JPH04251523A - Detecting device for failure in power system - Google Patents

Detecting device for failure in power system

Info

Publication number
JPH04251523A
JPH04251523A JP2414926A JP41492690A JPH04251523A JP H04251523 A JPH04251523 A JP H04251523A JP 2414926 A JP2414926 A JP 2414926A JP 41492690 A JP41492690 A JP 41492690A JP H04251523 A JPH04251523 A JP H04251523A
Authority
JP
Japan
Prior art keywords
power supply
magnetic sensor
detection device
supply lines
failure detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2414926A
Other languages
Japanese (ja)
Inventor
Shinichi Inagawa
伸一 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2414926A priority Critical patent/JPH04251523A/en
Publication of JPH04251523A publication Critical patent/JPH04251523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To reduce the cost and to increase a reliability by making a failure detection device for a power system simple-structured. CONSTITUTION:This device is provided with a magnetic sensor 11 which detects a value of a composite magnetic field generated by a current which flows in a power line pair 12b, 12c constituted of positive-side power lines and negative- side power lines of the same number as the positive-side power lines, a comparison device which compares an output signal value of the magnetic sensor 11 with the specified value, and a judgement device which decides whether there is any failure on the power system based on the comparison result of the comparison device. Since only one current detection system is required for the power lines, the failure detection device can be made simple-structured and the number of components needed is reduced accordingly. Therefore, the cost can be reduced while a reliability is increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、制御装置の電子制御ユ
ニット等に使用される電源系統の故障検知装置に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure detection device for a power supply system used in an electronic control unit of a control device.

【0002】0002

【従来の技術】従来、車両搭載の内燃エンジンの各種の
制御(例えば燃料供給制御、自動変速制御)を行う制御
装置の電子制御ユニットにおいては、電源線が断線する
と、制御装置全体の機能が全く停止してしまうため、プ
ラス側電源線及びマイナス側電源線を夫々2本以上の複
数本使用した構成を採用している。これら電源線のうち
1本が断線しても電力は供給され制御可能であるが、更
に時間が前後して複数本が断線すると制御装置全体の機
能が全く停止してしまう。
[Prior Art] Conventionally, in the electronic control unit of a control device that performs various types of control (for example, fuel supply control, automatic transmission control) of an internal combustion engine installed in a vehicle, if a power line is disconnected, the entire function of the control device is lost. Therefore, a configuration is adopted in which two or more positive power supply wires and two or more negative power supply wires are used. Even if one of these power supply lines is disconnected, power is supplied and control is possible, but if a plurality of power supply lines are disconnected over time, the entire control device will stop functioning.

【0003】そこで、従来は、各電源線にシャント抵抗
を設けて、該電源線に流れる電流を検出することが行わ
れている。
[0003] Conventionally, therefore, a shunt resistor is provided in each power supply line to detect the current flowing through the power supply line.

【0004】図4は、かかる従来のシャント抵抗を用い
た電源系統の故障検知装置を示す回路図である。同図に
おいて、1は直流電圧を供給するバッテリ、2は過電流
防止のためのヒューズ、3は車両全体の制御を行う電子
制御ユニット(以下、ECUという)、4a〜4dは4
本の電源線に設けられた電流検知抵抗(シャント抵抗)
R1〜R4で検知された電流に応じた電圧を増幅する増
幅部、5は出力電圧を安定化させる電源回路(電圧レギ
ュレータ)、6は車両制御のための演算を行う演算部、
7は演算部6に含まれ、アナログ信号をデジタル信号に
変換するA/D変換器、8はLED等から成る故障表示
器、9はエンジン回転数信号等のエンジン運転パラメー
タが入力される入力線、10は燃料噴射弁等に制御信号
を出力する出力線である。上記増幅部4a〜4dは、抵
抗R5〜R8および演算増幅器41から成る。図4の回
路において、抵抗R1〜R4、増幅部4a〜4d、演算
部6および故障表示器8は電源系統の故障検知装置を構
成する。
FIG. 4 is a circuit diagram showing a failure detection device for a power supply system using such a conventional shunt resistor. In the figure, 1 is a battery that supplies DC voltage, 2 is a fuse for overcurrent prevention, 3 is an electronic control unit (hereinafter referred to as ECU) that controls the entire vehicle, and 4a to 4d are 4
Current detection resistor (shunt resistor) installed in the main power line
an amplification unit that amplifies the voltage according to the current detected by R1 to R4; 5 is a power supply circuit (voltage regulator) that stabilizes the output voltage; 6 is a calculation unit that performs calculations for vehicle control;
7 is an A/D converter included in the calculation unit 6 and converts an analog signal into a digital signal, 8 is a fault indicator consisting of an LED, etc., and 9 is an input line into which engine operating parameters such as an engine rotation speed signal are input. , 10 are output lines for outputting control signals to fuel injection valves and the like. The amplification sections 4a to 4d are composed of resistors R5 to R8 and an operational amplifier 41. In the circuit of FIG. 4, the resistors R1 to R4, the amplification sections 4a to 4d, the calculation section 6, and the failure indicator 8 constitute a failure detection device for the power supply system.

