JPH04253335A - Method and device for forming insulating film - Google Patents

Method and device for forming insulating film

Info

Publication number
JPH04253335A
JPH04253335A JP2524191A JP2524191A JPH04253335A JP H04253335 A JPH04253335 A JP H04253335A JP 2524191 A JP2524191 A JP 2524191A JP 2524191 A JP2524191 A JP 2524191A JP H04253335 A JPH04253335 A JP H04253335A
Authority
JP
Japan
Prior art keywords
cvd method
film formation
plasma cvd
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2524191A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Sato
伸良 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2524191A priority Critical patent/JPH04253335A/en
Publication of JPH04253335A publication Critical patent/JPH04253335A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a compact insulating film having an excellent water resistant and step coverage by alternately performing film formation by a normal- pressure CVD method and a plasma CVD method and using the plasma CVD method in the final stage of the film formation. CONSTITUTION:In order to use a plasma CVD method for film formation, a lower electrode 3 is set in a reaction chamber 1 and, in order to use a normal- pressure CVD method for film formation, the electrode 3 is housed in a housing chamber 7. At the time of using the normal-pressure CVD method, numerous reactive gas blowing holes 8 appear on the section exposed after the electrode 3 is moved and constitute a route separately from the reactive gas route (introducing tube 4) used for the plasma CVD device. After film formation is carried out in the plasma CVD device, film formation is performed in the normal- pressure CVD device by moving the electrode 3 into the chamber 7. Then the film formation is made in the plasma CVD device by returning the electrode 3 into the chamber 1. Thus an insulating film is formed. The final film formation is performed by the plasma CVD method.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、SiO2膜、PSG
 膜又はBPSG膜などの絶縁膜の形成方法に関する。 【0002】 【従来の技術】半導体装置の配線間の絶縁や素子の保護
及び安定化つまりパッシベーション等に寄与する絶縁膜
は、CVD法を利用して形成するのが通例である。CV
D法には主に常圧CVD法及びプラズマCVD法があり
、常圧CVD法は反応ガスを熱によって分解、反応させ
て絶縁膜を形成するもので、得られる膜の平坦度は高い
が、多孔質であるため吸湿性に富む不利がある。一方プ
ラズマCVD法はプラズマを利用して反応ガスを分解、
反応させて絶縁膜を形成するもので、得られる膜は緻密
で耐水性は高いが、段差での平坦度が低い、すなわち段
差被覆性が劣る不利がある。 【0003】 【発明が解決しようとする課題】そこでこの発明は、常
圧CVD法及びプラズマCVD法の利点を生かすことに
よって、両者の弱点を補い合うことのできる新規な絶縁
膜の形成方法について提案することを目的とする。 【0004】 【課題を解決するための手段】発明者らは、上記の目的
を充足し得る方途について研究したところ、常圧CVD
法による成膜とプラズマCVD法による成膜を繰返して
積層膜とすることで、膜質が良好でかつ平坦度の高い、
特に段差被覆性に優れた絶縁膜が得られることを見出し
、この発明を完成するに到った。すなわちこの発明は、
半導体基体の表面又は金属配線上に絶縁膜を形成するに
当たり、同一反応室内において、常圧CVD法による成
膜とプラズマCVD法による成膜とを交互にかつプラズ
マCVD法で終了する組合わせで行うことを特徴とする
絶縁膜の形成方法である。 【0005】さて図1にこの発明に使用するCVD装置
を示す。図中1は反応室、2は上電極、3は下電極、4
は反応ガスの導入管、5は上電極2に例えばメカニカル
チャックで取付けた、半導体基体となるウェハ、6は上
電極2を介してウェハ5を加熱するヒータ、そして7は
反応室1に付帯させた収納室で、この収納室7は、図2
に示すように、下電極3を収納可能の構造になる。すな
わち反応室1内に下電極3を配置した図1の状態はプラ
ズマCVD法に適合する一方、収納室7内に下電極3を
収納した図2の状態は常圧CVD法に適合する兼用型の
装置であり、図2の状態(以下常圧CVD装置と示す)
では下電極3の移動後に露出する部分に反応ガスの噴射
孔8が多数現れ、図1の状態(以下プラズマCVD装置
と示す)での反応ガス経路(導入管4)とは別の経路を
構成する。また図中9は排気ダクトである。なお下電極
3は例えば図3に示すように、反応室1と収納室7との
境界中心に回転軸10を配置したアーム11に固定し、
このアーム11の回動によって下電極3を反応室1から
収納室7、またその逆方向に移動し、下電極3の反応室
1に対する出入りを達成する。なお、下電極3が通過す
る、反応室1と収納室7との連通口12にはシャッター
等を設けて気密を保つようにする。 【0006】この発明においては、例えば上記した兼用
型のCVD装置を用いて同一反応室内でプラズマCVD
法及び常圧CVD法を実施し、絶縁膜を積層して形成す
る。すなわち、まず図1のプラズマCVD装置にて成膜
を行い、次いで下電極3を収納室7内に移動した図2の
常圧CVD装置にて成膜を行い、さらに下電極3を反応
室1内に戻した図1のプラズマCVD装置にて成膜を行
うことで絶縁膜を形成する。  ここで絶縁膜の形成は
、プラズマCVD装置で被成した層が表面となること、
つまりプラズマCVD法による成膜を最終工程とするこ
とが好ましい。 【0007】 【作用】この発明に従って得られる絶縁膜は、常圧CV
D法による成膜とプラズマCVD法による成膜とを交互
に繰返し形成するため、プラズマCVD法で得られる膜
の特性すなわち緻密で耐水性に優れた性質と、常圧CV
