JPH0425186A - Thermoelectric conversion element and thermoelectric generator - Google Patents

Thermoelectric conversion element and thermoelectric generator

Info

Publication number
JPH0425186A
JPH0425186A JP2129390A JP12939090A JPH0425186A JP H0425186 A JPH0425186 A JP H0425186A JP 2129390 A JP2129390 A JP 2129390A JP 12939090 A JP12939090 A JP 12939090A JP H0425186 A JPH0425186 A JP H0425186A
Authority
JP
Japan
Prior art keywords
conversion element
thermoelectric conversion
electrode
thermoelectric
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129390A
Other languages
Japanese (ja)
Inventor
Asako Koyanagi
阿佐子 小柳
Mitsuo Hayashibara
光男 林原
Moriaki Tsukamoto
守昭 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2129390A priority Critical patent/JPH0425186A/en
Publication of JPH0425186A publication Critical patent/JPH0425186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To eliminate the high electric resistance of a thermoelectric conversion element caused by rectification so as to lessen the element in power loss by a method wherein a doped layer higher than the other part in impurity concentration is provided near the electrode joint of the thermoelectric conversion element. CONSTITUTION:In thermoelectric conversion elements 1 and 2 which generate an electromotive force through a temperature gradient, a doped layer 3 higher than the other part in impurity concentration is provided near to a joint 11 between an electrode 21 through which an electric power is led out and the element 2. That is, when a certain voltage is applied to the joint 11, a current flowing through the joint 11 is proportional to carrier density, so that the joint 11 becomes small in electrical resistance when carriers are enhanced in concentration. Therefore, a doped layer is formed to enhance carriers in density, whereby the high resistance of an electrode joint caused by rectification can be eliminated. By this setup, a thermoelectric conversion element can be lessened in power loss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱エネルギーを電気エネルギーに変換する熱
電発電装置及びこれに用いる熱電変換素子(以下、熱電
素子と称する)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermoelectric power generation device that converts thermal energy into electrical energy, and a thermoelectric conversion element (hereinafter referred to as a thermoelectric element) used therein.

〔従来の技術〕[Conventional technology]

従来より、内部の温度勾配を利用して起電力を発生させ
る素子(半導体)を用いて、熱電発電を行う技術が知ら
れている。このような熱電発電システムでは、有効な電
気エネルギーを得るために、一般には複数の熱電素子を
電気的に接続した熱電変換モジュールが使用される。
2. Description of the Related Art Techniques for thermoelectric power generation using elements (semiconductors) that generate electromotive force using internal temperature gradients have been known. In such a thermoelectric power generation system, in order to obtain effective electrical energy, a thermoelectric conversion module in which a plurality of thermoelectric elements are electrically connected is generally used.

昭和43年、好学社発行、ザラトン著、橘藤が(監修の
「直接エネルギ変換」に記載された熱電発電装置の例を
第20図に示す。
Figure 20 shows an example of a thermoelectric power generation device described in ``Direct Energy Conversion,'' published by Kogakusha in 1963, written by Zaraton, and supervised by Fuji Tachibana.

第20図においては、複数のn型熱電素子1とn型熱電
素子2とを基板21..22間で電極]」。
In FIG. 20, a plurality of n-type thermoelectric elements 1 and n-type thermoelectric elements 2 are connected to a substrate 21. .. 22 electrodes].

12を介して直列に接続しである。そして、基板2」側
を加熱し基板22側を冷却すると、加熱部から供給され
た熱エネルギーが電気エネルギーに変換されて電流■が
流れ、負荷に電力が供給される。ここでは、使用する熱
電素子の内部構造、電極の材料、素子と電極の接続方法
については言及されていない。
They are connected in series via 12. Then, when the substrate 2'' side is heated and the substrate 22 side is cooled, the thermal energy supplied from the heating section is converted into electrical energy, a current 2 flows, and power is supplied to the load. There is no mention here of the internal structure of the thermoelectric element used, the material of the electrodes, or the method of connecting the element and electrodes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、」―記従来技術による熱電変換モジュールを
用いて熱電発電を行った場合、一般には使用した熱電素
子の性能から予想される熱電変換動率が得られない。
By the way, when thermoelectric power generation is performed using the thermoelectric conversion module according to the prior art mentioned above, the thermoelectric conversion rate expected from the performance of the thermoelectric element used cannot generally be obtained.

効率低下の原因として、素子の形状によって素子内部に
生じる温度勾配の不均一が考えられているが、半導体で
ある熱電素子と金属電極の接合特性については考慮され
ていない。
The cause of the decrease in efficiency is thought to be the non-uniform temperature gradient that occurs inside the element depending on the shape of the element, but the bonding characteristics between the thermoelectric element, which is a semiconductor, and the metal electrode are not considered.

すなわち、半導体と金属の接合では、両者の仕事関数如
何では整流性のある電気的障壁が形成される。この電気
的障壁が、素子の起電力に対して逆方向の整流性をもっ
た場合、この部分が電気的抵抗として働くため、発電装
置全体の電気出力は低下する。
That is, in the junction between a semiconductor and a metal, an electrical barrier with rectifying properties is formed depending on the work functions of the two. If this electrical barrier has a rectifying property in the opposite direction to the electromotive force of the element, this portion acts as an electrical resistance, and the electrical output of the entire power generation device decreases.

ここで、整流性のある電気的障壁の発生メカニズムを第
3図により説明する。
Here, the mechanism of generation of an electrical barrier with rectifying properties will be explained with reference to FIG.

第3図は、金属とn型半導体(熱電素子)の接合により
生じる電気的障壁の模式図で1図中、Φm、Φsnは、
それぞれ金属電極とn型半導体の仕事関数を示す。
Figure 3 is a schematic diagram of an electrical barrier caused by the junction of a metal and an n-type semiconductor (thermoelectric element). In Figure 1, Φm and Φsn are:
The work functions of a metal electrode and an n-type semiconductor are shown, respectively.

Φm>Φsnである金属とn型半導体が、充分離れて置
かれた状態で、第3図(a)に示すエネルギー準位を持
っているとする。この金属とn型半導体を接合させると
、接合部でフエルミイ<f!位Efを・致させるために
、半導体側から金属側へ電子が移動し、半導体の表面(
接合部近傍)に正の空間電荷が残る、。
Suppose that a metal and an n-type semiconductor, where Φm>Φsn, have an energy level shown in FIG. 3(a) when placed sufficiently apart. When this metal and an n-type semiconductor are bonded, there is a fermi<f! In order to increase the potential Ef, electrons move from the semiconductor side to the metal side, and the surface of the semiconductor (
A positive space charge remains (near the junction).

