JPH04252085A - Thermoelectric cooling type infrared detector - Google Patents

Thermoelectric cooling type infrared detector

Info

Publication number
JPH04252085A
JPH04252085A JP3008233A JP823391A JPH04252085A JP H04252085 A JPH04252085 A JP H04252085A JP 3008233 A JP3008233 A JP 3008233A JP 823391 A JP823391 A JP 823391A JP H04252085 A JPH04252085 A JP H04252085A
Authority
JP
Japan
Prior art keywords
substrate
ceramic substrate
hole
infrared detector
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3008233A
Other languages
Japanese (ja)
Inventor
Koji Hirota
廣田 耕治
Yukihiro Yoshida
幸広 吉田
Hiroyuki Tsuchida
土田 浩幸
Shigeki Hamashima
濱嶋 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3008233A priority Critical patent/JPH04252085A/en
Publication of JPH04252085A publication Critical patent/JPH04252085A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermoelectric cooling type infrared detector of a structure, wherein gas to be generated from a bonding material is prevented from being diffused in a container and the sensitivity of an infrared detecting element is excellently guaranteed, in a thermoelectric cooling type infrared detector for cooling the infrared detecting element using a thermomodule with thermionic transducer multistep-mounted therein. CONSTITUTION:An infrared detector of a structure wherein an infrared detecting element 1 and a thermomodule 2 are sealed in a vacuum in a container consisting of a cap 11 and a heat sink substrate 10 is made into a constitution wherein the lowest-step ceramic substrate 5 of the thermomodule 2 is closely fitted in the substrate 10, a bottomed hole 31 perforated in the substrate 10 and lateral grooves 30, which are perforated in the whole periphery of the sidewall of the hole 31 and have a height smaller than the thickness of the substrate 5, are provided and the bottom of the substrate 5 is firmly bonded on a hole bottom 32 with a bonding material 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、熱電変換素子を多段実
装したサーモモジュールを用いて、赤外線検知素子を冷
却する電子冷却型赤外線検知器に関する。赤外線検知素
子は−60℃前後に冷却しないと、その感度が低下する
。したがって、熱電変換素子を用いた多段構成のサーモ
モジュール上に赤外線検知素子を搭載し、熱電変換素子
のペルチエ効果を利用して、赤外線検知素子を冷却して
いる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronically cooled infrared detector that cools an infrared detecting element using a thermo module in which thermoelectric conversion elements are mounted in multiple stages. Unless the infrared sensing element is cooled to around -60°C, its sensitivity will decrease. Therefore, an infrared sensing element is mounted on a thermo module with a multi-stage configuration using thermoelectric conversion elements, and the infrared sensing element is cooled using the Peltier effect of the thermoelectric conversion element.