D法で得られる膜の特性すなわち段差被覆性に優れた性
質とを併せ持たすことが可能になる。すなわちプラズマ
CVD法で得られる膜の短所である低平坦度、特に低い
段差被覆性は、この膜を段差被覆性に優れた常圧CVD
法による膜の上に被成すること、換言すると常圧CVD
法による膜を絶縁膜の表面層下に少なくとも1層は形成
することで解消でき、また常圧CVD法で得られるポー
ラスな膜をプラズマCVD法による緻密な膜で覆う、望
ましくは挟むことで吸湿を防止し、優れた特性のみを残
すわけである。また常圧CVD法及びプラズマCVD法
による成膜を同一反応室内で行うため、常圧CVD法か
らプラズマCVD法への移行及びこの逆の移行時にウェ
ハを一旦反応室外に取出す必要がなく、従って反応室外
でのパーティクルや水分の付着を未然に防ぐことができ
、パーティクルや水分が絶縁膜の層間に異物として残る
うれいはなく、膜質の向上に寄与し得る。さらに図1及
び図2に示したように、常圧CVD法を実施する際には
収納室7内に下電極3を収納することによって、下電極
3が常圧CVD雰囲気に晒されないため、下電極3へ絶
縁膜が堆積することはない。 【0008】 【実施例】図1及び図2に示した装置を用いた下記の成
膜条件下で、ウェハの表面に、まずプラズマCVD法に
よる成膜、次いで常圧CVD法による成膜、そして再び
プラズマCVD法による成膜をそれぞれ2000Åの膜
厚で被成し、厚さ6000Åの絶縁膜を形成した。 記 1.プラズマCVD条件 ウェハ温度:400 ℃ 雰囲気圧:0.3Torr  反応ガス:SiH4  500SCCM , N2O 
 1850SCCM 消費電力:0.8 KW 2.常圧CVD条件 ウェハ温度:400 ℃ 反応ガス:SiH4  800SCCM ,  O2 
500SCCM 【0009】また比較として、同様の
条件下でプラズマCVD法(比較例1)及び常圧CVD
法(比較例2)を個別に行ってそれぞれ厚さ6000Å
の絶縁膜を形成した。 かくして得られた3種類の絶縁膜の緻密性、耐吸湿性及
び段差被覆性(平坦度)について調べた結果を、表1に
示す。 【0010】なお緻密性は、10:1BHF 液に対す
る膜のエッチングレイトにより評価した。ここでエッチ
ングレイトが大きい膜ほど緻密性は小さい。耐吸湿性は
、P.C.T(プレッシャー・クッカー・テスト)によ
り評価した。すなわち、堆積膜の下に実際にAlパター
ンを形成したウェハを使用し、P.C.T.条件は12
1 ℃、100 %湿度、20hとし、下地のAlの腐
食度合により膜の耐吸湿性を評価した。平坦度は、断面
SEM観察により、図4に示す角度αの測定結果に従っ
て評価した。 【0011】                          
     表1    CVD法        緻密
性          耐吸湿性      平坦性 
     備  考  ──────────────
────────────────────  プラズ
マ+常圧  良(1500 Å/min)   良(腐
食なし)  良(60 ゜)   適合例  プラズマ
        良(1200 Å/min)   良
(腐食なし)  悪(90 ゜)   比較例  常圧
            悪(2000 Å/min)
   悪(腐食あり)  良(60 ゜)   比較例
  ───────────────────────
───────────【0012】 【発明の効果】この発明によれば、緻密で耐水性に優れ
かつ段差被覆性にも優れた絶縁膜、すなわち半導体装置
に不可欠の良好な膜質の絶縁膜を容易に得ることができ
る。
Detailed Description of the Invention [0001] [Industrial Application Field] This invention is directed to SiO2 film, PSG
The present invention relates to a method of forming an insulating film such as a film or a BPSG film. 2. Description of the Related Art Insulating films that contribute to insulation between interconnections of semiconductor devices, protection and stabilization of elements, that is, passivation, etc., are usually formed using the CVD method. CV
The D method mainly includes the atmospheric pressure CVD method and the plasma CVD method. The atmospheric pressure CVD method forms an insulating film by decomposing and reacting a reactive gas with heat, and the resulting film has a high degree of flatness. Since it is porous, it has the disadvantage of being highly hygroscopic. On the other hand, the plasma CVD method uses plasma to decompose reactive gases.
An insulating film is formed by reaction, and the resulting film is dense and highly water resistant, but has the disadvantage of low flatness at steps, that is, poor step coverage. [Problems to be Solved by the Invention] Therefore, the present invention proposes a new method for forming an insulating film that can compensate for the weaknesses of both atmospheric CVD and plasma CVD by taking advantage of the advantages of both methods. The purpose is to [Means for Solving the Problems] The inventors researched ways to satisfy the above objectives and found that atmospheric pressure CVD
By repeating film formation by method and plasma CVD method to form a laminated film, it has good film quality and high flatness.
It was discovered that an insulating film particularly excellent in step coverage can be obtained, and the present invention was completed. In other words, this invention
When forming an insulating film on the surface of a semiconductor substrate or metal wiring, film formation by normal pressure CVD method and film formation by plasma CVD method are performed alternately in the same reaction chamber, and a combination of film formation ending with plasma CVD method is performed. This is a method for forming an insulating film characterized by the following. FIG. 1 shows a CVD apparatus used in the present invention. In the figure, 1 is the reaction chamber, 2 is the upper electrode, 3 is the lower electrode, and 4