【0005】上記電源系統の故障検知装置の正常動作時
には、図4に示すように、電流検出抵抗R1,R2をそ
れぞれ約+i/2の電流が流れ、電流検出抵抗R3,R
4をそれぞれ約−i/2の電流が流れ、各増幅部4a〜
4dは上記各抵抗R1〜R4の両端間に発生した電源に
対応した電圧を増幅した電圧、例えば+2.5Vを出力
する。これらの出力電圧はA/D変換器でデジタル変換
され、演算部内部の比較手段で電源線が正常のときの電
圧であると判断される。これに対して、4本の電源線の
うちの1本、例えば2本のプラス側電源線の一方が「断
」となると、「断」の電源線に接続されている電流検出
抵抗を流れる電流値は零となり、今まで同一電流が流れ
ていたもう一つの抵抗を流れる電流値は+i(全電流)
となる。例えば、抵抗R1が接続されている電源線が「
断」となると、抵抗R1を流れる電流は零、抵抗R2を
流れる電流は+iとなり、増幅部4aの出力電圧は0V
、増幅部4bの出力電圧は5Vとなる。これらの出力電
圧をA/D変換器7でA/D変換した値を演算部6の比
較手段で比較して、プラス側電源線異常の電圧であると
判断する。
During normal operation of the power supply system failure detection device, as shown in FIG.
A current of about -i/2 flows through each of the amplifier sections 4a to 4.
4d outputs a voltage, for example, +2.5V, which is an amplified voltage corresponding to the power supply generated across each of the resistors R1 to R4. These output voltages are digitally converted by an A/D converter, and are determined by comparison means inside the calculation section to be the voltages when the power supply line is normal. On the other hand, if one of the four power supply lines, for example one of the two positive power supply lines, becomes disconnected, the current flows through the current detection resistor connected to the disconnected power supply line. The value becomes zero, and the current value flowing through the other resistance where the same current was flowing until now is +i (total current)
becomes. For example, if the power line to which resistor R1 is connected is
When "off" occurs, the current flowing through the resistor R1 becomes zero, the current flowing through the resistor R2 becomes +i, and the output voltage of the amplifier section 4a becomes 0V.
, the output voltage of the amplifying section 4b is 5V. The values obtained by A/D converting these output voltages by the A/D converter 7 are compared by the comparing means of the calculation section 6, and it is determined that the voltage is an abnormal voltage on the positive side power supply line.

【0006】なお、電流検出抵抗R1〜R4自体の異常
又は増幅部4a〜4d自体の異常の場合には、各増幅部
の出力電圧は殆どの場合0Vあるいは5Vとなるので、
電源線「断」と抵抗異常、増幅部異常とを識別すること
は不可能である。
[0006] Note that in the case of an abnormality in the current detection resistors R1 to R4 themselves or in the amplifying sections 4a to 4d themselves, the output voltage of each amplifying section will be 0V or 5V in most cases.
It is impossible to distinguish between a power line disconnection, a resistance abnormality, or an amplifier abnormality.

