ−タが記憶される。プリンタコントロ−ラ1
7はプリンタ−18を制御している。13は電話である
。回線14から受信された画像(回線を介して接続され
たリモ−ト端末からの画像情報)は、受信回路11で復
調された後、CPU16は画像情報の信号処理を行い順
次画像メモリ15に格納される。そして、少なくとも1
ペ−ジの画像がメモリ16に格納されると、そのペ−ジ
の画像記憶を行う。CPU16は、メモリ15より1ペ
−ジの画像情報を読み出しプリンタコントロ−ラ17に
信号かされた1ペ−ジの画像情報を送出する。プリンタ
コントロ−ラ17は、CPU16からの1ペ−ジの画像
情報を受け取るとそのペ−ジの画像情報記録を行うべく
、プリンタ18を制御する。なお、CPU16は、プリ
ンタ−18による記録中に、次のペ−ジの受信を行って
いる。以上のように、画像の受信と記録が行われる。
Furthermore, when used as a facsimile printer, the optical image exposure L is exposure for printing received data. FIG. 11 is a block diagram showing an example of this case. A controller 10 controls an image reading section 9 and a printer 18. controller 1
0 is entirely controlled by the CPU 16. The read data from the image reading section is transmitted to the partner station through the transmitting circuit 12. The data received from the other station is sent to the receiving circuit 11.
is sent to the printer 18 through the printer. Predetermined image data is stored in the image memory. Printer controller 1
7 controls a printer 18. 13 is a telephone. After the image received from the line 14 (image information from a remote terminal connected via the line) is demodulated by the receiving circuit 11, the CPU 16 performs signal processing on the image information and sequentially stores it in the image memory 15. be done. and at least 1
When the image of the page is stored in the memory 16, the image of the page is stored. The CPU 16 reads one page of image information from the memory 15 and sends out the one page of image information signaled to the printer controller 17. When the printer controller 17 receives one page of image information from the CPU 16, it controls the printer 18 to record the image information of that page. Note that the CPU 16 receives the next page while the printer 18 is recording. As described above, images are received and recorded.

【0025】次に本発明で用いるオキシチタニウムフタ
ロシアニン結晶の製造例を示す。
Next, an example of the production of oxytitanium phthalocyanine crystals used in the present invention will be shown.

【0026】製造例1 α−クロロナフタレン100g中、o−フタロジニトリ
ル5.0g、四塩化チタン2.0gを200℃にて3時
間加熱撹拌した後、50℃まで冷却して析出した結晶を
濾別、ジクロロチタニウムフタロシアニンのペ−ストを
得た。次に、これを100℃に加熱したN,N−ジメチ
ルホルムアミド100ミリリットルで撹拌下洗浄、次い
で60℃のメタノ−ル100ミリリットルで2回洗浄を
繰り返し、濾別した。さらに、この得られたペ−ストを
脱イオン水100ミリリットル中80℃で1時間撹拌、
濾別して青色のオキシチタニウムフタロシアニン結晶を
得た。収量4.3g
Production Example 1 In 100 g of α-chloronaphthalene, 5.0 g of o-phthalodinitrile and 2.0 g of titanium tetrachloride were heated and stirred at 200°C for 3 hours, and then cooled to 50°C to collect the precipitated crystals. After separation by filtration, a paste of dichlorotitanium phthalocyanine was obtained. Next, this was washed with 100 ml of N,N-dimethylformamide heated to 100°C under stirring, then washed twice with 100 ml of methanol at 60°C, and filtered. Further, the obtained paste was stirred in 100 ml of deionized water at 80°C for 1 hour.
After separation by filtration, blue oxytitanium phthalocyanine crystals were obtained. Yield 4.3g

【0027】元素分析値(C32H16N8TiO)C
  計算値66.68%、実測値66.50%H  計
算値2.80%、実測値2.99%N  計算値19.
44%実測値19.42%Cl計算値0.00%、実測
値0.47%
Elemental analysis value (C32H16N8TiO)C
Calculated value 66.68%, actual value 66.50%H Calculated value 2.80%, actual value 2.99%N Calculated value 19.
44% actual value 19.42% Cl calculated value 0.00%, actual value 0.47%

【0028】次にこの結晶を濃硫酸30ミ
リリットルに溶解し、20℃の脱イオン水300ミリリ
ットル中に撹拌下で滴下して再析出させて濾過し十分に
水洗した後、非晶質のオキシチタニウムフタロシアニン
を得た。こうして得られた非晶質のオキシチタニウムフ
タロシアニン4.0gをメタノ−ル100ミリリットル
中室温(22℃)下、8時間懸濁撹拌処理し、濾別、減
圧乾燥して低結晶性のオキシチタニウムフタロシアニン
を得た。このオキシチタニウムフタロシアニン2.0g
にn−ブチルエ−テル40ミリリットルを加え、1mm
φのガラスビ−ズとともにミリング処理を室温(22℃
)下20時間行った。この分散液より固形分を取り出し
、メタノ−ル、次いで水で十分に洗浄、乾燥して本発明
で用いる結晶形のオキシチタニウムフタロシアニンを得
た。収量1.8g
Next, the crystals were dissolved in 30 ml of concentrated sulfuric acid, and dropped into 300 ml of deionized water at 20° C. under stirring to cause reprecipitation, filtration, and thorough washing with water to obtain amorphous oxytitanium. Phthalocyanine was obtained. 4.0 g of amorphous oxytitanium phthalocyanine thus obtained was suspended and stirred in 100 ml of methanol at room temperature (22°C) for 8 hours, filtered, and dried under reduced pressure to obtain low-crystalline oxytitanium phthalocyanine. I got it. 2.0g of this oxytitanium phthalocyanine
Add 40ml of n-butyl ether to 1mm
The milling process with φ glass beads was carried out at room temperature (22℃
) for the next 20 hours. The solid content was taken out from this dispersion, thoroughly washed with methanol and then with water, and dried to obtain crystalline oxytitanium phthalocyanine used in the present invention. Yield 1.8g

【0029】得られた結晶形のオキシチタニウムフタロ
シアニンのX線回折図を第1図に示す。またKBrペレ
ットを調製し、この結晶の赤外吸収スペクトルを測定し
た結果を第7図に示す。またこの結晶をn−ブチルエ−
テル中に分散した分散液で測定した紫外吸収スペクトル
の結果を第8図に示す。
The X-ray diffraction pattern of the crystalline oxytitanium phthalocyanine obtained is shown in FIG. In addition, KBr pellets were prepared and the infrared absorption spectrum of this crystal was measured, and the results are shown in FIG. In addition, this crystal was converted into n-butyl ether.
FIG. 8 shows the results of the ultraviolet absorption spectrum measured for the dispersion liquid dispersed in the solution.