5 is a wafer serving as a semiconductor substrate attached to the upper electrode 2 with a mechanical chuck, 6 is a heater for heating the wafer 5 via the upper electrode 2, and 7 is attached to the reaction chamber 1. This storage room 7 is shown in Figure 2.
As shown in the figure, the structure is such that the lower electrode 3 can be housed therein. In other words, the state shown in FIG. 1 in which the lower electrode 3 is placed in the reaction chamber 1 is compatible with the plasma CVD method, while the state shown in FIG. 2 in which the lower electrode 3 is stored in the storage chamber 7 is compatible with the normal pressure CVD method. This is the device in the state shown in Figure 2 (hereinafter referred to as normal pressure CVD device).
In this case, a large number of reaction gas injection holes 8 appear in the exposed portion after the lower electrode 3 is moved, forming a path different from the reaction gas path (introduction pipe 4) in the state of FIG. 1 (hereinafter referred to as plasma CVD apparatus). do. Further, 9 in the figure is an exhaust duct. Note that the lower electrode 3 is fixed to an arm 11 having a rotating shaft 10 located at the center of the boundary between the reaction chamber 1 and the storage chamber 7, as shown in FIG. 3, for example.
This rotation of the arm 11 moves the lower electrode 3 from the reaction chamber 1 to the storage chamber 7 and vice versa, thereby achieving movement of the lower electrode 3 into and out of the reaction chamber 1. Note that a shutter or the like is provided at the communication port 12 between the reaction chamber 1 and the storage chamber 7, through which the lower electrode 3 passes, to maintain airtightness. In the present invention, plasma CVD is performed in the same reaction chamber using, for example, the above-mentioned dual-purpose CVD apparatus.
The insulating films are laminated and formed using the atmospheric pressure CVD method and the atmospheric pressure CVD method. That is, the film is first formed using the plasma CVD apparatus shown in FIG. 1, then the film is formed using the atmospheric pressure CVD apparatus shown in FIG. An insulating film is formed by forming a film using the plasma CVD apparatus shown in FIG. 1 which has been returned to the inside. Here, the formation of the insulating film is such that the layer formed by the plasma CVD device becomes the surface;
In other words, it is preferable that film formation by the plasma CVD method be the final step. [Operation] The insulating film obtained according to the present invention can be
Because the film formation by the D method and the film formation by the plasma CVD method are repeated alternately, the characteristics of the film obtained by the plasma CVD method, that is, the dense and excellent water resistance, and the atmospheric pressure CV
It becomes possible to have the characteristics of the film obtained by method D, that is, the excellent step coverage. In other words, the disadvantages of the film obtained by the plasma CVD method, such as low flatness and especially poor step coverage, can be overcome by atmospheric pressure CVD, which has excellent step coverage.
in other words, by atmospheric pressure CVD.