【0007】このように、図4の回路においては、電源
線の1本が断となったときその検知が可能であり、これ
により、ECUの機能破壊によるシステムダウンを事前
に防止するものである。
[0007] In this manner, the circuit shown in FIG. 4 can detect when one of the power supply lines is disconnected, thereby preventing a system down due to functional breakdown of the ECU. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
電源系統の故障検知装置は、4本の電源線に対応して電
流検出抵抗と増幅部を4系統有しているので部品点数が
多く、コスト上、信頼性上も問題があった。
[Problems to be Solved by the Invention] However, the conventional failure detection device for a power supply system has four systems of current detection resistors and amplification sections corresponding to four power supply lines, so it has a large number of parts and is expensive. On top of that, there were also problems with reliability.

【0009】本発明は上記事情に鑑みてなされたもので
あり、その目的とするところは、簡単な構成により部品
点数を少なくして、コスト低減、信頼性の向上を図るこ
とができる電源系統の故障検知装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and its purpose is to provide a power supply system that has a simple configuration, reduces the number of parts, reduces costs, and improves reliability. An object of the present invention is to provide a failure detection device.

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に本発明は、バッテリと、該バッテリの出力電圧を安定
化させる電圧レギュレータと、バッテリのプラス側端子
と電圧レギュレータのプラス側端子とを接続する複数の
プラス側電源線と、前記バッテリのマイナス側端子と前
記電圧レギュレータのマイナス側端子とを接続する複数
のマイナス側電源線とを有する電源系統の故障検知装置
において、所定数の前記プラス側電源線とこれと同一本
数の前記マイナス側電源線との電源線対に流れる電流に
よって発生する合成磁界の値を検出する磁気センサと、
この磁気センサの出力信号値と所定値とを比較する比較
手段と、該比較手段の比較結果に応じて前記電源系統に
故障が生じたか否かを判別する判別手段とを備えるよう
にしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a battery, a voltage regulator that stabilizes the output voltage of the battery, and a positive terminal of the battery and a positive terminal of the voltage regulator. A failure detection device for a power supply system having a plurality of positive power supply lines to be connected and a plurality of negative power supply lines to be connected to a negative terminal of the battery and a negative terminal of the voltage regulator. a magnetic sensor that detects the value of a composite magnetic field generated by a current flowing in a power line pair of a side power line and the same number of negative side power lines;
The apparatus includes a comparison means for comparing the output signal value of the magnetic sensor with a predetermined value, and a determination means for determining whether or not a failure has occurred in the power supply system according to the comparison result of the comparison means. be.

【0011】[0011]

【作用】本発明による電源系統の故障検知装置において
は、プラス側電源線とこれと同一本数のマイナス側電源
線との電源線対に流れる電流によって発生する合成磁界
の値を検出し、この検出値と所定値とを比較し、この比
較結果に応じて電源系統に故障が生じたか否かを判別す
る。これにより、電源線の故障検知のための電流検出系
統を一系統とすることができ、故障検知装置を簡単な構
成とすることができる。
[Operation] In the power supply system failure detection device according to the present invention, the value of the composite magnetic field generated by the current flowing in the power line pair of the positive side power line and the same number of negative side power lines is detected. The value is compared with a predetermined value, and based on the comparison result, it is determined whether or not a failure has occurred in the power supply system. Thereby, the current detection system for detecting a failure in the power supply line can be reduced to one system, and the failure detection device can have a simple configuration.

【0012】0012

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0013】図1は、本発明による電源系統の故障検知
装置の一実施例を示すブロック図である。同図において
、バッテリ1の正極端子はヒューズ2を介して電源回路
5の端子T3,T4とプラス側電源線12a,12bに
より接続され、バッテリ1の負極端子T2は電源回路5
の端子T5,T6とマイナス側電源線12c,12dに
より接続されている。プラス側電源線12bとマイナス
側電源線12cは磁気センサ11内部を貫通している。 該磁気センサ11は、オフセット機能を有する増幅部4
の入力側と接続され、増幅部4の出力側は演算部6のA
/D変換器7に接続されている。その他の要素は図4の
対応する要素と同様であり、同一符号を付してあり、説
明を省略する。
FIG. 1 is a block diagram showing an embodiment of a failure detection device for a power supply system according to the present invention. In the figure, the positive terminal of the battery 1 is connected to the terminals T3, T4 of the power supply circuit 5 through the fuse 2 by positive power supply lines 12a, 12b, and the negative terminal T2 of the battery 1 is connected to the terminals T3, T4 of the power supply circuit 5 through the fuse 2.
The terminals T5 and T6 are connected to the terminals T5 and T6 by negative power supply lines 12c and 12d. The positive power line 12b and the negative power line 12c penetrate inside the magnetic sensor 11. The magnetic sensor 11 includes an amplifying section 4 having an offset function.
The output side of the amplifier section 4 is connected to the input side of the arithmetic section 6.
/D converter 7. Other elements are the same as the corresponding elements in FIG. 4, are given the same reference numerals, and will not be described further.