【0030】製造例2 製造例1と同様の方法で得られたメタノ−ル処理したオ
キシチタニウムフタロシアニン2.0gにピネン50ミ
リリットルを加え、1mmφのガラスビ−ズとともにミ
リング処理を室温(22℃)下20時間行った。この分
散液より固形分を取り出し、メタノ−ル、次いで水で十
分に洗浄、乾燥して本発明で用いる結晶形のオキシチタ
ニウムフタロシアニンを得た。収量1.8g
Production Example 2 50 ml of pinene was added to 2.0 g of methanol-treated oxytitanium phthalocyanine obtained in the same manner as in Production Example 1, and milled with 1 mm diameter glass beads at room temperature (22°C). I went for 20 hours. The solid content was taken out from this dispersion, thoroughly washed with methanol and then with water, and dried to obtain crystalline oxytitanium phthalocyanine used in the present invention. Yield 1.8g

【0031
】得られた結晶形のオキシチタニウムフタロシアニンの
X線回折図を第2図に示す。
0031
FIG. 2 shows an X-ray diffraction pattern of the crystalline oxytitanium phthalocyanine obtained.

【0032】製造例3 製造例1と同様の方法で得られた非晶質のオキシチタニ
ウムフタロシアニン4.0gにメタノ−ル100ミリリ
ットルを加え、懸濁撹拌下、30時間煮沸処理した後、
濾過、減圧乾燥し、オキシチタニウムフタロシアニン結
晶を得た。収量3.6g  次に、このオキシチタニウ
ムフタロシアニンを2.0gにエチレングリコ−ル−n
−ブチルエ−テル60ミリリットルを加え、1mmφの
ガラスビ−ズとともにミリング処理を室温(22℃)下
15時間行った。この分散液より固形分を取り出し、メ
タノ−ル、次いで水で十分に洗浄、乾燥して本発明で用
いる結晶形のオキシチタニウムフタロシアニンを得た。 収量1.8g
Production Example 3 100 ml of methanol was added to 4.0 g of amorphous oxytitanium phthalocyanine obtained in the same manner as in Production Example 1, and the mixture was boiled for 30 hours under suspension stirring.
It was filtered and dried under reduced pressure to obtain oxytitanium phthalocyanine crystals. Yield: 3.6g Next, 2.0g of this oxytitanium phthalocyanine was mixed with ethylene glycol-n.
60 ml of -butyl ether was added, and milling was carried out at room temperature (22°C) for 15 hours with glass beads of 1 mm diameter. The solid content was taken out from this dispersion, thoroughly washed with methanol and then with water, and dried to obtain crystalline oxytitanium phthalocyanine used in the present invention. Yield 1.8g

【0033】得られた結晶形のオキシチタニウムフタロ
シアニンのX線回折図を第3図に示す。
The X-ray diffraction pattern of the crystalline oxytitanium phthalocyanine obtained is shown in FIG.

【0034】比較製造例1 特開昭61−239248号公報(USP4,728,
592)に開示されている製造例に従って、いわゆるα
型と呼ばれている結晶形のオキシチタニウムフタロシア
ニンを得た。このX線回折図を第4図に示す。
Comparative Production Example 1 Japanese Patent Application Laid-Open No. 61-239248 (USP 4,728,
592), the so-called α
A crystalline form of oxytitanium phthalocyanine called type was obtained. This X-ray diffraction diagram is shown in FIG.

【0035】比較製造例2 特開昭62−67094号公報(USP4,66499
72)に開示されている製造例に従って、いわゆるA型
と呼ばれている結晶形のオキシチタニウムフタロシアニ
ンを得た。このX線回折図を第5図に示す。
Comparative Production Example 2 Japanese Patent Application Laid-Open No. 62-67094 (USP 4,66499)
According to the production example disclosed in No. 72), a crystalline oxytitanium phthalocyanine, so-called type A, was obtained. This X-ray diffraction diagram is shown in FIG.

【0036】比較製造例3 特開昭64−17066号公報に開示されている製造例
に従って、特開昭64−17066号公報に開示のもの
と同じ結晶形を持つオキシチタニウムフタロシアニンを
得た。このX線回折図を第6図に示す。なお、X線回折
の測定はCuKα線を用いて次の条件により行った。 使用測定機:理学電器(株)製X線回折装置RAD−A
システム X線菅球:Cu、管電圧:50KV、管電流:40mA
、スキヤン方法:2θ/θスキヤン、スキヤン速度:2
deg./min.、サンプリング間隔:0.020d
eg.、スタ−ト角度(2θ):3deg.、ストツプ
角度(2θ):40deg.、ダイバ−ジエンスリツト
:0.5deg.、スキヤツタリングスリツ:0.5d
eg.、レシ−ビングスリツト:0.3mm、湾曲モノ
クロメ−タ−使用
Comparative Production Example 3 According to the production example disclosed in JP-A-64-17066, oxytitanium phthalocyanine having the same crystal form as that disclosed in JP-A-64-17066 was obtained. This X-ray diffraction diagram is shown in FIG. Note that the X-ray diffraction measurements were performed using CuKα rays under the following conditions. Measuring device used: X-ray diffraction device RAD-A manufactured by Rigaku Denki Co., Ltd.
System X-ray tube: Cu, tube voltage: 50KV, tube current: 40mA
, Scan method: 2θ/θ scan, Scan speed: 2
deg. /min. , sampling interval: 0.020d
eg. , start angle (2θ): 3deg. , stop angle (2θ): 40deg. , diversity slit: 0.5deg. , Scattering slit: 0.5d
eg. , Receiving slit: 0.3mm, curved monochromator used

【0037】[0037]