このため、n型半導体の電極接合部には、第3図(1〕
)に示すようなポテンシャルの壁(電気的障壁)が形成
される。この障壁は、す:(温性を持ち〔第3図(c)
)、半導体側から金属側(熱電発電の場合には、高温側
の電極がこれに該当する)へ流れる電流に対する電気抵
抗が大きくなる。
For this reason, the electrode junction of the n-type semiconductor is
) A potential wall (electrical barrier) is formed as shown in (). This barrier has thermal properties [Figure 3 (c)
), the electrical resistance to the current flowing from the semiconductor side to the metal side (in the case of thermoelectric power generation, this corresponds to the electrode on the high temperature side) increases.

同様に、金属とn型半導体の接合を考えると、双方の仕
事関数にΦm〈Φspの関係があると、半導体の接合部
に電気的障壁が生じる。
Similarly, when considering a junction between a metal and an n-type semiconductor, if the work functions of both have a relationship of Φm<Φsp, an electrical barrier will occur at the junction of the semiconductors.

この場合には金属側(熱電発電の場合には、高温側の電
極がこれに該当する)から半導体側への電流に対して逆
方向の整流性となり、電気抵抗が大きくなる。。
In this case, the current flow from the metal side (in the case of thermoelectric power generation, this corresponds to the electrode on the high temperature side) to the semiconductor side has a rectifying property in the opposite direction, and the electrical resistance increases. .

−1−記のように、熱電変換モジュール中に熱電素子の
起電力に列して逆方向の整流性が生じると、電気出力の
損失の要因となる。
As described in -1-, if rectification occurs in the opposite direction in line with the electromotive force of the thermoelectric element in the thermoelectric conversion module, it becomes a cause of loss of electrical output.

さらに、半導体の電極接合部に電気的障壁が形成されて
いない場合にも、半導体と金属の接触抵抗が起電力低下
の原因になっていることも考えられる。
Furthermore, even when no electrical barrier is formed at the electrode junction of the semiconductor, the contact resistance between the semiconductor and the metal may be a cause of the reduction in electromotive force.

本発明は以」−の点に鑑みてなされたもので、その目的
とするところは、前述した問題点を解決して、接続によ
る損失を減少させて電気出力の改善を図り得る熱電素子
及び熱電発電装置を提供することにある。
The present invention has been made in view of the following points, and its purpose is to provide a thermoelectric element and a thermoelectric element capable of solving the above-mentioned problems, reducing loss due to connection, and improving electrical output. Our goal is to provide power generation equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、」1記目的を達成するために次のような課題
解決手段を提案する。
The present invention proposes the following problem-solving means in order to achieve the object 1.

第1及び第2の課題解決手段は、熱電素子そのものの発
明である。
The first and second problem-solving means are the invention of the thermoelectric element itself.

すなわち、第1の課題解決手段は、熱電素子における電
極接合部のうち少なくとも一方の電極接合部の近傍に、
不純物濃度が他の部分よりも高くしたドーピング層を形
成する。
That is, the first means for solving the problem is that near at least one of the electrode joints in the thermoelectric element,
A doped layer having a higher impurity concentration than other parts is formed.

第2の課題解決手段は、熱電素子における電極接合部の
うち少なくとも一方の電極接合部の近傍に、トンネル遷
移による伝導を可能にする物質を添加してなる。
A second means for solving the problem is to add a substance that enables conduction by tunnel transition to the vicinity of at least one of the electrode junctions in the thermoelectric element.

次に以下に述べる課題解決手段は、熱電発電装置に係る
ものである。
Next, the problem solving means described below is related to a thermoelectric power generation device.

第3の課題解決・1段は、熱電素子として■)型とn型
のものを金属等の電極を介して直列に或いは>n17.
列に接続してなる熱電発電装置において、前記r)型熱
電素子、n型熱電素子及び電極は、(1) S p (
Φrn < (1) S nの条件を満たすもので構成
する。
Third problem solution: The first stage is to connect (1) type and n type thermoelectric elements in series via metal electrodes or >n17.
In the thermoelectric power generation device connected in a row, the r) type thermoelectric element, the n type thermoelectric element, and the electrode are (1) S p (
Φrn < (1) It is composed of those satisfying the condition of S n.

第4の課題解決手段は、熱電発電装置に用いる熱電素子
が全てp型のものであれば、このp型熱電素子と電極と
がCI)SpくΦmの条件を満たし、その熱電素子が全
てn型のものであれば、このn型熱電素子と電極とがΦ
m<(I)snの条件を満たずもので構成する。
The fourth means of solving the problem is that if all the thermoelectric elements used in the thermoelectric generator are p-type, then the p-type thermoelectric elements and the electrodes satisfy the conditions CI) Sp x Φm, and all the thermoelectric elements are n type, this n-type thermoelectric element and electrode are Φ
It is composed of items that do not satisfy the condition m<(I)sn.

第5の課題解決手段は、第]−の課題解決手段のように
電極接合部近傍の不純物濃度を他の部分よりも高くしだ
熱電素子を複数備えて、これらの熱電素子を直列或いは
並列に接211A して熱電発電装置を構成する。
A fifth means of solving the problem is to provide a plurality of thermoelectric elements in which the impurity concentration near the electrode junction is higher than other parts, and to connect these thermoelectric elements in series or parallel. A thermoelectric power generation device is constructed by connecting 211A.

また、その応用として、熱電素子としてp型。Also, its application is p-type as a thermoelectric element.

n型のいずれかを或いは双方を用いてなる熱電発電装置
において、 p型熱電素子と電極とがΦS P > (1) mの関
係にある場合には、p型熱電素子における高温側の電極
接合部(=j近の不純物濃度を他の部分よりも高くし、
またn型熱電素子と電極とがΦm>Φsnの関係にある
場合には、n型熱電素子における高温側の電極接合部近
傍の不純物濃度を他の部分よりも高くしたものを提案す
る。
In a thermoelectric power generation device using one or both of n-type thermoelectric elements, if the p-type thermoelectric element and the electrode have a relationship of ΦS P > (1) m, the electrode junction on the high temperature side of the p-type thermoelectric element part (= make the impurity concentration near j higher than other parts,
Furthermore, when the n-type thermoelectric element and the electrode have a relationship of Φm>Φsn, we propose an n-type thermoelectric element in which the impurity concentration near the electrode junction on the high temperature side is higher than in other parts.

第6の課題解決手段は、熱電素子がp型で電極とΦsp
>Φmの関係にあれば、このp型熱電素子と前記電極の
うちの高温側電極とをΦsp<Φmの条件を満たす金属
部材を介して接合し、熱電素子がn型で電極とΦm>Φ
snの関係にあれば、このn型熱電素子と前記電極のう
ちの高温側電極とをΦm<Φsnの条件を満たす金属部
材を介して接合してなる。
The sixth problem-solving means is that the thermoelectric element is p-type and the electrode and Φsp
>Φm, this p-type thermoelectric element and the high-temperature side electrode of the electrodes are joined via a metal member that satisfies the condition of Φsp<Φm, and if the thermoelectric element is n-type and the electrode and Φm>Φ
sn, the n-type thermoelectric element and the high-temperature side electrode of the electrodes are joined via a metal member that satisfies the condition Φm<Φsn.