【0014】図2は磁気センサ11の一例を示す略図で
あり、20は内部を2本の電源線12bと12cが貫通
しているトロイダルコア、21はホール素子である。ホ
ール素子21の出力電圧Vは、
FIG. 2 is a schematic diagram showing an example of the magnetic sensor 11, in which 20 is a toroidal core through which two power lines 12b and 12c pass, and 21 is a Hall element. The output voltage V of the Hall element 21 is

【0015】[0015]

【数1】V=KBIと表わせる。ここに、Kは定数、B
はトロイダルコア20によりホール素子21中に生じ、
トロイダルコア20の貫通電流に比例する磁本密度、I
はホール素子21を流れる定電流である。このようにし
て、Bに比例した出力電圧Vを得ることができる。
[Equation 1] It can be expressed as V=KBI. Here, K is a constant, B
is generated in the Hall element 21 by the toroidal core 20,
Magnetic book density, I, which is proportional to the through current of the toroidal core 20
is a constant current flowing through the Hall element 21. In this way, an output voltage V proportional to B can be obtained.

【0016】次に、上述のように構成された電源系統の
故障検知装置の動作について説明する。正常動作時は、
従来例と同様に、プラス側電源線12a,12bにはそ
れぞれ、バッテリ1からの電流iを等分した+i/2の
電流が流れ、マイナス側電源線12c、12dにはそれ
ぞれバッテリ1への電流−iを等分した−i/2の電流
が流れる。電源線12bには+i/2が流れ、電源線1
2cには−i/2が流れているので、これらの電流和は
零であり、これらの電流による合成磁界の値も零となり
、磁気センサ11の出力信号aのレベルは0Vとなる。 増幅部4には0Vの出力信号aが入力されるが、例えば
2.5Vのオフセットがかかっているので、このオフセ
ット分の電圧2.5Vが増幅部4から出力される。 増幅部4の出力信号bはA/D変換器7に入力されてデ
ジタル信号となり、その値が演算部6の比較手段で所定
基準値と比較される。所定基準値とは、例えば図3に示
すように0.25V,1.75V,3.25V,4.7
5Vであり、1.75Vと3.25Vとの間は正常領域
S1、3.25Vと4.75Vとの間はプラス側の電源
系故障領域S2、1.75Vと0.25Vとの間はマイ
ナス側の電源系故障領域S3、4.75Vと5Vとの間
はプラス側の磁気センサ故障領域S4、0.25Vと0
Vとの間はマイナス側の磁気センサ故障領域S5である
。図3において、レベルSAは正常動作時の増幅部4の
出力信号bの理想的レベル2.5Vを示し、レベルSB
,SCは電源線「断」時の理想的レベル4V,1Vをそ
れぞれ示す。正常動作時には、出力信号bのレベルは増
幅部4のオフセット電圧2.5Vに対応して約2.5V
であるので、正常領域S1の範囲内であり、演算部6の
比較手段は正常と判断する。
Next, the operation of the power system failure detection device configured as described above will be explained. During normal operation,
Similar to the conventional example, a current of +i/2, which is equal to the current i from the battery 1, flows through the positive power supply lines 12a and 12b, and a current to the battery 1 flows through the negative power supply lines 12c and 12d, respectively. A current of -i/2, which is equal to -i, flows. +i/2 flows through the power line 12b, and the power line 1
Since -i/2 is flowing through 2c, the sum of these currents is zero, the value of the composite magnetic field due to these currents is also zero, and the level of the output signal a of the magnetic sensor 11 is 0V. The output signal a of 0V is input to the amplification section 4, but since an offset of, for example, 2.5V is applied, a voltage of 2.5V corresponding to this offset is outputted from the amplification section 4. The output signal b of the amplification section 4 is input to the A/D converter 7 to become a digital signal, and the value thereof is compared with a predetermined reference value by the comparison means of the calculation section 6. The predetermined reference values are, for example, 0.25V, 1.75V, 3.25V, 4.7V as shown in FIG.
5V, between 1.75V and 3.25V is the normal area S1, between 3.25V and 4.75V is the positive side power system failure area S2, and between 1.75V and 0.25V is the normal area S1. The power supply system failure area S3 on the negative side, between 4.75V and 5V, is the magnetic sensor failure area S4 on the positive side, 0.25V and 0.
The area between this and V is the negative side magnetic sensor failure area S5. In FIG. 3, level SA indicates the ideal level 2.5V of the output signal b of the amplifier section 4 during normal operation, and level SB
, SC indicate ideal levels of 4V and 1V, respectively, when the power line is "off". During normal operation, the level of the output signal b is approximately 2.5V, corresponding to the offset voltage of 2.5V of the amplifier section 4.
Therefore, it is within the normal region S1, and the comparison means of the calculation unit 6 determines that it is normal.

