JPH04254786A - Laser range finder - Google Patents

Laser range finder

Info

Publication number
JPH04254786A
JPH04254786A JP1519491A JP1519491A JPH04254786A JP H04254786 A JPH04254786 A JP H04254786A JP 1519491 A JP1519491 A JP 1519491A JP 1519491 A JP1519491 A JP 1519491A JP H04254786 A JPH04254786 A JP H04254786A
Authority
JP
Japan
Prior art keywords
laser
solid
pulse
oscillation
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1519491A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Hideo Nagai
秀男 永井
Kazunari Ota
一成 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1519491A priority Critical patent/JPH04254786A/en
Publication of JPH04254786A publication Critical patent/JPH04254786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To reduce the thermal load to a laser medium and to perform high repeating operation by exciting the solid laser medium of a laser oscillator by semiconductor laser. CONSTITUTION:An AlGaAs type semiconductor laser 1 is subjected to pulse oscillation as an exciting light source and a YAG rod 3 doped with erbium (Er) is irradiated with laser beam in the axial direction thereof through a SELFOC lens 2. Then, by closing an AO(acousto-optical)-Q switch element 4 at the terminal of a pulse, the pulse is converted to excited laser beam to obtain infrared laser beam of high peak output. Since the oscillation spectrum width of the semiconductor laser 1 is several nm or less, exciting beam is entirely absorbed in a solid laser medium to contribute to laser oscillation and the thermal load to the laser medium is reduced and high repeating operation of several 100Hz becomes possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車,船舶,航空機
等に搭載したり、工事現場での監視や測量等に用いるレ
ーザ測距装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser distance measuring device that is mounted on automobiles, ships, aircraft, etc., and used for monitoring, surveying, etc. at construction sites.

【0002】0002

【従来の技術】レーザ光線を用いる測距法は、長距離を
精度良く測定する方法として優れており、自動車のナビ
ゲーションや船舶,航空機の監視、工事現場での測量等
に広く応用できるものと期待される。
[Prior Art] Distance measurement using laser beams is an excellent method for measuring long distances with high precision, and is expected to be widely applied to car navigation, monitoring of ships and aircraft, surveying at construction sites, etc. be done.

【0003】レーザ光線を測距に用いる場合に留意すべ
き点は、眼に対する安全性であるが、波長1.4μm以
上のレーザ光は眼の水晶体で完全に吸収され、網膜に達
しないので安全である。数百mから数kmの距離を測定
するのに必要なレーザ出力は数kWから数十kWになる
ので、波長1.4μm以上でこのような高出力パルスレ
ーザ光を得る方法として、固体レーザのQスイッチ発振
が用いられてきた。
[0003] When using laser beams for distance measurement, it is important to keep in mind safety for the eyes. Laser beams with a wavelength of 1.4 μm or more are completely absorbed by the lens of the eye and do not reach the retina, so they are not safe. It is. Since the laser power required to measure distances from several hundred meters to several kilometers ranges from several kW to several tens of kW, solid-state lasers are the best way to obtain such high-power pulsed laser light at a wavelength of 1.4 μm or more. Q-switched oscillation has been used.

【0004】図3に従来のレーザ測距装置のレーザ発振
器の構成図、図4にレーザ測距装置のシステムのブロッ
ク図を示す。エルビウム(Er)原子をドープしたガラ
スは、波長1.54μmのレーザ光を発振するレーザ媒
質として用いられる。ガラスロッド8はフラッシュラン
プ7で励起され、高ピーク出力を得るために共振器内部
にQスイッチ素子10が挿入されている。レーザ発振器
より出力されるパルス幅30ns,エネルギー10mJ
のパルスレーザ光は、ビームエキスパンダ18で1mr
ad以下のビーム広がり角になり、目標に照射される。 目標で散乱されたレーザ光は、受光光学系19により受
光素子17に導かれる。光電変換された微弱信号は増幅
され、計数部で信号処理されて、レーザ光が発射されて
から戻ってくるまでの時間を計測し、距離を表示する。
FIG. 3 shows a configuration diagram of a laser oscillator of a conventional laser range finder, and FIG. 4 shows a block diagram of a system of the laser range finder. Glass doped with erbium (Er) atoms is used as a laser medium that oscillates laser light with a wavelength of 1.54 μm. The glass rod 8 is excited by a flash lamp 7, and a Q-switch element 10 is inserted inside the resonator to obtain a high peak output. Pulse width 30ns and energy 10mJ output from laser oscillator
The pulsed laser beam is 1 mr with the beam expander 18.
The beam spread angle is less than ad, and the target is irradiated. The laser beam scattered by the target is guided to the light receiving element 17 by the light receiving optical system 19. The photoelectrically converted weak signal is amplified and processed by a counting section to measure the time from when the laser beam is emitted until it returns, and to display the distance.