【従来の技術】図3は従来の電子冷却型赤外線検知器の
断面図であって、1は、赤外線検知素子、2は熱電変換
素子を多段(図は2段)実装したサーモモジュールであ
る。サーモモジュール2は、上下一対のセラミック基板
4の間にマトリクス状に熱電変換素子3を配列した上段
モジュールと、上段モジュールの下のセラミック基板4
と最下段セラミック基板5の間に、上段モジュールの熱
電変換素子数より多い数量の熱電変換素子3を配列した
下段モジュールと、から構成されている。それぞれの段
の熱電変換素子3は、P型素子とN型素子とが交互に配
置され、セラミック基板に形成したパターン電極により
P型素子の上端面とN型素子の上端面が接続され、その
N型素子の下端面は、次列のP型素子の下端面に接続さ
れている。そして赤外線検知素子1を、サーモモジュー
ル2の最上部のセラミック基板4上に搭載している。一
方、10は銅系合金等よりなる角板状のヒートシンク基
板であって、その上面に半田或いは接着剤等の接着材料
15を用いて、サーモモジュール2の最下段セラミック
基板5の底面を接着して、サーモモジュール2をヒート
シンク基板10に搭載している。20は、ヒートシンク
基板10を貫通しガラス封止された出力端子であり、2
5は、ヒートシンク基板10を貫通しガラス封止された
給電端子である。出力端子20の先端を金線等のワイヤ
21を介して、赤外線検知素子1の電極に接続し、給電
端子25の先端を金線等のワイヤ26を介して、サーモ
モジュール2のセラミック基板面の電極パターンに接続
している。11は、銅系合金等よりなる下部が開口した
角筒形のキャップである。キャップ11の頭部の赤外線
検知素子1に対応する中央部に孔を設け、この孔をサフ
ァイヤ等の赤外線透過窓12で封止している。赤外線検
知素子1及びサーモモジュール2を覆うように、上述の
キャップ11を冠着し、その開口端面側をろう付けして
、ヒートシンク基板10にキャップ11を気密に固着し
ている。なお、キャップ11とヒートシンク基板10よ
りなる容器内は、高真空に封止されている。電子冷却型
赤外線検知器は上述のように構成されているので、N型
素子からP型素子に電流が流れるように給電端子25に
電源を接続すると、サーモモジュール2は赤外線検知素
子1の熱を吸熱して、最下段セラミック基板5を経てヒ
ートシンク基板10に伝達し、ヒートシンク基板10か
ら外部に放出する。このようにして、赤外線検知素子1
の温度が−60℃前後に冷却されているので、赤外線が
赤外線透過窓12を透って、赤外線検知素子1の受光面
に入射すると、その量に応じた電流が出力端子に出力さ
れる。
2. Description of the Related Art FIG. 3 is a cross-sectional view of a conventional thermoelectrically cooled infrared detector, in which numeral 1 denotes an infrared detection element and numeral 2 a thermomodule in which thermoelectric conversion elements are mounted in multiple stages (two stages in the figure). The thermo module 2 includes an upper module in which thermoelectric conversion elements 3 are arranged in a matrix between a pair of upper and lower ceramic substrates 4, and a ceramic substrate 4 below the upper module.
and a lower module in which a greater number of thermoelectric conversion elements 3 than the number of thermoelectric conversion elements in the upper module are arranged between the lowermost ceramic substrate 5 and the lowermost ceramic substrate 5. In the thermoelectric conversion elements 3 of each stage, P-type elements and N-type elements are arranged alternately, and the upper end surface of the P-type element and the upper end surface of the N-type element are connected by a pattern electrode formed on a ceramic substrate. The lower end surface of the N-type element is connected to the lower end surface of the P-type element in the next row. The infrared detection element 1 is mounted on the ceramic substrate 4 at the top of the thermo module 2. On the other hand, 10 is a rectangular heat sink substrate made of copper-based alloy, etc., and the bottom surface of the lowermost ceramic substrate 5 of the thermo module 2 is bonded to the top surface of the heat sink substrate 10 using an adhesive material 15 such as solder or adhesive. The thermo module 2 is mounted on the heat sink board 10. 20 is an output terminal that passes through the heat sink substrate 10 and is sealed with glass;
5 is a power supply terminal that passes through the heat sink substrate 10 and is sealed with glass. The tip of the output terminal 20 is connected to the electrode of the infrared sensing element 1 via a wire 21 such as a gold wire, and the tip of the power supply terminal 25 is connected to the ceramic substrate surface of the thermo module 2 via a wire 26 such as a gold wire. Connected to the electrode pattern. Reference numeral 11 denotes a rectangular cylindrical cap made of copper-based alloy or the like and having an open bottom. A hole is provided in the center of the head of the cap 11 corresponding to the infrared detecting element 1, and this hole is sealed with an infrared transmitting window 12 made of sapphire or the like. The above-mentioned cap 11 is attached so as to cover the infrared detecting element 1 and the thermo module 2, and the open end side thereof is brazed, so that the cap 11 is airtightly fixed to the heat sink substrate 10. Note that the inside of the container consisting of the cap 11 and the heat sink substrate 10 is sealed in a high vacuum. Since the electronically cooled infrared detector is configured as described above, when a power supply is connected to the power supply terminal 25 so that current flows from the N-type element to the P-type element, the thermo module 2 absorbs the heat of the infrared detection element 1. It absorbs heat, transfers it to the heat sink substrate 10 via the lowermost ceramic substrate 5, and releases it to the outside from the heat sink substrate 10. In this way, the infrared sensing element 1
Since the temperature of the infrared rays is cooled to around -60° C., when infrared rays pass through the infrared transmitting window 12 and enter the light receiving surface of the infrared detecting element 1, a current corresponding to the amount of infrared rays is outputted to the output terminal.