This problem can be solved by forming at least one layer of a film obtained by the normal pressure CVD method under the surface layer of the insulating film.Moisture absorption can be avoided by covering the porous film obtained by the normal pressure CVD method with a dense film obtained by the plasma CVD method, preferably by sandwiching it. This prevents this and leaves only the excellent properties. Furthermore, since film formation by atmospheric pressure CVD and plasma CVD is performed in the same reaction chamber, there is no need to temporarily take out the wafer from the reaction chamber when transitioning from atmospheric CVD to plasma CVD and vice versa. It is possible to prevent particles and moisture from adhering outdoors, and there is no possibility that particles or moisture will remain as foreign matter between the layers of the insulating film, which can contribute to improving the film quality. Furthermore, as shown in FIGS. 1 and 2, when carrying out the atmospheric pressure CVD method, by storing the lower electrode 3 in the storage chamber 7, the lower electrode 3 is not exposed to the atmospheric pressure CVD atmosphere. No insulating film is deposited on the electrode 3. [Example] Under the following film formation conditions using the apparatus shown in FIGS. 1 and 2, a film was first formed on the surface of a wafer by a plasma CVD method, then a film was formed by an atmospheric pressure CVD method, and The plasma CVD method was again used to form a film with a thickness of 2000 Å, thereby forming an insulating film with a thickness of 6000 Å. Note 1. Plasma CVD conditions Wafer temperature: 400°C Atmospheric pressure: 0.3 Torr Reaction gas: SiH4 500SCCM, N2O
1850SCCM Power consumption: 0.8 KW 2. Atmospheric pressure CVD conditions Wafer temperature: 400 ℃ Reaction gas: SiH4 800SCCM, O2
500SCCM [0009] Also, for comparison, plasma CVD method (comparative example 1) and atmospheric pressure CVD method were performed under similar conditions.
(Comparative Example 2) was applied individually to a thickness of 6000 Å.
An insulating film was formed. Table 1 shows the results of examining the denseness, moisture absorption resistance, and step coverage (flatness) of the three types of insulating films thus obtained. [0010] The density was evaluated by the etching rate of the film with respect to a 10:1 BHF solution. Here, the higher the etching rate of the film, the lower the density. Moisture absorption resistance is P. C. Evaluated by T (pressure cooker test). That is, a wafer on which an Al pattern is actually formed under the deposited film is used, and P. C. T. The conditions are 12
The moisture absorption resistance of the film was evaluated based on the degree of corrosion of the underlying Al at 1° C. and 100% humidity for 20 hours. The flatness was evaluated by cross-sectional SEM observation according to the measurement results of the angle α shown in FIG. [0011]
Table 1 CVD method Density Moisture absorption resistance Flatness
Notes ──────────────
──────────────────── Plasma + normal pressure Good (1500 Å/min) Good (no corrosion) Good (60°) Compatibility example Plasma Good (1200 Å/min ) Good (no corrosion) Bad (90°) Comparative example Normal pressure Bad (2000 Å/min)
Bad (with corrosion) Good (60°) Comparative example ────────────────────────
──────────── [Effects of the Invention] According to the present invention, an insulating film that is dense, has excellent water resistance, and has excellent step coverage, that is, a good insulating film that is essential for semiconductor devices. A high-quality insulating film can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明に使用するCVD装置の模式図である
FIG. 1 is a schematic diagram of a CVD apparatus used in the present invention.