【0005】[0005]

【発明が解決しようとする課題】従来のレーザ測距装置
では、レーザ発振器にフラッシュランプ励起の固体レー
ザを用いているが、ランプ励起では、レーザ媒質の励起
スペクトル帯以外のスペクトルを多く含んでいるため、
レーザ媒質への熱負荷が大きくなって高繰り返し動作が
困難になる。高繰り返し動作ができないと、自動車や航
空機等の高速で動く装置に搭載して、そのナビゲーショ
ンに用いることができなくなる。また、ランプは一般に
寿命が短いため、数千〜数万ショットの発光で交換しな
くてはならない。
[Problems to be Solved by the Invention] Conventional laser ranging devices use a flash lamp-excited solid-state laser as a laser oscillator, but lamp excitation includes many spectra other than the excitation spectral band of the laser medium. For,
The thermal load on the laser medium increases, making it difficult to perform high repetition operations. If high-repetition operation is not possible, it will not be possible to install it in high-speed moving devices such as automobiles and aircraft and use it for navigation. Additionally, lamps generally have a short lifespan, and must be replaced after thousands to tens of thousands of shots.

【0006】[0006]

【課題を解決するための手段】本発明の測距装置では、
レーザ発振器の固体レーザ媒質の励起源に半導体レーザ
を用いる。
[Means for Solving the Problems] In the distance measuring device of the present invention,
A semiconductor laser is used as the excitation source for the solid-state laser medium of the laser oscillator.

【0007】[0007]

【作用】半導体レーザの発振スペクトル幅は数nm以下
なので、固体レーザ媒質の吸収スペクトル幅に含まれる
。 そのため、励起光はすべて固体レーザ媒質に吸収され、
レーザ発振に寄与するので、レーザ媒質への熱負荷は軽
減され、高繰り返し動作(数百Hz)が可能となる。
[Operation] Since the oscillation spectrum width of a semiconductor laser is several nanometers or less, it is included in the absorption spectrum width of the solid-state laser medium. Therefore, all the excitation light is absorbed by the solid laser medium,
Since it contributes to laser oscillation, the thermal load on the laser medium is reduced and high repetition operation (several hundred Hz) is possible.

【0008】また、半導体レーザの寿命は長く、連続動
作で数千〜数万時間あるので、レーザ発振器の信頼性は
大幅に向上する。
Furthermore, since semiconductor lasers have a long lifespan, lasting several thousand to tens of thousands of hours in continuous operation, the reliability of the laser oscillator is greatly improved.

【0009】[0009]

【実施例】図1に本発明のレーザ測距装置のレーザ発振
器の構成図を示す。ErをドープしたYAGロッド3を
レーザ媒質として用い、軸方向から半導体レーザ光を照
射して励起している。ErドープYAGロッドの吸収ス
ペクトル特性を図2に示す。波長0.82μmと0.9
8μmに吸収のピークがあることがわかる。0.82μ
mの波長帯にはAlGaAs系半導体レーザを用いるこ
とができる。またInGaAs系半導体レーザで、0.
98μmの波長帯に合わせて励起することも可能である
。Qスイッチには音響光学(AO)素子4を用いている
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a configuration diagram of a laser oscillator of a laser distance measuring device according to the present invention. A YAG rod 3 doped with Er is used as a laser medium, and is excited by irradiating semiconductor laser light from the axial direction. Figure 2 shows the absorption spectrum characteristics of the Er-doped YAG rod. Wavelength 0.82μm and 0.9
It can be seen that there is an absorption peak at 8 μm. 0.82μ
An AlGaAs semiconductor laser can be used in the wavelength band m. In addition, an InGaAs semiconductor laser with 0.
It is also possible to excite in accordance with the 98 μm wavelength band. An acousto-optic (AO) element 4 is used for the Q switch.