第7の課題解決手段は、熱電変換素子としては、その電
極接合部のうち高温側の電極接合部の近傍にトンネル遷
移による伝導を可能にする物質を添加し、この熱電変換
素子を複数用いて直列に或いは並列に接続して熱電発電
装置を構成する。
A seventh means of solving the problem is to add a substance that enables conduction by tunnel transition to the vicinity of the electrode junction on the high temperature side of the thermoelectric conversion element, and use a plurality of these thermoelectric conversion elements. They are connected in series or in parallel to form a thermoelectric power generation device.

〔作用〕[Effect]

第]の課題解決手段の作用 −・般に半導体(ここでは
熱電素子)と金属の接合部に一定の電圧が印加された場
合、接合部を流れる電流(電流密度)は、半導体中のキ
ャリア密度に比例する。仮りに逆方向の整流性かあった
としても、キャリア濃度を高めておけば、接合部の電気
抵抗は小さくできる。
Effects of problem-solving means - Generally speaking, when a constant voltage is applied to a junction between a semiconductor (thermoelectric element here) and a metal, the current flowing through the junction (current density) is equal to the carrier density in the semiconductor. is proportional to. Even if there is rectification in the opposite direction, the electrical resistance of the junction can be reduced by increasing the carrier concentration.

従って、熱電素子における電極接合部の近傍の不純物濃
度を他の部分より高くしたドーピング層を形成してキャ
リア密度を高めることで、整流性に起因する高い電気抵
抗を排除し、これによる電力損失を低減できる。
Therefore, by forming a doped layer with a higher impurity concentration near the electrode junction in a thermoelectric element than in other parts to increase carrier density, the high electrical resistance caused by rectification can be eliminated and the resulting power loss can be reduced. Can be reduced.

なお、熱電素子の不純物濃度を高くする場合には、p型
、n型いずれの熱電素子であっても、逆方向の整流性が
発生するのは、既述したように高温側電極に対する接合
部であるので、これに対応させて少なくとも一方の電極
接合部近傍の不純物濃度を、他の部分より高くすれば足
りる。
Note that when increasing the impurity concentration of the thermoelectric element, regardless of whether it is a p-type or n-type thermoelectric element, rectification in the opposite direction occurs at the junction to the high temperature side electrode, as described above. Therefore, in response to this, it is sufficient to make the impurity concentration near at least one electrode junction higher than the other portion.

第2の課題解決手段の作用・・本課題解決手段によれば
、熱電素子における電極接合部の近傍に、トンネル遷移
による伝導を可能にする物質を添加することで、その接
合部の電気抵抗を小さくできる。この課題解決手段では
、半導体の電極接合部に整流性のある電気的障壁が存在
する如何にかかわらず、半導体と金属の接触抵抗を小さ
くする利点がある。
Effect of second problem-solving means: According to the present problem-solving means, by adding a substance that enables conduction by tunnel transition to the vicinity of the electrode junction in a thermoelectric element, the electrical resistance of the junction can be reduced. Can be made smaller. This problem-solving means has the advantage of reducing the contact resistance between the semiconductor and the metal, regardless of whether an electrical barrier with rectifying properties exists at the electrode junction of the semiconductor.

第3及び第4の課題解決手段の作用・・・この課題解決
手段では、熱電発電装置を構成すべき熱電素子と電極と
に、Φs p ((T> m <Φsn或いはΦSpく
Φm或いはΦmくΦsnの条件設定を行うことで、熱電
素子と電極の接合部に整流性のある電気的障壁が形成さ
れない。
Effects of the third and fourth problem-solving means... In this problem-solving means, Φs p ((T> m <Φsn or ΦSp Φm or Φm By setting the condition of Φsn, no rectifying electrical barrier is formed at the junction between the thermoelectric element and the electrode.

第5の課題解決手段の作用・本課題解決手段は、第1の
課題解決手段の熱電素子を複数用いた熱電発電装置であ
るので、第]−の課題解決手段同様の作用を期待できる
Effects of the fifth problem-solving means: Since the present problem-solving means is a thermoelectric power generation device using a plurality of thermoelectric elements of the first problem-solving means, it can be expected to have the same effect as the problem-solving means of the first problem-solving means.

6の課題解決手段の作用 p型熱電素子と高温側電極と
を、Φsp(Φmの条件を満たす金属部月を介して接合
し、或いはn型熱電素子と高温側の金属電極とをΦmく
Φsnの条件を満たす金属部材を介して接合すれば、熱
電素子と電極とがΦsp>ΦmやΦm>Φsnの関係に
あっても、電極・熱電素子間に整流性のある電気的障壁
が形成されるのを防止できる。
Effect of the means for solving problem 6 The p-type thermoelectric element and the high-temperature side electrode are joined via a metal part that satisfies the condition of Φsp (Φm), or the n-type thermoelectric element and the high-temperature side metal electrode are joined by Φm and Φsn. If the thermoelectric element and the electrode are connected through a metal member that satisfies the following conditions, an electrical barrier with rectifying properties will be formed between the electrode and the thermoelectric element even if the relationship between the thermoelectric element and the electrode is Φsp>Φm or Φm>Φsn. can be prevented.

第7の課題解決手段の作用・・・本課題解決手段は、第
2の課題解決手段の熱電素子を複数用いた熱電発電装置
であるので、第2の課題解決手段同様の作用を期待でき
る。
Effects of the seventh problem-solving means: Since the present problem-solving means is a thermoelectric power generation device using a plurality of thermoelectric elements of the second problem-solving means, it can be expected to have the same effect as the second problem-solving means.

なお、上記課題解決手段のうち第]−2第2及び第5〜
第7の課題解決手段は、コスト、材料制約等の種々の理
由により、第3.第4の課題解決手段のような条件を満
足する熱電素子や金属電極を使用できない場合に、それ
に代わる手段として有効である。
In addition, among the above problem solving means, No.]-2 No. 2 and No. 5-
The seventh problem-solving means is based on the third problem-solving method due to various reasons such as cost and material constraints. This method is effective as an alternative when a thermoelectric element or metal electrode that satisfies the conditions as in the fourth means for solving the problem cannot be used.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第1図は、本発明の一実施例たる熱電発電装置の断面図
、第2図は、その熱電素子と金5c電極(以下電極とす
る)の接合部付近の拡大図である。
FIG. 1 is a sectional view of a thermoelectric power generation device according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the vicinity of the joint between the thermoelectric element and the gold 5c electrode (hereinafter referred to as electrode).

これらの図に示した符号のうち、第20図の従来例に用
いた符号と同一の部分は、同−或いは共通する要素を示
す。
Among the numerals shown in these figures, the same parts as the numerals used in the conventional example of FIG. 20 indicate the same or common elements.