【実施例】実施例1 アルミ板上に0.3μmの塩化ビニル−無水マレイン酸
−酢酸ビニル共重合体よりなる下引き層を形成した。次
に、前記製造例1で得られた結晶形のオキシチタニウム
フタロシアニン3部(重量部、以下同様)とポリビニル
ブチラ−ル2部をシクロヘキサノン100部に添加しサ
ンドミルで2.5時間分散し、これに100部のメチル
エチルケトンを加えて希釈し、この分散液を下引き層上
に乾燥後の膜厚が0.3μmの電荷発生層を形成した。 次いで化合物例1のカルボニル化合物5部とビスフェノ
−ルZ型ポリカ−ボネ−ト(粘度平均分子量3万4千)
6.5部をクロロベンゼン6部に溶解し、これを電荷発
生層の上に乾燥後の膜厚が20μmとなるようにマイヤ
−バ−で塗布して電荷輸送層を形成し、電子写真感光体
を作成し、これを感光体1とする。
EXAMPLES Example 1 A 0.3 μm undercoat layer made of vinyl chloride-maleic anhydride-vinyl acetate copolymer was formed on an aluminum plate. Next, 3 parts (by weight, the same applies hereinafter) of crystalline oxytitanium phthalocyanine obtained in Production Example 1 and 2 parts of polyvinyl butyral were added to 100 parts of cyclohexanone and dispersed in a sand mill for 2.5 hours. This was diluted by adding 100 parts of methyl ethyl ketone, and this dispersion was used to form a charge generation layer having a thickness of 0.3 μm after drying on the undercoat layer. Next, 5 parts of the carbonyl compound of Compound Example 1 and bisphenol Z type polycarbonate (viscosity average molecular weight 34,000)
6.5 parts of chlorobenzene was dissolved in 6 parts of chlorobenzene, and this was coated on the charge generation layer with a Meyer bar to a dry film thickness of 20 μm to form a charge transport layer. This is called photoreceptor 1.

【0038】比較例1 比較製造例1で得られたα型オキシチタニウムフタロシ
アニンを用いた他は実施例1と同様にして電子写真感光
体を作成し、これを比較感光体1とする。
Comparative Example 1 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the α-type oxytitanium phthalocyanine obtained in Comparative Production Example 1 was used, and this was designated as Comparative Photoreceptor 1.

【0039】比較例2 比較製造例2で得られたA型オキシチタニウムフタロシ
アニンを用いた他は実施例1と同様にして電子写真感光
体を作成し、これを比較感光体2とする。
Comparative Example 2 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the A-type oxytitanium phthalocyanine obtained in Comparative Production Example 2 was used, and this was designated as Comparative Photoreceptor 2.

【0040】比較例3 比較製造例3で得られた特開昭64−17066号公報
開示と同じ結晶形のオキシチタニウムフタロシアニンを
用いた他は実施例1と同様にして電子写真感光体を作成
し、これを比較感光体3とする。
Comparative Example 3 An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the same crystal form of oxytitanium phthalocyanine as disclosed in JP-A-64-17066 obtained in Comparative Production Example 3 was used. , this is referred to as comparative photoreceptor 3.

【0041】感光体1、比較感光体1、2および3の各
電子写真感光体をレ−ザ−ビ−ムプリンタ−(商品名L
BP−SX、キヤノン(株)製)の改造機のシリンダ−
に貼り付けて、暗部電位が−700Vになるように帯電
設定し、これに波長802nmのレ−ザ−光を照射して
−700Vの電位を−100Vまで下げるのに必要な光
量を測定し感度とした。さらに20μJ/cm2の光量
を照射した場合の電位を残留電位Vrとして測定した。 実施例1 感度:0.40μJ/cm2  、Vr:−20V比較
例1 感度:0.90μJ/cm2  、Vr:−41V比較
例2 感度:0.86μJ/cm2  、Vr:−45V比較
例3 感度:0.72μJ/cm2  、Vr:−40V
Each of the electrophotographic photoreceptors, Photoreceptor 1, Comparative Photoreceptors 1, 2, and 3, was printed using a laser beam printer (trade name: L).
BP-SX, cylinder of a modified machine manufactured by Canon Inc.
The sensitivity was determined by pasting the plate on the plate, setting the charge so that the dark potential was -700V, irradiating it with laser light with a wavelength of 802 nm, and measuring the amount of light required to lower the -700V potential to -100V. And so. Further, the potential when irradiated with a light amount of 20 μJ/cm 2 was measured as the residual potential Vr. Example 1 Sensitivity: 0.40 μJ/cm2, Vr: -20V Comparative Example 1 Sensitivity: 0.90 μJ/cm2, Vr: -41V Comparative Example 2 Sensitivity: 0.86 μJ/cm2, Vr: -45V Comparative Example 3 Sensitivity: 0.72 μJ/cm2, Vr: -40V

【0
042】また、電荷発生物質として製造例2および製造
例3で得られた結晶形のオキシチタニウムフタロシアニ
ンをそれぞれ用いて他は実施例1と同様にして電子写真
感光体を作成し、これを感光体2および感光体3とし、
実施例1と同様にして感度測定を行ったところ、感光体
1と同様の高感度特性が得られた。
0
[042] Further, an electrophotographic photoreceptor was prepared in the same manner as in Example 1 except for using the crystalline oxytitanium phthalocyanine obtained in Production Example 2 and Production Example 3 as a charge generating substance, and this was used as a photoreceptor. 2 and photoreceptor 3,
When sensitivity was measured in the same manner as in Example 1, high sensitivity characteristics similar to those of Photoreceptor 1 were obtained.

【0043】次に、感光体1、比較感光体1、2および
3について、湿度10%、気温5℃、湿度50%、気温
18℃、湿度80%、気温35℃のそれぞれの環境にお
いて、各感光体を暗部電位−700V、明部電位−10
0Vに設定した状態で連続3千枚の通紙耐久試験を行っ
て耐久後の暗部電位、明部電位の測定および画像の評価
を行った。感光体1はいずれの環境でも耐久後において
も初期と同等の良好な画像が得られたが、比較感光体1
、2および3はいずれの環境でも白地部分に地カブリを
起こしており、特に湿度80%、気温35℃においては
著しく、これは比較感光体3において顕著であった。 また、比較感光体1、2および3については地カブリを
除くために濃度調節レバ−により調節したところ、黒地
部分の濃度が不十分となった。
Next, photoconductor 1, comparison photoconductors 1, 2, and 3 were tested in the following environments: humidity 10%, temperature 5°C, humidity 50%, temperature 18°C, humidity 80%, and temperature 35°C. The photoreceptor has a dark potential of -700V and a light potential of -10V.
A durability test was carried out for 3,000 continuous sheets of paper under a setting of 0 V, and the dark area potential and light area potential were measured and the image was evaluated after the durability test. Photoconductor 1 produced images as good as the initial image in any environment and after durability, but comparative photoconductor 1
, 2 and 3 caused background fogging on the white background in any environment, especially when the humidity was 80% and the temperature was 35° C., and this was noticeable in Comparative Photoreceptor 3. Furthermore, when comparative photoreceptors 1, 2, and 3 were adjusted using the density adjustment lever to remove background fog, the density of the black background portion was insufficient.