【0010】半導体レーザ1に発振波長0.82μmの
AlGaAsレーザを用いて、出力1W,パルス幅0.
5msのパルス発振を行わせ、パルスの終端でQスイッ
チ4を閉じることにより、ピーク出力10kW,パルス
幅10nsで波長1.54μmのレーザ光を取り出すこ
とができた。また、パルスの繰り返しを100Hzまで
上げても出力の低下は起こらず、高繰り返し動作を行わ
せることができた。
An AlGaAs laser with an oscillation wavelength of 0.82 μm is used as the semiconductor laser 1, and the output is 1 W and the pulse width is 0.8 μm.
By performing pulse oscillation for 5 ms and closing the Q switch 4 at the end of the pulse, it was possible to extract a laser beam with a wavelength of 1.54 μm with a peak output of 10 kW and a pulse width of 10 ns. Furthermore, even when the pulse repetition rate was increased to 100 Hz, no decrease in output occurred, and high repetition operation could be performed.

【0011】このレーザ発振器を用いて、図4に示すシ
ステムで測距を行い、測距距離500m,精度±3m,
測定回数100回/秒の性能を得た。また、半導体レー
ザは電圧2V,電流1.5Aで動作するため、電池駆動
の携帯型測距装置も容易に実現することができる。
Using this laser oscillator, distance measurement was performed using the system shown in FIG. 4, and the distance measurement was 500 m, the accuracy was ±3 m,
A performance of 100 measurements/second was obtained. Further, since the semiconductor laser operates with a voltage of 2V and a current of 1.5A, a battery-powered portable distance measuring device can be easily realized.

【0012】0012

【発明の効果】本発明のレーザ測距装置は、小型,低消
費電力,高繰り返し測定可能で堅牢,長寿命等の多くの
特徴を有しているため、自動車や航空機等の移動体に搭
載できる測距装置として、また現場での監視等に用いる
携帯型の測距機として大なる効果を有する。
[Effects of the Invention] The laser distance measuring device of the present invention has many features such as small size, low power consumption, high repeatability of measurement, robustness, and long life, so it can be installed in moving objects such as automobiles and airplanes. It has great effects as a portable range finder used for on-site monitoring, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のレーザ測距装置のレーザ発振器の構成
FIG. 1 is a configuration diagram of a laser oscillator of a laser ranging device of the present invention.

【図2】ErドープYAGレーザ媒質の吸収スペクトル
を示す図
[Figure 2] Diagram showing the absorption spectrum of Er-doped YAG laser medium

【図3】従来のレーザ測距装置のレーザ発振器の構成図
[Figure 3] Configuration diagram of a laser oscillator of a conventional laser distance measuring device

【図4】レーザ測距装置のシステムのブロック図[Figure 4] Block diagram of the system of the laser ranging device

【符号の説明】[Explanation of symbols]

1  半導体レーザ 2  セルフォックレンズ 3  ErドープYAGロッド 4  AO・Qスイッチ素子 5  出力ミラー 6  リアミラー 7  フラッシュランプ 8  Erドープガラスロッド 9  リフレクター 10  Qスイッチ素子 11  出力ミラー 12  表示器 13  制御部 14  計数部 15  レーザ発振器 16  増幅器 17  受光素子 18  ビームエキスパンダ 19  受光光学系 1 Semiconductor laser 2 Selfoc lens 3 Er-doped YAG rod 4 AO/Q switch element 5 Output mirror 6 Rear mirror 7 Flash lamp 8 Er-doped glass rod 9 Reflector 10 Q switch element 11 Output mirror 12 Indicator 13 Control section 14 Counting part 15 Laser oscillator 16 Amplifier 17 Photo receiving element 18 Beam expander 19 Light receiving optical system