【発明が解決しようとする課題】ところで、最下段セラ
ミック基板5とヒートシンク基板10とは、平面同士が
当接した状態で接着剤又は半田等の接着材料15で固着
しているので、接着材料15が最下段セラミック基板5
の底面からはみ出している。一方、容器内は高真空であ
る。したがって、接着材料から水分, 有機ガス等が発
生して容器内に拡散し、これらのガスが最下段セラミッ
ク基板と赤外線検知素子間を対流して、熱を赤外線検知
素子側に運搬する。この結果赤外線検知素子の温度が上
がり、感度が低下するという問題点があった。本発明は
このような点に鑑みて創作されたもので、接着材料の発
生するガスが容器内に拡散することが阻止され、赤外線
検知素子の感度が低下することのない電子冷却型赤外線
検知器を提供することを目的としている。
[Problems to be Solved by the Invention] By the way, the lowermost ceramic substrate 5 and the heat sink substrate 10 are fixed with adhesive material 15 such as adhesive or solder with their flat surfaces in contact with each other. is the lowest ceramic substrate 5
It protrudes from the bottom of the. On the other hand, the inside of the container is under high vacuum. Therefore, moisture, organic gas, etc. are generated from the adhesive material and diffused into the container, and these gases convect between the lowermost ceramic substrate and the infrared sensing element, transporting heat to the infrared sensing element. As a result, there was a problem that the temperature of the infrared sensing element rose and the sensitivity decreased. The present invention was created in view of these points, and is an electronically cooled infrared detector in which the gas generated by the adhesive material is prevented from diffusing into the container, and the sensitivity of the infrared detection element does not decrease. is intended to provide.

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、図1に例示したように、熱電変換素子3
を用いた多段構成のサーモモジュール2と、サーモモジ
ュール2上に搭載した赤外線検知素子1とを、キャップ
11とヒートシンク基板10とよりなる容器に、真空封
止した赤外線検知器において、サーモモジュール2の最
下段セラミック基板5が密接に嵌入する有底穴31を、
ヒートシンク基板10に設ける。また、有底穴31の側
壁の全周に、高さが最下段セラミック基板5の厚さより
も小さい横溝30を設ける。そして、最下段セラミック
基板5の底面を、接着材料15を使用して穴底面32に
固着する構成とする。また、最下段セラミック基板5の
側壁及び底面が、メタライズされた構成とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a thermoelectric conversion element 3 as illustrated in FIG.
In an infrared detector, a thermomodule 2 with a multi-stage configuration using a thermomodule 2 and an infrared detection element 1 mounted on the thermomodule 2 are vacuum-sealed in a container consisting of a cap 11 and a heat sink substrate 10. A bottomed hole 31 into which the lowermost ceramic substrate 5 is closely fitted is formed.
Provided on the heat sink substrate 10. Further, a lateral groove 30 having a height smaller than the thickness of the lowermost ceramic substrate 5 is provided around the entire circumference of the side wall of the bottomed hole 31. Then, the bottom surface of the lowermost ceramic substrate 5 is fixed to the hole bottom surface 32 using the adhesive material 15. Further, the side wall and bottom surface of the lowermost ceramic substrate 5 are metalized.

【作用】本発明は上述のよう、ヒートシンク基板に設け
た有底穴の側壁の全周に、高さがサーモモジュールの最
下段セラミック基板の厚さよりも小さい横溝を設けると
ともに、最下段セラミック基板の側壁の上部を有底穴の
側壁に密接させている。したがって、最下段セラミック
基板の底面と穴底面とを接着した接着材料が、最下段セ
ラミック基板の底面からはみ出していても、その接着材
料部分から発生したガスは、横溝内に封じこめられる。 即ち、ガスが容器内に拡散することが阻止されるので、
赤外線検知素子の冷却が保証され、感度が低下すること
がない。なお、最下段セラミック基板の側壁及び底面を
メタライズすることにより、接着材料の発生するガスが
多孔質のセラミック基板を透過して、容器内に拡散する
ことがない。
[Operation] As described above, the present invention provides a lateral groove whose height is smaller than the thickness of the lowest ceramic substrate of the thermo module on the entire circumference of the side wall of the bottomed hole provided in the heat sink substrate, and The upper part of the side wall is brought into close contact with the side wall of the bottomed hole. Therefore, even if the adhesive material bonding the bottom surface of the lowermost ceramic substrate and the bottom surface of the hole protrudes from the bottom surface of the lowermost ceramic substrate, the gas generated from the adhesive material portion is confined within the lateral groove. That is, the gas is prevented from diffusing into the container;
Cooling of the infrared sensing element is guaranteed and sensitivity does not decrease. Note that by metallizing the side walls and bottom surface of the lowermost ceramic substrate, gas generated by the adhesive material does not pass through the porous ceramic substrate and diffuse into the container.