第」図では、複数のn型熱電素子1とn型熱電素子2と
を高温側電極1]−及び低温側電極12を介して直列に
接続した例で、第2図に示すように、熱電素子の電極接
合部近傍に他の部分よりも不純物濃度の高い領域(ドー
ピング層)3を形成している。
Fig. 2 shows an example in which a plurality of n-type thermoelectric elements 1 and n-type thermoelectric elements 2 are connected in series via the high-temperature side electrode 1 and the low-temperature side electrode 12. A region (doping layer) 3 having a higher impurity concentration than other parts is formed near the electrode junction of the element.

既に〔発明が解決しようとする課題〕でも述べたように
、n型熱電素子1と高温側電極11との仕事関数にΦs
p)Φmの関係がある場合、或いはn型熱電素子2と高
温側電極11との仕事関数にΦm>Φsnの関係がある
場合には、前者の場合は、高温側電極]1からn型熱電
素子1に流れる電流に対する電気抵抗が大きくなり、後
者の場合は、n型熱電素子2から高温側電極]1に流れ
る電流に対する電気抵抗が大きくなるといった、いわゆ
る整流性のある電気的障壁が発生する。なお、Φsp(
Φm及びΦmくΦsnの関係がある場合には、整流性が
生じない。
As already mentioned in [Problems to be Solved by the Invention], the work function of the n-type thermoelectric element 1 and the high temperature side electrode 11 is Φs.
p) If there is a relationship of Φm, or if there is a relationship of Φm>Φsn between the work functions of the n-type thermoelectric element 2 and the high-temperature side electrode 11, in the former case, the n-type thermoelectric element The electrical resistance to the current flowing through the element 1 increases, and in the latter case, the electrical resistance to the current flowing from the n-type thermoelectric element 2 to the high-temperature side electrode 1 increases, creating a so-called rectifying electrical barrier. . In addition, Φsp(
If there is a relationship between Φm and Φm x Φsn, no rectification occurs.

以−にの条件をn型熱電素子1.’ffl極11.n型
熱電素子2の3要素の接合に適用すると、各要素の仕事
関数の大小によって第4図、第5図に示すような場合分
けができる。
The following conditions are applied to the n-type thermoelectric element 1. 'ffl pole 11. When applied to joining three elements of the n-type thermoelectric element 2, cases can be classified as shown in FIGS. 4 and 5 depending on the size of the work function of each element.

第4図(a)、第5図(a)は、p型、n型熱電素子及
び電極の仕事関数の大小を示す図、第4図(b)の■〜
■、第5図(b)■〜■は、接合により生じる整流性の
等価回路である。
Figures 4(a) and 5(a) are diagrams showing the magnitude of the work functions of p-type and n-type thermoelectric elements and electrodes, and ■~ in Figure 4(b)
(2) and (2) to (2) in FIG. 5(b) are equivalent circuits of rectification caused by the junction.

これらのうち■の条件は、熱電素子および電極がΦsp
(ΦmくΦsnで、この■の条件が満たされる場合以外
は、p型及びn型熱電素子の一方または双方の高温側の
電極接合部に、素子の起電力に対して逆方向に整流性が
表れることがわかる。
Among these, the condition (■) is that the thermoelectric element and electrodes have Φsp
(With Φm x Φsn, unless this condition (■) is satisfied, the electrode junction on the high temperature side of one or both of the p-type and n-type thermoelectric elements has rectification in the direction opposite to the electromotive force of the element. I can see it appearing.

一般に、半導体と金属の接合部に一定の電圧が印加され
た場合、接合部を流九る電流C電流密度)】5 は、半導体中のキャリア密度に比例する。仮りに逆方向
の整流性があったとしても、キャリア密度を高めておけ
ば、接合部の電気抵抗は小さくできる。従って、第2図
のように熱電素子の接合部近傍に不純物を添加しくn型
熱電素子の場合には、ドナー、p型熱電素子の場合には
、アクセプタ)、てその不純物濃度を他の部分より高め
て、キャリア密度を高めることで、整流性に起因する高
い電気抵抗を排除し、これによる電力損失を低減できる
Generally, when a constant voltage is applied to a junction between a semiconductor and a metal, the current C flowing through the junction (current density)]5 is proportional to the carrier density in the semiconductor. Even if there is rectification in the opposite direction, the electrical resistance of the junction can be reduced by increasing the carrier density. Therefore, as shown in Figure 2, impurities are added near the junction of the thermoelectric element (donor in the case of an n-type thermoelectric element, acceptor in the case of a p-type thermoelectric element), and the impurity concentration is reduced to other parts. By increasing the carrier density by increasing the carrier density, it is possible to eliminate high electrical resistance caused by rectification and reduce power loss due to this.

第6図は、第2図の実施例の種々の態様を具現化したも
のである。
FIG. 6 embodies various aspects of the embodiment of FIG. 2.

第6図■〜■、■に示す実施例は、第4図(b)■〜■
、第5図(b)■、■に対応して、電気的障壁が生じる
接合部近傍の熱電素子に不純物を添加した例で、それぞ
れ電気的障壁が発生する熱電素子1又は2或いはその双
方における高温側電極11の接合部近傍にドーeングW
J3を形成して、この接合部近傍の不純物濃度を他の部
分よりも高めている。
The embodiments shown in Figures 6 - ■ and ■ are shown in Figure 4 (b) - - ■
, Corresponding to Fig. 5(b) ■ and ■, this is an example in which impurities are added to the thermoelectric element near the junction where an electrical barrier occurs, respectively, in thermoelectric element 1 or 2 or both where an electrical barrier occurs. A dowel W is placed near the joint of the high temperature side electrode 11.
J3 is formed to make the impurity concentration near this junction higher than in other parts.

第7図は、電気的障壁形成を防止するために行った1−
一ピングの代わりに、n型熱電素子1及びn型熱電素子
2の一方或いは双方の高温側と高温側電極11間に、電
気的障壁を形成しない金属4を介在接合した実施例で、
この金属4を介在させる態様は、第6図の実施例と同様
に第4図(b)■〜■、第5図(b)■、■に対応させ
である。
Figure 7 shows 1-
In this embodiment, instead of one pin, a metal 4 that does not form an electrical barrier is interposed and joined between the high temperature side of one or both of the n-type thermoelectric element 1 and the n-type thermoelectric element 2 and the high temperature side electrode 11,
Similar to the embodiment shown in FIG. 6, the manner in which the metal 4 is interposed corresponds to FIG.

すなわち、第7図の(イ)の場合には、n型熱電素子2
と電極]1との間に整流性ある電気的障壁が形成される
ので、これらの要素2,11間にΦm+<Φs’nの条
件を満足する金属4を介在させて接合する。Φm、は金
属4の仕事関数である。
That is, in the case of (a) in FIG. 7, the n-type thermoelectric element 2
Since a rectifying electrical barrier is formed between the elements 2 and 11, a metal 4 satisfying the condition Φm+<Φs'n is interposed and joined. Φm is the work function of metal 4.