【0044】第9図に感光体1について分光感度の最大
値を100とした場合の分光感度の分布を示す。このよ
うに、本発明の電子写真感光体は770〜810nm付
近の長波長領域において安定したこう感度特性を発現す
るものである。
FIG. 9 shows the distribution of spectral sensitivity of photoreceptor 1 when the maximum value of spectral sensitivity is 100. As described above, the electrophotographic photoreceptor of the present invention exhibits stable sensitivity characteristics in the long wavelength region around 770 to 810 nm.

【0045】実施例2〜10 製造例1で得たオキシチタニウムフタロシアニン結晶と
化合物例の数種を組み合わせ、他は実施例1と同様にし
て電子写真感光体を作成し、感光体2〜10とする。各
感光体を実施例1と同様にレ−ザ−ビ−ムプリンタ−(
商品名LBP−SX、キヤノン(株)製)の改造機のシ
リンダ−に貼り付けて、暗部電位が−700Vになるよ
うに帯電設定し、これに波長802nmのレ−ザ−光を
照射して−700Vの電位を−100Vまで下げるのに
必要な光量E△600を測定した。さらに20μJ/c
m2  の光量を照射した場合の電位Vrを測定した。 また、各感光体を暗部電位−700V、明部電位−20
0Vに設定し直した状態で連続5千枚の通紙耐久試験を
行って初期と5千枚耐久後の暗部電位と明部電位の変動
量ΔVDおよびΔVLを測定した。 実施例2[感光体2、化合物例2] E△600:0.45μJ/cm2  、ΔVD:−1
5V、ΔVL:+10V、Vr:−30V 実施例3[感光体3、化合物例3] E△600:0.46μJ/cm2  、ΔVD:−1
5V、ΔVL:+12V、Vr:−33V 実施例4[感光体4、化合物例5] E△600:0.49μJ/cm2  、ΔVD:−1
7V、ΔVL:12V、Vr:−31V 実施例5[感光体5、化合物例9] E△600:0.51μJ/cm2  、ΔVD:−1
8V、ΔVL:+8V、Vr:−35V 実施例6[感光体6、化合物例10] E△600:0.48μJ/cm2  、ΔVD:−2
1V、ΔVL:+10V、Vr:−35V 実施例7[感光体7、化合物例16] E△600:0.45μJ/cm2  、ΔVD:−2
0V、ΔVL:+15V、Vr:−40V 実施例8[感光体8、化合物例21] E△600:0.50μJ/cm2  、ΔVD:−1
5V、ΔVL:+10V、Vr:−45V 実施例9[感光体9、化合物例29] E△600:0.52μJ/cm2  、ΔVD:−1
6V、ΔVL:+12V、Vr:−37V 実施例10[感光体10、化合物例31]E△600:
0.48μJ/cm2  、ΔVD:−18V、ΔVL
:+18V、Vr:−36V
Examples 2 to 10 Electrophotographic photoreceptors were prepared in the same manner as in Example 1 except that the oxytitanium phthalocyanine crystal obtained in Production Example 1 and several of the compound examples were combined, and photoreceptors 2 to 10 and do. Each photoreceptor was printed using a laser beam printer (as in Example 1).
It was attached to the cylinder of a modified machine (product name: LBP-SX, manufactured by Canon Inc.), charged so that the dark area potential was -700V, and irradiated with laser light with a wavelength of 802 nm. The amount of light EΔ600 required to lower the potential of -700V to -100V was measured. Further 20μJ/c
The potential Vr was measured when a light amount of m2 was irradiated. In addition, each photoreceptor was set to a dark area potential of -700V and a bright area potential of -20V.
A durability test of 5,000 continuous sheets was conducted with the setting reset to 0 V, and the fluctuations ΔVD and ΔVL in the dark potential and bright potential were measured at the initial stage and after the 5,000-sheet durability test. Example 2 [Photoreceptor 2, Compound Example 2] E△600: 0.45 μJ/cm2, ΔVD: -1
5V, ΔVL: +10V, Vr: -30V Example 3 [Photoreceptor 3, Compound Example 3] E△600: 0.46 μJ/cm2, ΔVD: -1
5V, ΔVL: +12V, Vr: -33V Example 4 [Photoreceptor 4, Compound Example 5] E△600: 0.49 μJ/cm2, ΔVD: -1
7V, ΔVL: 12V, Vr: -31V Example 5 [Photoreceptor 5, Compound Example 9] E△600: 0.51 μJ/cm2, ΔVD: -1
8V, ΔVL: +8V, Vr: -35V Example 6 [Photoreceptor 6, Compound Example 10] E△600: 0.48 μJ/cm2, ΔVD: -2
1V, ΔVL: +10V, Vr: -35V Example 7 [Photoreceptor 7, Compound Example 16] E△600: 0.45 μJ/cm2, ΔVD: -2
0V, ΔVL: +15V, Vr: -40V Example 8 [Photoreceptor 8, Compound Example 21] E△600: 0.50 μJ/cm2, ΔVD: -1
5V, ΔVL: +10V, Vr: -45V Example 9 [Photoreceptor 9, Compound Example 29] E△600: 0.52 μJ/cm2, ΔVD: -1
6V, ΔVL: +12V, Vr: -37V Example 10 [Photoreceptor 10, Compound Example 31] E△600:
0.48 μJ/cm2, ΔVD: -18V, ΔVL
:+18V, Vr:-36V