【実施例】以下図1及び図2を参照しながら、本発明を
具体的に説明する。なお、全図を通じて同一符号は同一
対象物を示す。図1は本発明の実施例の図で、(A) 
は断面図, (B) は要所断面図であり、図2は本発
明の他の実施例の要所断面図である。図1 において、
サーモモジュール2は上下一対のセラミック基板4の間
に、マトリクス状に熱電変換素子3を配列した上段モジ
ュールと、上段モジュールの下のセラミック基板4と最
下段セラミック基板5の間に、上段モジュールの熱電変
換素子数より多い数量の熱電変換素子3を配列した下段
モジュールと、から構成されている。それぞれの段の熱
電変換素子3は、P型素子とN型素子とが交互に配置さ
れ、セラミック基板に形成したパターン電極によりP型
素子の上端面とN型素子の上端面に接続し、そのN型素
子の下端面を次列のP型素子下端面に接続している。そ
して、赤外線検知素子1を、サーモモジュール2の最上
部のセラミック基板4上に搭載している。一方、銅系合
金等よりなるヒートシンク基板10の上面の中央部に、
サーモモジュール2の最下段セラミック基板5が密接に
嵌入する有底穴31を設け、その有底穴31の側壁の全
周に、高さが最下段セラミック基板5の厚さよりも小さ
い有底穴側が開口した横溝30を設けてある。なお、横
溝30の下側面は、有底穴31の穴底面32と同一平面
である。サーモモジュール2の最下段セラミック基板5
を有底穴31に差し込み、最下段セラミック基板5の底
面を半田または接着剤よりなる接着材料15を使用して
、穴底面32に固着している。横溝30の高さが最下段
セラミック基板5の厚さよりも小さくしてあるので、最
下段セラミック基板5を穴底面32に接着した状態で、
最下段セラミック基板5の側壁の上部は、有底穴の側壁
に密接している。一方、ヒートシンク基板10を貫通し
ガラス封止された出力端子20の先端を、金線等のワイ
ヤ21を介して赤外線検知素子1の電極に接続している
。また、ヒートシンク基板10を貫通しガラス封止され
た給電端子25の先端を、金線等のワイヤ26を介して
サーモモジュール2のセラミック基板面の電極パターン
に接続している。銅系合金等よりなる下部が開口した角
筒形で、頭部の孔をサファイヤ等の赤外線透過窓12で
封止したキャップ11を、赤外線検知素子1及びサーモ
モジュール2を覆うように冠着して、その開口端面側を
ろう付けすることで、ヒートシンク基板10にキャップ
11を気密に固着している。なお、キャップ11とヒー
トシンク基板10よりなる容器内は、高真空に封止され
ている。 本発明は上述のように構成されているので、最下段セラ
ミック基板5の底面と穴底面32とを接着した接着材料
15が、最下段セラミック基板の底面からはみ出してい
ても、そのはみ出した部分から発生したガスは、横溝3
0内に封じこめられている。したがって、ガスが容器内
に拡散することが阻止され、赤外線検知素子1の冷却性
能が低下することがない。図2において、ニッケル等で
メタライズすることで、最下段セラミック基板5の側壁
及び底面にメタライズ層40を設けてある。したがって
、接着材料から発生するガスが多孔質の最下段セラミッ
ク基板5を透過して、容器内に拡散することがない。
EXAMPLES The present invention will be specifically explained below with reference to FIGS. 1 and 2. Note that the same reference numerals indicate the same objects throughout the figures. FIG. 1 is a diagram of an embodiment of the present invention, (A)
is a cross-sectional view, (B) is a cross-sectional view of key points, and FIG. 2 is a cross-sectional view of key points of another embodiment of the present invention. In Figure 1,
The thermo module 2 has an upper module in which thermoelectric conversion elements 3 are arranged in a matrix between a pair of upper and lower ceramic substrates 4, and a thermoelectric converter in the upper module between a ceramic substrate 4 under the upper module and a lowermost ceramic substrate 5. It consists of a lower module in which thermoelectric conversion elements 3 in a number greater than the number of conversion elements are arranged. In the thermoelectric conversion elements 3 of each stage, P-type elements and N-type elements are arranged alternately, and are connected to the upper end surface of the P-type element and the upper end surface of the N-type element by pattern electrodes formed on a ceramic substrate. The lower end surface of the N-type element is connected to the lower end surface of the P-type element in the next row. The infrared detecting element 1 is mounted on the ceramic substrate 4 on the top of the thermo module 2. On the other hand, in the center of the upper surface of the heat sink substrate 10 made of copper-based alloy or the like,