第7図([1)の場合には、p型、n型双方の熱電素子
1,2と電極11との間に整流性ある電気的障壁が形成
されるので、これらの要素1,2と電極」1との間にΦ
sp<Φm、<Φsnの条件を満足させる金属4を介在
させて接合する。なお、この場合、n型熱電素子1・電
極11間に介在される金ノ1カ4と、n型熱電素子2・
電極11間に介在される金属4とは、材質を異にしても
よい。
In the case of FIG. 7 ([1), a rectifying electrical barrier is formed between both the p-type and n-type thermoelectric elements 1 and 2 and the electrode 11, so that these elements 1 and 2 Φ between electrode "1"
The metal 4 that satisfies the conditions of sp<Φm and <Φsn is interposed and bonded. In this case, the metal plate 4 interposed between the n-type thermoelectric element 1 and the electrode 11 and the n-type thermoelectric element 2 and
The metal 4 interposed between the electrodes 11 may be made of a different material.

第7図(ハ)の場合には、n型熱電素子1と電極11と
の間に電気的障壁が形成されるので、これらの要素1.
.11間にΦsp<ΦSm、の条件を満足させる金属4
を介在させる。
In the case of FIG. 7(c), since an electrical barrier is formed between the n-type thermoelectric element 1 and the electrode 11, these elements 1.
.. Metal 4 that satisfies the condition of Φsp<ΦSm between 11 and 11.
intervene.

第8図は、上記第7図(イ)の実施例のエネルギー状態
を示すもので、n型熱電素子(半導体)2と金属4間に
は電気的障壁が発生せず、さらに電極11と金属4とが
原子レベルで接合していれば、金属4,11間に生じる
障壁をトンネル遷移でキャリアが通過できるため、整流
性は現れない。
FIG. 8 shows the energy state of the embodiment shown in FIG. If metals 4 and 4 are bonded to each other at the atomic level, carriers can pass through the barrier created between metals 4 and 11 by tunnel transition, and rectification will not occur.

従って、第7図で示したような金属4を介在させること
で、接合による起電力の損失は生じない。
Therefore, by interposing the metal 4 as shown in FIG. 7, loss of electromotive force due to bonding does not occur.

−例として、仕事関数が4..5eVのn型熱電素子と
ニッケル電極(Φm=5.0eV)間には、逆方向の整
流性を有する電気的障壁ができるため、銅(Φm、= 
4. 、3 e V)を介して接続する。
- As an example, the work function is 4. .. An electrical barrier with reverse rectification is created between the 5eV n-type thermoelectric element and the nickel electrode (Φm = 5.0eV), so copper (Φm, =
4. , 3 e V).

これにより、熱電発電の起電力低下の原因となる整流性
を排除でき、電力を高効率に負荷に供給できる。
This makes it possible to eliminate rectification, which causes a decrease in electromotive force during thermoelectric power generation, and to supply power to the load with high efficiency.

第9図は、Φsp<Φm (s nを満たすp型・■)
型熱電素1,2及び電極11.12を用いた例である。
Figure 9 shows Φsp<Φm (p-type ■ that satisfies s n)
This is an example using type thermoelements 1 and 2 and electrodes 11 and 12.

この場合の熱電素子と電極間のエネルギー状態を第9図
(a)に、装置の一部構成を第9図(b)に示す。すで
に第5図(b)■に示したように、この条件を満たす材
料の組み合わせでは、接合部に電気的障壁は形成されな
い。従って、この場合にも、高効率の熱電発電を可能に
する。
The energy state between the thermoelectric element and the electrode in this case is shown in FIG. 9(a), and a partial configuration of the apparatus is shown in FIG. 9(b). As already shown in FIG. 5(b) (2), no electrical barrier is formed at the junction when the combination of materials satisfies this condition. Therefore, in this case as well, highly efficient thermoelectric power generation is possible.

第、+−0図は、n型熱電素子1のみを電極11及び1
2を介して直列に接続して、熱電発電装置を構成した実
施例である。
In Figures +-0, only the n-type thermoelectric element 1 is connected to the electrodes 11 and 1.
This is an embodiment in which a thermoelectric power generation device is constructed by connecting the thermoelectric power generators in series via 2.

例えばn型熱電素子1のみで構成した装置では、第11
図(a)のようにΦm〈Φspの場合、素子」の高温側
と電極11との接合部での電気的障壁形成防止のため、
ドーピングrPJ 3を設けるか、Φm)spの金属4
を介して接合する。
For example, in a device configured only with n-type thermoelectric element 1, the 11th
In the case of Φm<Φsp as shown in Figure (a), in order to prevent the formation of an electrical barrier at the junction between the high temperature side of the element and the electrode 11,
Provide doping rPJ 3 or Φm) sp metal 4
Join via.

また、第10図(b)のように、Φm〉Φspである電
極、熱電素子を選べば、接合部に電気的障壁は形成され
ない。
Further, as shown in FIG. 10(b), if electrodes and thermoelectric elements are selected in which Φm>Φsp, no electrical barrier will be formed at the junction.

なおn型熱電素子2を直列に接続した装置の場合も、同
様の工夫を施すことで電気的障壁の形成を防止し、起電
力の損失をなくすことができる。
Note that even in the case of a device in which n-type thermoelectric elements 2 are connected in series, similar measures can be taken to prevent the formation of electrical barriers and eliminate loss of electromotive force.

第11図〜第13図は、同一種の熱電素子を並列に接続
した熱電発電装置である。
11 to 13 show thermoelectric power generation devices in which thermoelectric elements of the same type are connected in parallel.

n型熱電素子1を第11−図(a)のように並列接続し
た場合、ΦmくΦspであれば、第11図(b)に示す
ように整流性を持つ電気的障壁が形成される。Φm〉Φ
spであれば整流性は生じない〔第11図(C)〕。n
型熱電素子2の場合も同様な現象が起こる〔第12図(
a)〜(C)〕。
When the n-type thermoelectric elements 1 are connected in parallel as shown in FIG. 11(a), if Φm and Φsp, an electrical barrier with rectifying properties is formed as shown in FIG. 11(b). Φm〉Φ
If it is sp, rectification will not occur [FIG. 11(C)]. n
A similar phenomenon occurs in the case of type thermoelectric element 2 [Fig. 12 (
a) to (C)].

従って、第1J図(b)、第1−2図(b)のように整
流性が生じる場合には、第13図(a)。
Therefore, when rectification occurs as shown in FIG. 1J(b) and FIG. 1-2(b), FIG. 13(a).

(b)に示すようにドーピングfPi3、或いは既述の
金属4を設けることで整流性を持つ電気的障壁を排除で
きる。これにより、熱電発電の起電力は、第11図(C
)、第12図(c)に示したものと等しくなる。
As shown in (b), by providing the doped fPi3 or the metal 4 described above, the electrical barrier having rectifying properties can be eliminated. As a result, the electromotive force of thermoelectric power generation is as shown in Figure 11 (C
), which is equal to that shown in FIG. 12(c).