【0046】比較例4〜21 比較製造例1〜3で製造したオキシチタニウムフタロシ
アニンと実施例2〜10で用いたスチリル化合物を組み
合わせて用いた他は実施例2〜10のそれぞれと同様に
して電子写真感光体を作成し、同様に評価した。 比較例4[比較感光体4、比較製造例1、化合物例2]
E△600:0.85μJ/cm2  、ΔVD:−3
8V、ΔVL:+40V、Vr:−76V 比較例5[比較感光体5、比較製造例2、化合物例2]
E△600:0.83μJ/cm2  、ΔVD:−4
0V、ΔVL:+35V、Vr:−75V 比較例6[比較感光体6、比較製造例3、化合物例2]
E△600:0.64μJ/cm2  、ΔVD:−4
2V、ΔVL:+36V、Vr:−70V 比較例7[比較感光体7、比較製造例1、化合物例5]
E△600:0.96μJ/cm2  、ΔVD:−3
8V、ΔVL:+41V、Vr:−80V 比較例8[比較感光体8、比較製造例2、化合物例5]
E△600:0.91μJ/cm2  、ΔVD:−4
5V、ΔVL:+38V、Vr:−81V 比較例9[比較感光体9、比較製造例3、化合物例5]
E△600:0.70μJ/cm2  、ΔVD:−4
0V、ΔVL:+40V、Vr:−78V 比較例10[比較感光体10、比較製造例1、化合物例
10] E△600:0.87μJ/cm2  、ΔVD:−4
2V、ΔVL:+35V、Vr:−80V 比較例11[比較感光体11、比較製造例2、化合物例
10] E△600:0.82μJ/cm2  、ΔVD:−3
9V、ΔVL:+32V、Vr:−83V 比較例12[比較感光体12、比較製造例3、化合物例
10] E△600:0.70μJ/cm2  、ΔVD:−4
1V、ΔVL:+36V、Vr:−78V 比較例13[比較感光体13、比較製造例1、化合物例
16] E△600:0.89μJ/cm2  、ΔVD:−5
1V、ΔVL:+45V、Vr:−93V 比較例14[比較感光体14、比較製造例2、化合物例
16] E△600:0.87μJ/cm2  、ΔVD:−4
6V、ΔVL:+51V、Vr:−89V 比較例15[比較感光体15、比較製造例3、化合物例
16] E△600:0.71μJ/cm2  、ΔVD:−4
7V、ΔVL:+42V、Vr:−82V 比較例16[比較感光体16、比較製造例1、化合物例
29] E△600:0.95μJ/cm2  、ΔVD:−4
0V、ΔVL:+43V、Vr:−73V 比較例17[比較感光体17、比較製造例2、化合物例
29] E△600:0.89μJ/cm2  、ΔVD:−3
5V、ΔVL:+45V、Vr:−71V 比較例18[比較感光体18、比較製造例3、化合物例
29] E△600:0.78μJ/cm2  、ΔVD:−3
6V、ΔVL:+42V、Vr:−81V 比較例19[比較感光体19、比較製造例1、化合物例
31] E△600:0.99μJ/cm2  、ΔVD:−4
1V、ΔVL:+50V、Vr:−84V 比較例20[比較感光体20、比較製造例2、化合物例
31] E△600:0.96μJ/cm2  、ΔVD:−3
8V、ΔVL:+39V、Vr:−76V 比較例21[比較感光体21、比較製造例3、化合物例
31] E△600:0.82μJ/cm2  、ΔVD:−4
5V、ΔVL:+43V、Vr:−78V
Comparative Examples 4 to 21 Electron production was carried out in the same manner as in Examples 2 to 10, except that the oxytitanium phthalocyanine produced in Comparative Production Examples 1 to 3 and the styryl compound used in Examples 2 to 10 were used in combination. A photographic photoreceptor was prepared and evaluated in the same manner. Comparative Example 4 [Comparative Photoreceptor 4, Comparative Production Example 1, Compound Example 2]
E△600: 0.85 μJ/cm2, ΔVD: -3
8V, ΔVL: +40V, Vr: -76V Comparative Example 5 [Comparative Photoreceptor 5, Comparative Production Example 2, Compound Example 2]
E△600: 0.83 μJ/cm2, ΔVD: -4
0V, ΔVL: +35V, Vr: -75V Comparative Example 6 [Comparative Photoreceptor 6, Comparative Production Example 3, Compound Example 2]
E△600: 0.64 μJ/cm2, ΔVD: -4
2V, ΔVL: +36V, Vr: -70V Comparative Example 7 [Comparative Photoreceptor 7, Comparative Production Example 1, Compound Example 5]
E△600: 0.96 μJ/cm2, ΔVD: -3
8V, ΔVL: +41V, Vr: -80V Comparative Example 8 [Comparative Photoreceptor 8, Comparative Production Example 2, Compound Example 5]
E△600: 0.91 μJ/cm2, ΔVD: -4
5V, ΔVL: +38V, Vr: -81V Comparative Example 9 [Comparative Photoreceptor 9, Comparative Production Example 3, Compound Example 5]
E△600: 0.70 μJ/cm2, ΔVD: -4
0V, ΔVL: +40V, Vr: -78V Comparative Example 10 [Comparative Photoreceptor 10, Comparative Production Example 1, Compound Example 10] E△600: 0.87 μJ/cm2, ΔVD: -4
2V, ΔVL: +35V, Vr: -80V Comparative Example 11 [Comparative Photoreceptor 11, Comparative Production Example 2, Compound Example 10] E△600: 0.82 μJ/cm2, ΔVD: -3
9V, ΔVL: +32V, Vr: -83V Comparative Example 12 [Comparative Photoreceptor 12, Comparative Production Example 3, Compound Example 10] E△600: 0.70 μJ/cm2, ΔVD: -4
1V, ΔVL: +36V, Vr: -78V Comparative Example 13 [Comparative Photoreceptor 13, Comparative Production Example 1, Compound Example 16] E△600: 0.89 μJ/cm2, ΔVD: -5
1V, ΔVL: +45V, Vr: -93V Comparative Example 14 [Comparative Photoreceptor 14, Comparative Production Example 2, Compound Example 16] E△600: 0.87 μJ/cm2, ΔVD: -4
6V, ΔVL: +51V, Vr: -89V Comparative Example 15 [Comparative Photoreceptor 15, Comparative Production Example 3, Compound Example 16] E△600: 0.71 μJ/cm2, ΔVD: -4
7V, ΔVL: +42V, Vr: -82V Comparative Example 16 [Comparative Photoreceptor 16, Comparative Production Example 1, Compound Example 29] E△600: 0.95 μJ/cm2, ΔVD: -4
0V, ΔVL: +43V, Vr: -73V Comparative Example 17 [Comparative Photoreceptor 17, Comparative Production Example 2, Compound Example 29] E△600: 0.89 μJ/cm2, ΔVD: -3
5V, ΔVL: +45V, Vr: -71V Comparative Example 18 [Comparative Photoreceptor 18, Comparative Production Example 3, Compound Example 29] E△600: 0.78 μJ/cm2, ΔVD: -3
6V, ΔVL: +42V, Vr: -81V Comparative Example 19 [Comparative Photoreceptor 19, Comparative Production Example 1, Compound Example 31] E△600: 0.99 μJ/cm2, ΔVD: -4
1V, ΔVL: +50V, Vr: -84V Comparative Example 20 [Comparative Photoreceptor 20, Comparative Production Example 2, Compound Example 31] E△600: 0.96 μJ/cm2, ΔVD: -3
8V, ΔVL: +39V, Vr: -76V Comparative Example 21 [Comparative Photoreceptor 21, Comparative Production Example 3, Compound Example 31] E△600: 0.82 μJ/cm2, ΔVD: -4
5V, ΔVL: +43V, Vr: -78V