A bottomed hole 31 into which the lowermost ceramic substrate 5 of the thermo module 2 is closely fitted is provided, and a bottomed hole side with a height smaller than the thickness of the lowermost ceramic substrate 5 is provided around the entire circumference of the side wall of the bottomed hole 31. An open transverse groove 30 is provided. Note that the lower surface of the lateral groove 30 is on the same plane as the hole bottom surface 32 of the bottomed hole 31. Lowermost ceramic substrate 5 of thermo module 2
is inserted into the bottomed hole 31, and the bottom surface of the lowermost ceramic substrate 5 is fixed to the hole bottom surface 32 using an adhesive material 15 made of solder or adhesive. Since the height of the lateral groove 30 is smaller than the thickness of the lowermost ceramic substrate 5, with the lowermost ceramic substrate 5 bonded to the hole bottom surface 32,
The upper part of the side wall of the lowermost ceramic substrate 5 is in close contact with the side wall of the bottomed hole. On the other hand, the tip of an output terminal 20 that penetrates the heat sink substrate 10 and is sealed with glass is connected to the electrode of the infrared sensing element 1 via a wire 21 such as a gold wire. Further, the tip of the power supply terminal 25 that penetrates the heat sink substrate 10 and is sealed with glass is connected to the electrode pattern on the ceramic substrate surface of the thermo module 2 via a wire 26 such as a gold wire. A cap 11 made of a copper-based alloy or the like and having a rectangular cylinder shape with an open bottom and a hole in the head sealed with an infrared transmitting window 12 made of sapphire or the like is attached to cover the infrared detecting element 1 and the thermo module 2. The cap 11 is hermetically fixed to the heat sink substrate 10 by brazing the open end surface thereof. Note that the inside of the container consisting of the cap 11 and the heat sink substrate 10 is sealed in a high vacuum. Since the present invention is configured as described above, even if the adhesive material 15 that adheres the bottom surface of the lowermost ceramic substrate 5 and the hole bottom surface 32 protrudes from the bottom surface of the lowermost ceramic substrate, the protruding portion will be removed. The generated gas is transferred to horizontal groove 3.
It is confined within 0. Therefore, gas is prevented from diffusing into the container, and the cooling performance of the infrared sensing element 1 does not deteriorate. In FIG. 2, a metallized layer 40 is provided on the side wall and bottom surface of the lowermost ceramic substrate 5 by metallizing with nickel or the like. Therefore, gas generated from the adhesive material does not pass through the porous lowermost ceramic substrate 5 and diffuse into the container.