【図2】この発明に使用するCVD装置の模式図である
FIG. 2 is a schematic diagram of a CVD apparatus used in the present invention.

【図3】下電極の移動機構を示す模式図である。FIG. 3 is a schematic diagram showing a movement mechanism of the lower electrode.

【図4】膜の平坦度試験を説明する模式図である。FIG. 4 is a schematic diagram illustrating a film flatness test.

【符号の説明】[Explanation of symbols]

1  反応室 2  上電極 3  下電極 4  導入管 5  ウェハ 6  ヒータ 7  収納室 8  噴射孔 9  排気ダクト 10  回転軸 11  アーム 12  連通口 1 Reaction chamber 2 Upper electrode 3 Lower electrode 4 Introductory pipe 5 Wafer 6 Heater 7 Storage room 8 Injection hole 9 Exhaust duct 10 Rotation axis 11 Arm 12 Communication port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  半導体基体の表面又は金属配線上に絶
縁膜を形成するに当たり、同一反応室内において、常圧
CVD法による成膜とプラズマCVD法による成膜とを
交互に組合わせて行うことを特徴とする絶縁膜の形成方
法。
Claim 1: When forming an insulating film on the surface of a semiconductor substrate or on metal wiring, film formation by atmospheric pressure CVD method and film formation by plasma CVD method are alternately performed in the same reaction chamber. Characteristic insulating film formation method.
【請求項2】  常圧CVD法による成膜とプラズマC
VD法による成膜とを交互に組合わせて行う絶縁膜の形
成において、プラズマCVD法により成膜を終了させる
請求項1に記載の絶縁膜の成形方法。
[Claim 2] Film formation by atmospheric pressure CVD method and plasma C
2. The method of forming an insulating film according to claim 1, wherein in forming the insulating film by alternately combining film formation with a VD method, the film formation is completed by a plasma CVD method.
【請求項3】  反応室内に、ウェハを固定する上電極
、この上電極に対応する下電極及び反応ガスの導入管を
配置した、絶縁膜の形成装置であって、下電極は反応室
に対し出入り可能になる絶縁膜の形成装置。
3. An insulating film forming apparatus comprising, in a reaction chamber, an upper electrode for fixing a wafer, a lower electrode corresponding to the upper electrode, and a reaction gas introduction tube, the lower electrode being connected to the reaction chamber. A device for forming an insulating film that can be moved in and out.
JP2524191A 1991-01-28 1991-01-28 Method and device for forming insulating film Pending JPH04253335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2524191A JPH04253335A (en) 1991-01-28 1991-01-28 Method and device for forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2524191A JPH04253335A (en) 1991-01-28 1991-01-28 Method and device for forming insulating film

Publications (1)

Publication Number Publication Date
JPH04253335A true JPH04253335A (en) 1992-09-09

Family

ID=12160489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2524191A Pending JPH04253335A (en) 1991-01-28 1991-01-28 Method and device for forming insulating film

Country Status (1)

Country Link
JP (1) JPH04253335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260281A (en) * 2008-03-28 2009-11-05 Mitsubishi Electric Corp Method and apparatus for forming thin film, and thin film semiconductor device produced by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260281A (en) * 2008-03-28 2009-11-05 Mitsubishi Electric Corp Method and apparatus for forming thin film, and thin film semiconductor device produced by using the same
JP4573902B2 (en) * 2008-03-28 2010-11-04 三菱電機株式会社 Thin film formation method

Similar Documents

Publication Publication Date Title
TW201107519A (en) Batch processing method for forming structure including amorphous carbon film
US5426076A (en) Dielectric deposition and cleaning process for improved gap filling and device planarization
JP2002164342A (en) Semiconductor device and manufacturing method therefor
WO2004050948A1 (en) Film-forming method and apparatus using plasma cvd
JPH04239750A (en) Forming method for fluorine-containing silicon oxide film
WO2001073832A1 (en) Method of surface treatment of semiconductor
TW200422425A (en) Method for forming tungsten nitride film
JPH06132276A (en) Method for forming semiconductor film
TWI784698B (en) Manufacturing method of semiconductor device, substrate processing method, substrate processing apparatus and program
JPH09102492A (en) Manufacture of semiconductor device and semiconductor manufacturing apparatus
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
KR19990013876A (en) Titanium film formation method by chemical vapor deposition
JPH04253335A (en) Method and device for forming insulating film
JPH08213383A (en) Forming method of spin-on-glass film
TW417172B (en) Method for forming film and manufacture of semiconductor device
WO2006046386A1 (en) Film forming method, semiconductor device manufacturing method, semiconductor device, program and recording medium
JPH03209869A (en) Manufacture of capacitor insulating film
JP2019192793A (en) Film deposition device and film deposition method
US6596629B2 (en) Method for forming wire in semiconductor device
JP2001168098A (en) Semiconductor device and method of forming pattern data
JP3396791B2 (en) Method of forming insulating film
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JPH04225225A (en) Manufacture of high density integrated circuit titanium nitride layer and device thereof
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film
JPH02106927A (en) Manufacture of semiconductor device