【0047】比較例22〜27 実施例2においてカルボニル化合物に代えて表7に示す
化合物H−1、H−2、H−3、H−4、H−5、H−
6を電荷輸送材料として用いた他は、実施例2と同様に
して電子写真感光体を作成し、同様に評価した。 表7 比較例22[比較感光体22、電荷輸送物質H−1]E
△600:0.66μJ/cm2  、ΔVD:−35
V、ΔVL:+28V、Vr:−71V 比較例23[比較感光体23、電荷輸送物質H−2]E
△600:測定できず  、ΔVD:―、ΔVL:―、
Vr:−201V 比較例24[比較感光体24、電荷輸送物質H−3]E
△600:0.59μJ/cm2  、ΔVD:−25
V、ΔVL:+72V、Vr:−65V 比較例25[比較感光体25、電荷輸送物質H−4]E
△600:測定できず  、ΔVD:―、ΔVL:―、
Vr:−545V 比較例26[比較感光体26、電荷輸送物質H−5]E
△600:測定できず  、ΔVD:―、ΔVL:―、
Vr:−455V 比較例27[比較感光体27、電荷輸送物質H−6]E
△600:測定できず  、ΔVD:―、ΔVL:―、
Vr:−420V 以上の結果から本発明の電子写真感光体は感度、残留電
位および繰り返し特性において極めて優れていることが
分かる。
Comparative Examples 22 to 27 Compounds H-1, H-2, H-3, H-4, H-5, H- shown in Table 7 were used in place of the carbonyl compound in Example 2.
An electrophotographic photoreceptor was prepared in the same manner as in Example 2, except that No. 6 was used as the charge transport material, and evaluated in the same manner. Table 7 Comparative Example 22 [Comparative Photoreceptor 22, Charge Transport Material H-1] E
△600: 0.66 μJ/cm2, ΔVD: -35
V, ΔVL: +28V, Vr: -71V Comparative Example 23 [Comparative Photoreceptor 23, Charge Transport Material H-2] E
△600: Unable to measure, ΔVD: -, ΔVL: -,
Vr: -201V Comparative Example 24 [Comparative Photoreceptor 24, Charge Transport Material H-3] E
△600: 0.59 μJ/cm2, ΔVD: -25
V, ΔVL: +72V, Vr: -65V Comparative Example 25 [Comparative Photoreceptor 25, Charge Transport Material H-4] E
△600: Unable to measure, ΔVD: -, ΔVL: -,
Vr: -545V Comparative Example 26 [Comparative Photoreceptor 26, Charge Transport Material H-5] E
△600: Unable to measure, ΔVD: -, ΔVL: -,
Vr: -455V Comparative Example 27 [Comparative Photoreceptor 27, Charge Transport Material H-6] E
△600: Unable to measure, ΔVD: -, ΔVL: -,
Vr: -420V From the above results, it can be seen that the electrophotographic photoreceptor of the present invention is extremely excellent in sensitivity, residual potential, and repeatability.

【0048】実施例11 厚さ50μmのアルミニウムシ−ト基体上に実施例1と
同様の下引き層をバ−コ−トにより形成し、さらにこの
上に実施例1と同様の電荷輸送層を20μm厚に形成し
た。次に、ビスフェノ−ルZ型ポリカ−ボネ−ト5部を
シクロヘキサノン68部に溶解し、この溶液に製造例1
で得られたX線回折パタ−ンを示すオキシチタニウムフ
タロシアニン3部を混合し、サンドミルで1時間分散を
行った後、ビスフェノ−ルZ型ポリカ−ボネ−ト5部と
実施例1で用いた電荷輸送物質10部を溶解し、さらに
テトラヒドロフラン40部、ジクロロメタン40部を加
えて希釈して分散塗料を調製した。この塗料をスプレ−
コ−テイング法で電荷輸送層上に塗布、乾燥して6μm
厚の電荷発生層を形成し、電子写真感光体を作成、これ
を感光体11とする。
Example 11 An undercoat layer similar to that in Example 1 was formed by bar coating on an aluminum sheet substrate having a thickness of 50 μm, and a charge transport layer similar to that in Example 1 was further formed on this. It was formed to have a thickness of 20 μm. Next, 5 parts of bisphenol Z type polycarbonate was dissolved in 68 parts of cyclohexanone, and Production Example 1 was added to this solution.
After mixing 3 parts of oxytitanium phthalocyanine showing the X-ray diffraction pattern obtained in Example 1 and dispersing it in a sand mill for 1 hour, the mixture was mixed with 5 parts of bisphenol Z type polycarbonate used in Example 1. A dispersion paint was prepared by dissolving 10 parts of a charge transport substance and diluting the mixture by adding 40 parts of tetrahydrofuran and 40 parts of dichloromethane. Spray this paint
Apply on the charge transport layer using coating method and dry to 6μm.
A thick charge generation layer is formed to produce an electrophotographic photoreceptor, which is referred to as photoreceptor 11.