【発明の効果】以上説明したように本発明は、電子冷却
型赤外線検知器のサーモモジュールとヒートシンク基板
とを接着する接着材料から発生するガスが、赤外線検知
素子を封止した容器内に拡散することがないようにした
ことにより、容器内の高真空度に保持され赤外線検知素
子の所定に低く冷却され、その感度が良好に保証される
という、実用上で優れた効果を有する。
[Effects of the Invention] As explained above, the present invention allows gas generated from the adhesive material that bonds the thermo module and heat sink substrate of an electronically cooled infrared detector to diffuse into the container in which the infrared sensing element is sealed. This has an excellent practical effect in that a high degree of vacuum is maintained in the container, the infrared sensing element is cooled to a predetermined low level, and its sensitivity is well guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の実施例の図で、(A) は断面図
(B) は要所断面図
[Figure 1] Diagrams of embodiments of the present invention, in which (A) is a cross-sectional view and (B) is a cross-sectional view of key points.

【図2】  本発明の他の実施例の要所断面図[Fig. 2] Main sectional view of another embodiment of the present invention

【図3】
  従来例の断面図
[Figure 3]
Cross-sectional view of conventional example

【符号の説明】[Explanation of symbols]

1  赤外線検知素子、              
      2  サーモモジュール、3  熱電変換
素子、                      
4  セラミック基板、5  最下段セラミック基板、
              10  ヒートシンク基
板、11  キャップ、              
            12  赤外線透過窓、15
  接着材料、                  
        20  出力端子、25  給電端子
、                        
  30  横溝、31  有底穴、        
                    32  穴
底面、40  メタライズ層、
1 infrared detection element,
2 thermo module, 3 thermoelectric conversion element,
4 ceramic substrate, 5 lowermost ceramic substrate,
10 heat sink board, 11 cap,
12 Infrared transmission window, 15
adhesive material,
20 output terminal, 25 power supply terminal,
30 horizontal groove, 31 bottomed hole,
32 hole bottom surface, 40 metallized layer,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  熱電変換素子(3) を用いたサーモ
モジュール(2) と、該サーモモジュール(2) 上
に搭載した赤外線検知素子(1) とを、キャップ(1
1)とヒートシンク基板(10)とよりなる容器に、真
空封止した赤外線検知器において、該サーモモジュール
(2) の最下段セラミック基板(5) が密接に嵌入
する、該ヒートシンク基板(10)に穿孔した有底穴(
31)と、該有底穴(31)の側壁の全周に穿孔した、
高さが該最下段セラミック基板(5) の厚さよりも小
さい横溝(30)とを有し、該最下段セラミック基板(
5) の底面を、接着材料(15)を用いて穴底面(3
2)に固着したことを特徴とする電子冷却型赤外線検知
器。
Claim 1: A thermomodule (2) using a thermoelectric conversion element (3) and an infrared detection element (1) mounted on the thermoelectric module (2) are attached to a cap (1).
In an infrared detector vacuum-sealed in a container consisting of a heat sink substrate (10) and a heat sink substrate (10), the lowermost ceramic substrate (5) of the thermo module (2) is tightly fitted into the heat sink substrate (10). Drilled hole with bottom (
31), and a hole is bored all around the side wall of the bottomed hole (31).
a lateral groove (30) whose height is smaller than the thickness of the lowermost ceramic substrate (5);
5) Using the adhesive material (15), attach the bottom of the hole (3) to the bottom of the hole (3).
2) An electronically cooled infrared detector characterized by being fixed to.
【請求項2】  最下段セラミック基板(5) の側壁
及び底面が、メタライズされてなることを特徴とする請
求項1に記載の電子冷却型赤外線検知器。
2. The thermoelectrically cooled infrared detector according to claim 1, wherein the side wall and bottom surface of the lowermost ceramic substrate (5) are metalized.
JP3008233A 1991-01-28 1991-01-28 Thermoelectric cooling type infrared detector Withdrawn JPH04252085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008233A JPH04252085A (en) 1991-01-28 1991-01-28 Thermoelectric cooling type infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008233A JPH04252085A (en) 1991-01-28 1991-01-28 Thermoelectric cooling type infrared detector

Publications (1)

Publication Number Publication Date
JPH04252085A true JPH04252085A (en) 1992-09-08

Family

ID=11687438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008233A Withdrawn JPH04252085A (en) 1991-01-28 1991-01-28 Thermoelectric cooling type infrared detector

Country Status (1)

Country Link
JP (1) JPH04252085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129898A (en) * 1992-10-15 1994-05-13 Matsushita Electric Works Ltd Infrared ray sensor
JP2016167494A (en) * 2015-03-09 2016-09-15 アイシン精機株式会社 Thermoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129898A (en) * 1992-10-15 1994-05-13 Matsushita Electric Works Ltd Infrared ray sensor
JP2016167494A (en) * 2015-03-09 2016-09-15 アイシン精機株式会社 Thermoelectric conversion device

Similar Documents

Publication Publication Date Title
US4276533A (en) Pressure sensor
US10794768B2 (en) Thermopile infrared individual sensor for measuring temperature or detecting gas
EP0734589B1 (en) Integrated silicon vacuum micropackage for infrared devices
US6388264B1 (en) Optocoupler package being hermetically sealed
US7352010B2 (en) Photoelectric conversion module with cooling function
US5056929A (en) Temperature compensation type infrared sensor
JP2692461B2 (en) Semiconductor device
US20080164413A1 (en) Infrared Sensor
CN104412082A (en) IR thermopile detector
JP2002510864A (en) Integrated circuit package having thermoelectric cooling element
JP5001007B2 (en) Infrared sensor utilizing optimized surface
JPS60111123A (en) Infrared detector and manufacture thereof
JP2021507468A (en) Infrared device
WO1997021080A9 (en) Array combining many photoconductive detectors in a compact package
JPH04252085A (en) Thermoelectric cooling type infrared detector
US6796866B2 (en) Silicon micromachined broad band light source
US4596975A (en) Thermally insulative mounting with solid state device
JPH1062659A (en) Optical element module
EP0139408A1 (en) Thermal Detector
JPS6351548B2 (en)
JPH0766976B2 (en) Infrared detector
JP2004170214A (en) Sensor device and its manufacturing method
JPH05157622A (en) Thermal infrared sensor
CN212434634U (en) InSb sensitive element, leadless InSb photoelectric infrared sensor and detector
CN215178187U (en) Infrared temperature measurement sensing chip

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514