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体レーザを励起光源とし、波長が1.
4μm以上100μm以下のレーザ光を発振する固体レ
ーザを用いていることを特徴とするレーザ測距装置。
Claim 1: A semiconductor laser is used as an excitation light source, and the wavelength is 1.
A laser ranging device characterized in that it uses a solid-state laser that oscillates a laser beam of 4 μm or more and 100 μm or less.
【請求項2】固体レーザをパルス動作させていることを
特徴とする、請求項1記載のレーザ測距装置。
2. The laser distance measuring device according to claim 1, wherein the solid-state laser is operated in pulses.
【請求項3】固体レーザのパルス動作にQスイッチ素子
を共振器内に挿入していることを特徴とした、請求項1
記載のレーザ測距装置。
Claim 3: Claim 1, characterized in that a Q-switch element is inserted into the resonator for pulse operation of the solid-state laser.
The laser ranging device described.
【請求項4】固体レーザがエルビウム(Er)原子をド
ープしたレーザ媒質を用いていることを特徴とした、請
求項1記載のレーザ測距装置。
4. The laser distance measuring device according to claim 1, wherein the solid-state laser uses a laser medium doped with erbium (Er) atoms.
JP1519491A 1991-02-06 1991-02-06 Laser range finder Pending JPH04254786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1519491A JPH04254786A (en) 1991-02-06 1991-02-06 Laser range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1519491A JPH04254786A (en) 1991-02-06 1991-02-06 Laser range finder

Publications (1)

Publication Number Publication Date
JPH04254786A true JPH04254786A (en) 1992-09-10

Family

ID=11882050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1519491A Pending JPH04254786A (en) 1991-02-06 1991-02-06 Laser range finder

Country Status (1)

Country Link
JP (1) JPH04254786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082858A (en) * 1996-07-15 1998-03-31 Hiromasa Ito Optical range finder
KR100686620B1 (en) * 2006-06-12 2007-02-26 권경해 Anchor encased in frame embedded in structure of house for convenience replacement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082858A (en) * 1996-07-15 1998-03-31 Hiromasa Ito Optical range finder
KR100686620B1 (en) * 2006-06-12 2007-02-26 권경해 Anchor encased in frame embedded in structure of house for convenience replacement

Similar Documents

Publication Publication Date Title
JP2575324B2 (en) Optical fiber type temperature distribution measuring device
JP3211029B2 (en) Look-ahead wind shear detector with filtered Rayleigh or aerosol scattered light
US7755745B2 (en) Coherent doppler lidar
US20120262712A1 (en) Laser induced breakdown spectroscopy
Kranitzky et al. A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation
US5528611A (en) Repetitively Q-switched laser pumped by laer diodes and Q-switched with an intracavity variable speed moving aperture
US4355893A (en) Eye-safe laser cloud height rangefinder
US5042040A (en) Amplitude noise reduction for optically pumped modelocked lasers
US4268801A (en) Mode-locked laser using a saturable absorber in a cavity
JPH04254786A (en) Laser range finder
US10281391B2 (en) Spectrally pure short-pulse laser
McIntyre et al. Linewidth-determining processes in distributed feedback dye lasers
Flamant et al. Frequency locking by injection in dye lasers: Analysis of the CW and delta pulse regimes
Dawson et al. Femtosecond pulse generation in the red/deep red spectral region
Evans et al. A high-intensity narrow bandwidth pulsed submillimeter laser for plasma diagnostics
Stultz et al. Diode-pumped Er: Yb: glass mini-transmitter
JPH05288681A (en) Apparatus for coherent anti-stokes' raman scattering spectroscopy
Laermer et al. Generation of femtosecond UV pulses by intracavity frequency doubling in a modelocked dye laser
Burdukova et al. Mode Locking of Dye Laser Pumped by Current-Modulated Green Laser Diodes
JPH05102618A (en) Short pulse laser generating device
JPH04315086A (en) Distance meter for car
Panchenko et al. KrF laser system with a wide range of wavelength tuning
Uchino et al. Shock-wave measurements of solids using the long-pulsed laser
Aleksandrov et al. Stimulated Raman and Brillouin scattering in selective resonators
Fève et al. Triggering passively Q-switched microlasers