第]−4図は、直列、並列の混在して熱電発電装置の例
である。この場合も、電極材料と熱電素子材料を選んで
電気的障壁を防ぐか、熱電素子の高温側にドーピング層
を施すか、整流性が生じない金属を介して接合すること
で、同様の効果を奏する。
Figure]-4 is an example of a thermoelectric power generation device in which series and parallel systems are mixed. In this case as well, the same effect can be achieved by selecting the electrode material and thermoelectric element material to prevent an electrical barrier, by applying a doping layer on the high temperature side of the thermoelectric element, or by joining through a metal that does not produce rectification. play.

また、接合部近傍の半導体中のキャリア密度をさらに高
くすると、接合部の障壁の幅が狭くなり、トンネル遷移
によってキャリアが直接電気伝導に寄与することになる
。第15図は、n型半導体に不純物を添加した際のトン
ネル遷移の概略図である。
Furthermore, if the carrier density in the semiconductor near the junction is further increased, the width of the barrier at the junction becomes narrower, and the carriers directly contribute to electrical conduction through tunnel transition. FIG. 15 is a schematic diagram of tunnel transition when impurities are added to an n-type semiconductor.

この場合、第15図に示すように、キャリアは接合部の
電気的障壁を通過できるため、接合による電気抵抗は非
常に小さくなり、起電力の損失はほとんど生しない。
In this case, as shown in FIG. 15, carriers can pass through the electrical barrier of the junction, so the electrical resistance due to the junction becomes very small, and almost no loss of electromotive force occurs.

表1に本実施例を珪化鉄熱電素子を用いた際の解析定数
を、表2にキャリア濃度の影響を解析した結果を示す。
Table 1 shows the analysis constants when an iron silicide thermoelectric element was used in this example, and Table 2 shows the results of analyzing the influence of carrier concentration.

表2に示す結果は、珪化鉄熱電素子の不純物濃度〜10
20個/ c m 3では、電気的障壁のため、熱電素
子本来の起電力の約4割しか負荷に供給できないが、キ
ャリア濃度を1.02′/crn’とすることで、はぼ
完全に起電力を負荷に供給できることを意味している。
The results shown in Table 2 show that the impurity concentration of the iron silicide thermoelectric element is ~10
At 20 pieces/cm3, only about 40% of the electromotive force inherent in the thermoelectric element can be supplied to the load due to electrical barriers, but by setting the carrier concentration to 1.02'/crn', it can be almost completely supplied. This means that electromotive force can be supplied to the load.

珪化鉄の場合、Mn、Cr、Go等の不純物を1021
/ c m3程度、接合部近傍(数10人〜数1000
人の厚さ)に添加することで、この条件を満たせる。
In the case of iron silicide, impurities such as Mn, Cr, and Go are added to 1021
/cm3, near the joint (several 10 to several thousand
This condition can be met by adding it to the human thickness.

表  1 表  2 ジュール製造工程図である。Table 1 Table 2 It is a Joule manufacturing process diagram.

第」6図では、基板22に電極12を接着後、n型熱電
素子4及びn型熱電素子2を接続する。
In FIG. 6, after bonding the electrode 12 to the substrate 22, the n-type thermoelectric element 4 and the n-type thermoelectric element 2 are connected.

次いて、p型及びn型熱電素子の高温側にイオン(p型
熱電素子」には+イオン、n型熱電素7−2には−イオ
ン)を照射し、表面の不純物濃度を高める。このイオン
照射面か高温側電極J1との接合面となる。
Next, the high temperature sides of the p-type and n-type thermoelectric elements are irradiated with ions (+ ions for the p-type thermoelectric element and - ions for the n-type thermoelectric element 7-2) to increase the impurity concentration on the surface. This ion irradiation surface becomes the bonding surface with the high temperature side electrode J1.

第17図では、第16図と同様に電極」−2を介してn
型熱電素子1及びn型熱電素子2を接続後、各熱電素子
の高温側表面に混入する不純物材料3′を蒸着する。
In FIG. 17, as in FIG. 16, n
After connecting the type thermoelectric element 1 and the n-type thermoelectric element 2, an impurity material 3' to be mixed into the high temperature side surface of each thermoelectric element is vapor-deposited.

次いで全体に加熱処理を施し、蒸着した材料を熱電素子
表面近傍に拡散させ、不純物濃度を局部的に高めてドー
ピング層3を形成する。この面を介して電極11を接合
する。
Next, the entire structure is subjected to heat treatment to diffuse the deposited material near the surface of the thermoelectric element to locally increase the impurity concentration to form a doped layer 3. The electrode 11 is bonded via this surface.

第16図、第17図に示したいずれの方法も、不純物濃
度を精度良く制御してドーピングできる。
Both of the methods shown in FIGS. 16 and 17 allow doping while controlling the impurity concentration with high precision.

第18図は、熱電素子2に電極」1を接した後に加熱し
て、電極H石の一部を熱電素子中に拡散させる方法であ
る。
FIG. 18 shows a method in which the electrode 1 is brought into contact with the thermoelectric element 2 and then heated to diffuse a portion of the electrode H stone into the thermoelectric element.

この例は、P型あるいはn型熱電素子の−・方に1−一
ビングをする場合で、電極材料がドーピング材料と共通
する時に、ドーピングする熱電素子2(又は1)と電極
11を接合した後加熱処理して、電極材料の一部を素子
中に拡散させる。この場合、ドーピングと接合とが同時
にでき、製造工程が簡略化できる。
In this example, when applying 1-1 bing to the - side of a P-type or n-type thermoelectric element, when the electrode material is the same as the doping material, the doping thermoelectric element 2 (or 1) and the electrode 11 are bonded. A post-heat treatment is performed to diffuse some of the electrode material into the device. In this case, doping and bonding can be performed at the same time, simplifying the manufacturing process.

第」−9図はn型熱電素子1およびn型熱電素子2の高
温側に、それぞれΦm t )ΦSp、Φmz<Φsn
である金属4a、4−bを蒸着し、これを介して高温側
電極11と熱電素子J−及び熱電素子2とを接合する製
造工程を示す。
Figure 9 shows Φm t )ΦSp and Φmz<Φsn on the high temperature sides of n-type thermoelectric element 1 and n-type thermoelectric element 2, respectively.
The manufacturing process is shown in which the metals 4a and 4-b are vapor-deposited and the high-temperature side electrode 11 is joined to the thermoelectric element J- and the thermoelectric element 2 via the metals 4a and 4-b.