【0049】比較例28 電荷発生物質として比較製造例1で製造したα型オキシ
チタニウムフタロシアニンを用いた他は実施例11と同
様にして電子写真感光体を作成し、これを比較感光体2
8とする。
Comparative Example 28 An electrophotographic photoreceptor was prepared in the same manner as in Example 11 except that the α-type oxytitanium phthalocyanine produced in Comparative Production Example 1 was used as a charge generating substance, and this was used as Comparative Photoreceptor 2.
8.

【0050】比較例29 電荷発生物質として比較製造例2で製造したA型オキシ
チタニウムフタロシアニンを用いた他は実施例11と同
様にして電子写真感光体を作成し、これを比較感光体2
9とする。
Comparative Example 29 An electrophotographic photoreceptor was prepared in the same manner as in Example 11, except that the A-type oxytitanium phthalocyanine produced in Comparative Production Example 2 was used as the charge-generating substance, and this was used as Comparative Photoreceptor 2.
9.

【0051】比較例30 電荷発生物質として比較製造例3で製造した特開昭64
−17066号公報開示と同じ結晶形のオキシチタニウ
ムフタロシアニンを用いた他は実施例11と同様にして
電子写真感光体を作成し、これを比較感光体30とする
Comparative Example 30 JP-A-64 produced in Comparative Production Example 3 as a charge generating substance
An electrophotographic photoreceptor was prepared in the same manner as in Example 11, except that oxytitanium phthalocyanine having the same crystal form as disclosed in Japanese Patent No. 17066 was used, and this was designated as Comparative Photoreceptor 30.

【0052】感光体11、比較感光体28、29および
30の各感光体を静電試験装置(EPA−8100、川
口電機(株)製)を用いて評価した。評価は初めに正の
コロナ帯電により表面電位が+700Vとなるように設
定し、次にモノクロメ−タ−により分離した802nm
の単色光により露光して表面電位が+200Vまで下が
るときの光量を測定した。結果を示す。 感光体11  感度:0.54μJ/cm2比較感光体
28  感度:1.05μJ/cm2比較感光体29 
 感度:1.02μJ/cm2比較感光体30  感度
:0.92μJ/cm2
Photoreceptors 11, comparative photoreceptors 28, 29 and 30 were evaluated using an electrostatic tester (EPA-8100, manufactured by Kawaguchi Electric Co., Ltd.). In the evaluation, the surface potential was first set to +700V due to positive corona charging, and then 802 nm was separated using a monochromator.
The amount of light was measured when the surface potential decreased to +200V by exposing the sample to monochromatic light. Show the results. Photoconductor 11 Sensitivity: 0.54μJ/cm2 Comparison photoconductor 28 Sensitivity: 1.05μJ/cm2 Comparison photoconductor 29
Sensitivity: 1.02 μJ/cm2 Comparative photoreceptor 30 Sensitivity: 0.92 μJ/cm2

【0053】[0053]

【発明の効果】本発明の電子写真感光体は特定の結晶形
のオキシチタニウムフタロシアニンを電荷発生物質とし
、特定のカルボニル化合物を電荷輸送物質とする感光層
を有することにより(1)レ−ザ−ダイオ−ド発振波長
で高感度を有し、(2)電子写真プロセスにおいて安定
した画像特性を示し、(3)電位安定性に優れるという
顕著な効果を奏する。また、該電子写真感光体を備えた
電子写真装置並びにファクシミリにおいても同様な効果
を発揮する。
Effects of the Invention The electrophotographic photoreceptor of the present invention has a photosensitive layer containing a specific crystal form of oxytitanium phthalocyanine as a charge-generating substance and a specific carbonyl compound as a charge-transporting substance. It has the remarkable effects of having high sensitivity at the diode oscillation wavelength, (2) exhibiting stable image characteristics in the electrophotographic process, and (3) excellent potential stability. Furthermore, similar effects can be achieved in electrophotographic devices and facsimile machines equipped with the electrophotographic photoreceptor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】製造例1で得られた結晶形のオキシチタニウム
フタロシアニンのX線回折図である。
FIG. 1 is an X-ray diffraction diagram of crystalline oxytitanium phthalocyanine obtained in Production Example 1.

【図2】製造例2で得られた結晶形のオキシチタニウム
フタロシアニンのX線回折図である。
FIG. 2 is an X-ray diffraction diagram of crystalline oxytitanium phthalocyanine obtained in Production Example 2.

【図3】製造例3で得られた結晶形のオキシチタニウム
フタロシアニンのX線回折図である。
FIG. 3 is an X-ray diffraction diagram of crystalline oxytitanium phthalocyanine obtained in Production Example 3.

【図4】比較製造例1で得られたオキシチタニウムフタ
ロシアニンのX線回折図である。
FIG. 4 is an X-ray diffraction diagram of oxytitanium phthalocyanine obtained in Comparative Production Example 1.

【図5】比較製造例2で得られたオキシチタニウムフタ
ロシアニンのX線回折図である。
FIG. 5 is an X-ray diffraction diagram of oxytitanium phthalocyanine obtained in Comparative Production Example 2.

【図6】比較製造例3で得られたオキシチタニウムフタ
ロシアニンのX線回折図である。
FIG. 6 is an X-ray diffraction diagram of oxytitanium phthalocyanine obtained in Comparative Production Example 3.

【図7】製造例1で得られた結晶形のオキシチタニウム
フタロシアニンの赤外吸収スペクトル図(KBr法)で
ある。
FIG. 7 is an infrared absorption spectrum diagram (KBr method) of crystalline oxytitanium phthalocyanine obtained in Production Example 1.

【図8】製造例1で得られた結晶形のオキシチタニウム
フタロシアニンの紫外吸収スペクトル図である。
FIG. 8 is an ultraviolet absorption spectrum diagram of crystalline oxytitanium phthalocyanine obtained in Production Example 1.

【図9】実施例1で作成した電子写真感光体(感光体1
)の分光感度分布図である。
FIG. 9: Electrophotographic photoreceptor produced in Example 1 (Photoreceptor 1
) is a spectral sensitivity distribution diagram.

【図10】本発明の電子写真感光体を備えた一般的な転
写式電子写真装置の概略構成図である。
FIG. 10 is a schematic configuration diagram of a general transfer type electrophotographic apparatus equipped with the electrophotographic photoreceptor of the present invention.

【図11】本発明の電子写真感光体を備えた電子写真装
置をプリンタ−として使用したファクシミリのブロック
図である。
FIG. 11 is a block diagram of a facsimile machine using an electrophotographic apparatus equipped with the electrophotographic photoreceptor of the present invention as a printer.

【符号の説明】[Explanation of symbols]

1    像担持体としてのドラム型感光体(本発明の
電子写真感光体) 1a  軸 2    コロナ帯電装置 3    露光部 4    現像手段 5    転写手段 6    クリ−ニング手段 7    前露光手段 8    像定着手段 L  光像露光 P  像転写を受けた転写材 9    画像読取部 10  コントロ−ラ− 11  受信回路 12  送信回路 13  電話 14  回線 15  画像メモリ 16  CPU 17  プリンタコントロ−ラ 18  プリンタ−
1 Drum-type photoreceptor as an image carrier (electrophotographic photoreceptor of the present invention) 1a Shaft 2 Corona charging device 3 Exposure section 4 Developing means 5 Transfer means 6 Cleaning means 7 Pre-exposure means 8 Image fixing means L Optical image Exposure P Transfer material 9 that has undergone image transfer Image reading unit 10 Controller 11 Receiving circuit 12 Transmitting circuit 13 Telephone 14 Line 15 Image memory 16 CPU 17 Printer controller 18 Printer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  CuKαのX線回折におけるブラッグ
角2θ±0.2°が9.0°、14.2°、23.9°
および27.1°に強いピ−クを有する結晶形のオキシ
チタニウムフタロシアニンを含有し、かつ、下記一般式
(1)で示すカルボニル化合物の少なくとも1種を含有
することを特徴とする電子写真感光体。 一般式(1) 化1 式中、Ar1、Ar2、Ar3およびAr4は置換基を
有してもよいアリ−ル基を示しR1およびR2は水素原
子またはアルキル基を示す。
[Claim 1] Bragg angles 2θ±0.2° in X-ray diffraction of CuKα are 9.0°, 14.2°, and 23.9°.
and an electrophotographic photoreceptor comprising crystalline oxytitanium phthalocyanine having a strong peak at 27.1°, and at least one carbonyl compound represented by the following general formula (1). . General formula (1) Chemical formula 1 In the formula, Ar1, Ar2, Ar3 and Ar4 represent an aryl group which may have a substituent, and R1 and R2 represent a hydrogen atom or an alkyl group.
【請求項2】  請求項1記載の電子写真感光体を備え
た電子写真装置。
2. An electrophotographic apparatus comprising the electrophotographic photoreceptor according to claim 1.
【請求項3】  請求項1記載の電子写真感光体を備え
た電子写真装置およびリモ−ト端末からの画像情報を受
信する受信手段を有するファクシミリ。
3. A facsimile machine comprising an electrophotographic apparatus comprising the electrophotographic photoreceptor according to claim 1 and a receiving means for receiving image information from a remote terminal.
JP3027774A 1991-01-30 1991-01-30 Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body Pending JPH04254862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027774A JPH04254862A (en) 1991-01-30 1991-01-30 Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027774A JPH04254862A (en) 1991-01-30 1991-01-30 Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body

Publications (1)

Publication Number Publication Date
JPH04254862A true JPH04254862A (en) 1992-09-10

Family

ID=12230324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027774A Pending JPH04254862A (en) 1991-01-30 1991-01-30 Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body

Country Status (1)

Country Link
JP (1) JPH04254862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081178A1 (en) * 2011-11-30 2013-06-06 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and gallium phthalocyanine crystal
JP2013137523A (en) * 2011-11-30 2013-07-11 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2014123104A (en) * 2012-11-20 2014-07-03 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081178A1 (en) * 2011-11-30 2013-06-06 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and gallium phthalocyanine crystal
JP2013137515A (en) * 2011-11-30 2013-07-11 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device, and gallium phthalocyanine crystal
JP2013137523A (en) * 2011-11-30 2013-07-11 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device
US9459542B2 (en) 2011-11-30 2016-10-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and gallium phthalocyanine crystal
JP2014123104A (en) * 2012-11-20 2014-07-03 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
JP2502404B2 (en) Oxytitanium phthalocyanine, method for producing the same, electrophotographic photosensitive member using the same, apparatus unit having the electrophotographic photosensitive member, and electrophotographic apparatus
US5194354A (en) Low crystalline oxytitanium phthalocyanine, process for producing crystalline oxytitanium phthalocyanines using the same, oxytitanium phthalocyanine of a novel crystal form and electrophotographic photosensitive member using the same
US5298353A (en) Electrophotographic photosensitive member
JPH0598181A (en) New crystal of chlorogallium phthalocyanine, photoconductive material composed of the same new crystal and electrophotographic photoreceptor using the same
JPH08209023A (en) Titaniloxyphthalocyanine crystal, its production and photosensitizer for electrophotography
US5227271A (en) Electrophotographic photosensitive member
US5593805A (en) Oxytitanium phthalocyanine, process for producing same and electrophotographic photosensitive member using same
JP2879369B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JP2879370B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JPH04254862A (en) Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body
JP2841242B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JPH04253065A (en) Electrophotographic sensitive body, electrophotographic apparatus and facsimile using same
JP3810042B2 (en) Phthalocyanine compound, method for producing the compound, and electrophotographic photoreceptor using the compound
JP2931070B2 (en) Novel crystal form of oxytitanium phthalocyanine and electrophotographic photoreceptor using the same
JP2814017B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JPH04257866A (en) Electrophotographic sensitive body and electrophotographic device and facsimile equipped with same
JPH04182655A (en) Electrophotographic sensitive body, electrophotographic device fitted with same sensitive body and facsimile
JPH04257867A (en) Electrophotographic sensitive body and electrophotographic device and facsimile equipped with same
JP2004002874A (en) Titanyloxyphthalocyanine crystal, its preparation method and electrophotographic photoreceptor
JPH04182654A (en) Electrophotographic sensitive body, electrophotographic device fitted with same sensitive body and facsimile
JP2857486B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus
JPH04318557A (en) Electrophotographic sensitive body
JP3119380B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus and facsimile using the same
JPH04182656A (en) Electrophotographic sensitive body, electrophotographic device with same sensitive body and facsimile
JP2872795B2 (en) Novel crystal form of oxytitanium phthalocyanine and electrophotographic photoreceptor using the same