なお、実施例では、熱電素子と金属電極とを備える装置
について例示したが、電極が金属以外の材質である場合
にも同様の整流性ある電気的障壁の問題が起こり得るな
らば、本発明の適用が可能である。
In addition, in the embodiment, a device including a thermoelectric element and a metal electrode is illustrated, but if the same problem of rectifying electrical barrier can occur even when the electrode is made of a material other than metal, the present invention can be applied. Applicable.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、熱電素子・電極間の接合
部に生しる整流性のある電気的障壁を排除したり、電気
的障壁を形成させないか、或いは内部の電気抵抗を小さ
くすることで、熱電変換効率を高めて起電力損失を少な
くするので、この種熱電発電の電気出力の顕著な改善を
図ることができる。
As described above, according to the present invention, the rectifying electrical barrier that occurs at the junction between the thermoelectric element and the electrode is eliminated, the electrical barrier is not formed, or the internal electrical resistance is reduced. This increases thermoelectric conversion efficiency and reduces electromotive force loss, making it possible to significantly improve the electrical output of this type of thermoelectric power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の適用対象となる熱電発電装置の断面
図、第2図は、第1−図の一部を拡大した図、第3図は
、本発明の課題となる電気的障壁の説明図、第4図及び
第5図は、熱電発電装置を構成する材料の組み合わせに
よる電気的障壁形成の様子を示す説明図、第6図及び第
7図は、本発明の各種実施例を示す説明図、第8図は第
7図(イ)の実施例を抜粋して、その構成および接合部
のエネルギー状態を示す説明図、第9図は、本発明の他
の実施例の構成及びそのエネルギー状態を示す説明図、
第10図〜第14図は、本発明の他の実施例を示す説明
図、第15図は、本発明の他の実施例たるトンネル遷移
による整流性排除の原理図、第16図〜第19図は、本
発明に係る熱電発電装置の製造工程例を示す説明図、第
20図は、公知例の熱電発電装置の断面図である。 1・・p型熱電素子、2・・・n型熱電素子、3・・・
ドーピング層、4・・・金属部材、11.12・・・電
極、21.22・・・fI@縁材(基板)。 拐士 馴ドQ S−千壮 廻・・・型寸 料金 Q井 静歪。 CL( l摩渚 +−偲 + [相] 十 第 図 低温側 第 図 金属電極、]■ 金属、4 0型半導体装置 第 図(a) φ。〈φ8p 第 図(b) 第15 図 −〒iザ〒〒「IZ 電流 電流 JJJJJi− −4J+JJJ
Fig. 1 is a cross-sectional view of a thermoelectric power generation device to which the present invention is applied, Fig. 2 is an enlarged view of a part of Fig. 1, and Fig. 3 is an electrical barrier to which the present invention is applied. FIGS. 4 and 5 are explanatory diagrams showing how electrical barriers are formed by combinations of materials constituting a thermoelectric generator, and FIGS. 6 and 7 are diagrams showing various embodiments of the present invention. FIG. 8 is an explanatory diagram extracting the embodiment of FIG. 7(a) and showing the configuration and energy state of the joint, and FIG. 9 is an explanatory diagram showing the configuration and energy state of the joint part of another embodiment of the present invention. An explanatory diagram showing the energy state,
10 to 14 are explanatory diagrams showing other embodiments of the present invention, FIG. 15 is a principle diagram of eliminating rectification by tunnel transition, which is another embodiment of the present invention, and FIGS. 16 to 19 The figure is an explanatory diagram showing an example of the manufacturing process of the thermoelectric generator according to the present invention, and FIG. 20 is a sectional view of a known thermoelectric generator. 1...p-type thermoelectric element, 2...n-type thermoelectric element, 3...
Doping layer, 4... Metal member, 11.12... Electrode, 21.22... fI@edge material (substrate). Kidnapper Familiar Q S-Senso Kai... Model size fee Q Ii Shizuru. CL( l 轚+−偲+ [Phase] Figure 10 Low-temperature side Figure Metal electrode,] ■ Metal, 40 type semiconductor device Figure (a) φ.〈φ8p Figure (b) Figure 15 -〒 IZ Current Current JJJJJi- -4J+JJJ

Claims (1)

【特許請求の範囲】 1、内部の温度勾配により起電力が生じる熱電変換素子
において、 その電力を取り出すための電極との接合部のうち少なく
とも一方の電極接合部の近傍に、不純物濃度が他の部分
よりも高くしたドーピング層を形成したことを特徴とす
る熱電変換素子。 2、内部の温度勾配により起電力が生じる熱電変換素子
において、 その電力を取り出すための電極との接合部のうち少なく
とも一方の電極接合部の近傍に、トンネル遷移による伝
導を可能にする物質を添加してなることを特徴とする熱
電変換素子。 3、熱電変換素子、電力取り出し用の電極等を備え、前
記熱電変換素子は、p型とn型のものを直列に或いは並
列に接続してなる熱電発電装置において、 前記p型熱電変換素子、n型熱電変換素子及び電極は、
Φsp<Φm<Φsn(Φspはp型熱電変換素子の仕
事関数、Φsnはn型熱電変換素子の仕事関数、Φmは
電極の仕事関数)の条件を満たすもので構成してなるこ
とを特徴とする熱電発電装置。 4、熱電変換素子、電力取り出し用の電極等を備える熱
電発電装置において、 前記熱電変換素子と前記電極とは、その熱電変換素子が
p型のものであれば、Φsp<Φmの条件を満たし、そ
の熱電変換素子がn型のものであれば、Φm<Φsnの
条件を満たすもので構成してなることを特徴とする熱電
発電装置。 5、熱電変換素子、電力取り出し用の電極等を備える熱
電発電装置において、 前記熱電変換素子は、前記電極との接合部近傍の不純物
濃度を他の部分よりも高くし、この熱電変換素子を複数
備えて直列に或いは並列に接続してなることを特徴とす
る熱電発電装置。 6、熱電変換素子、電力取り出し用の電極等を備え、前
記熱電変換素子としてp型、n型のいずれかを或いは双
方を用いてなる熱電発電装置において、 前記p型熱電変換素子と前記電極とがΦsp>Φmの関
係にある場合には、前記p型熱電変換素子における高温
側の電極接合部付近の不純物濃度を他の部分よりも高く
し、 またn型熱電変換素子と前記電極とがΦm>Φsnの関
係にある場合には、前記n型熱電変換素子における高温
側の電極接合部付近の不純物濃度を他の部分よりも高く
してなることを特徴とする熱電発電装置。 7、熱電変換素子、電力取り出し用の電極等を備え、前
記熱電変換素子としてp型、n型のいずれかを或いは双
方を用いてなる熱電発電装置において、 前記熱電変換素子がp型で前記電極とにΦsp>Φmの
関係にあれば、このp型熱電変換素子と前記電極のうち
の高温側電極とをΦsp<Φmの条件を満たす金属部材
を介して接合し、前記熱電変換素子がn型で前記電極と
にΦm>Φnの関係にあれば、このn型熱電変換素子と
前記電極のうちの高温側電極とをΦm<Φsnの条件を
満たす金属部材を介して接合してなることを特徴とする
熱電発電装置。 8、熱電変換素子、電力取り出し用の電極等を備える熱
電発電装置において、 前記熱電変換素子は、その電極接合部のうち高温側の電
極接合部の近傍にトンネル遷移による伝導を可能にする
物質が添加され、この熱電変換素子を複数備えて直列に
或いは並列に接続してなることを特徴とする熱電発電装
置。
[Claims] 1. In a thermoelectric conversion element in which an electromotive force is generated due to an internal temperature gradient, there is an impurity concentration other than that in the vicinity of at least one of the junctions with the electrodes for extracting the electric power. A thermoelectric conversion element characterized by forming a doped layer higher than the other parts. 2. In a thermoelectric conversion element where an electromotive force is generated due to an internal temperature gradient, a substance that enables conduction by tunnel transition is added near at least one of the junctions with the electrodes from which the electric power is extracted. A thermoelectric conversion element characterized by: 3. A thermoelectric power generation device comprising a thermoelectric conversion element, an electrode for power extraction, etc., and the thermoelectric conversion element is formed by connecting a p-type and an n-type in series or in parallel, the p-type thermoelectric conversion element, The n-type thermoelectric conversion element and electrode are
It is characterized by being made up of materials that satisfy the condition Φsp<Φm<Φsn (Φsp is the work function of the p-type thermoelectric conversion element, Φsn is the work function of the n-type thermoelectric conversion element, and Φm is the work function of the electrode). Thermoelectric generator. 4. In a thermoelectric power generation device comprising a thermoelectric conversion element, an electrode for power extraction, etc., the thermoelectric conversion element and the electrode satisfy the condition of Φsp<Φm if the thermoelectric conversion element is of p-type, A thermoelectric power generation device characterized in that, if the thermoelectric conversion element is of an n-type, it satisfies the condition Φm<Φsn. 5. In a thermoelectric power generation device including a thermoelectric conversion element, an electrode for extracting power, etc., the thermoelectric conversion element has a higher impurity concentration near the junction with the electrode than other parts, and a plurality of thermoelectric conversion elements are used. 1. A thermoelectric power generation device characterized in that the thermoelectric generators are connected in series or in parallel. 6. In a thermoelectric power generation device comprising a thermoelectric conversion element, an electrode for power extraction, etc., and using either p-type, n-type, or both as the thermoelectric conversion element, the p-type thermoelectric conversion element and the electrode is in the relationship of Φsp>Φm, the impurity concentration near the electrode junction on the high temperature side of the p-type thermoelectric conversion element is made higher than other parts, and the n-type thermoelectric conversion element and the electrode have a relationship of Φm. >Φsn, the thermoelectric power generation device is characterized in that the impurity concentration near the electrode junction on the high temperature side of the n-type thermoelectric conversion element is higher than in other parts. 7. A thermoelectric power generation device comprising a thermoelectric conversion element, an electrode for power extraction, etc., and using either p-type, n-type, or both as the thermoelectric conversion element, wherein the thermoelectric conversion element is p-type and the electrode If there is a relationship of Φsp>Φm, this p-type thermoelectric conversion element and the high-temperature side electrode of the electrodes are joined via a metal member that satisfies the condition of Φsp<Φm, and the thermoelectric conversion element is an n-type. If the relationship with the electrodes is Φm>Φn, the n-type thermoelectric conversion element and the high-temperature side electrode of the electrodes are bonded via a metal member that satisfies the condition of Φm<Φsn. A thermoelectric power generation device. 8. In a thermoelectric power generation device comprising a thermoelectric conversion element, an electrode for extracting power, etc., the thermoelectric conversion element has a substance that enables conduction by tunnel transition near the electrode junction part on the high temperature side among the electrode junction parts. 1. A thermoelectric power generation device comprising a plurality of thermoelectric conversion elements connected in series or in parallel.
JP2129390A 1990-05-19 1990-05-19 Thermoelectric conversion element and thermoelectric generator Pending JPH0425186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129390A JPH0425186A (en) 1990-05-19 1990-05-19 Thermoelectric conversion element and thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129390A JPH0425186A (en) 1990-05-19 1990-05-19 Thermoelectric conversion element and thermoelectric generator

Publications (1)

Publication Number Publication Date
JPH0425186A true JPH0425186A (en) 1992-01-28

Family

ID=15008397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129390A Pending JPH0425186A (en) 1990-05-19 1990-05-19 Thermoelectric conversion element and thermoelectric generator

Country Status (1)

Country Link
JP (1) JPH0425186A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
WO2004105145A1 (en) * 2003-05-23 2004-12-02 National Institute Of Advanced Industrial Science And Technology Thermoelectric element-used cooling method and device
JP2015505663A (en) * 2012-02-01 2015-02-23 アルダナック メフメト セルハンARDANUC, Mehmet Serhan Energy harvesting method and apparatus using intrinsic voltage difference between metal joints
JP2021019032A (en) * 2019-07-18 2021-02-15 株式会社テックスイージー Thermionic element and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
WO2004105145A1 (en) * 2003-05-23 2004-12-02 National Institute Of Advanced Industrial Science And Technology Thermoelectric element-used cooling method and device
JPWO2004105145A1 (en) * 2003-05-23 2006-07-20 独立行政法人産業技術総合研究所 Thermoelectric element-based cooling method and apparatus
JP2015505663A (en) * 2012-02-01 2015-02-23 アルダナック メフメト セルハンARDANUC, Mehmet Serhan Energy harvesting method and apparatus using intrinsic voltage difference between metal joints
JP2021019032A (en) * 2019-07-18 2021-02-15 株式会社テックスイージー Thermionic element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US7880079B2 (en) Dual gap thermo-tunneling apparatus and methods
US7557487B2 (en) Methods and apparatus for thermal isolation for thermoelectric devices
CN101399240B (en) Microelectronic package and method of cooling an interconnect feature in same
KR101175386B1 (en) thermoelectric element
JPH0249480A (en) Thermoelectric device
JPH07142769A (en) Thermal power generation device
US20050012204A1 (en) High efficiency semiconductor cooling device
US8334450B2 (en) Seebeck solar cell
JP2006294935A (en) High efficiency and low loss thermoelectric module
EP2356704B1 (en) Method for converting thermal energy into electric energy
JPH03155376A (en) Thermoelectric generating element
KR20120080820A (en) Thermoelectric module
US20150136192A1 (en) Thermoelectric Conversion Module and Method for Making it
JPH0425186A (en) Thermoelectric conversion element and thermoelectric generator
JP4167761B2 (en) Thermoelectric conversion element and thermoelectric conversion module
TW200941197A (en) Active solid cooler and fabricating method therefor
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
US20210273150A1 (en) Thermoelectric device utilizing non-zero berry curvature
US20040244383A1 (en) High efficiency cooling device
Zhou et al. Modelling the Dynamic Charging Process of High-Tc Coils by a Dynamo-type Flux Pump
JPH02155280A (en) Thermoelectric device
Abdalla et al. Modeling and optimization of thin-film solar thermoelectric cooling devices
JPH0722655A (en) Thermoelectric transducer
JPH03263881A (en) Thermoelectric generation method and device
JPS5835991A (en) High-density thermoelectric element