【0017】次に、電源線「断」時の動作、例えば電源
線12aの「断」時の動作について説明する。電源線1
2aが「断」となると、電源線12aを流れる電流は零
となり、従って電源線12bを流れる電流はバッテリ1
からの全電流+iとなる。電源線12c,12dを流れ
る電流は正常動作時と同じである。これにより、磁気セ
ンサ11の内部を貫通する電流は電源線12bの+iと
電源線12cの−i/2との合計+i/2となり、これ
に対応した磁界が磁気センサ11に生じ、磁気センサ1
1は+i/2に対応したレベル例えば1.5Vの出力信
号aを出力する。増幅部4は、1.5Vの信号aを入力
することにより、オフセットが2.5Vであることから
、4Vの信号bを出力する。演算部6の比較手段は信号
bが領域S2のレベルの信号であることを検出し、電源
系故障すなわちプラス側の電源線「断」であると判断す
る。そして、故障表示器8にプラス側の電源線が「断」
であることが表示される。このようにして、電源線の「
断」が検出され、システムダウンを事前に防止すること
ができる。
Next, the operation when the power line 12a is "off" will be described, for example, the operation when the power line 12a is "off". Power line 1
2a becomes "disconnected", the current flowing through the power supply line 12a becomes zero, and therefore the current flowing through the power supply line 12b decreases from the battery 1.
The total current from +i. The currents flowing through the power supply lines 12c and 12d are the same as during normal operation. As a result, the current passing through the inside of the magnetic sensor 11 becomes +i/2, which is the sum of +i of the power line 12b and -i/2 of the power line 12c, and a corresponding magnetic field is generated in the magnetic sensor 11.
1 outputs an output signal a of a level corresponding to +i/2, for example, 1.5V. By inputting the 1.5V signal a, the amplifier section 4 outputs the 4V signal b since the offset is 2.5V. The comparison means of the arithmetic unit 6 detects that the signal b is at the level of the region S2, and determines that there is a failure in the power supply system, that is, the positive power line is "broken." Then, the positive power line is “broken” on the fault indicator 8.
is displayed. In this way, the power line
A system failure can be detected and a system failure can be prevented in advance.

【0018】同様にして、電源線12b,12c,12
dのそれぞれの「断」を検出可能である。このことを表
に示す。このように、本実施例においては4本の電源線
に対して一つの磁気センサで対応できるので、構成も簡
単になり、コストダウンを図ることもできる。なお、上
記実施例では電源線4本の場合について示したが、6本
以上についても同様に対応できることは明らかである。
Similarly, the power lines 12b, 12c, 12
It is possible to detect each "break" of d. This is shown in the table. In this way, in this embodiment, one magnetic sensor can be used for four power supply lines, so the configuration can be simplified and costs can be reduced. In the above embodiment, the case where there are four power supply lines is shown, but it is clear that the case where there are six or more power supply lines can be handled in the same manner.

【0019】[0019]

【表1】   次に、磁気センサ11の故障の場合について説明す
る。磁気センサ11から増幅部4を介してA/D変換器
7までの経路のいずれかにおいて伝染がオープンあるい
はショート(グランド又は電源ラインとのショート)し
た場合においては、殆どの場合、A/D変換器7の出力
は最大電位、たとえば5Vあるいは最小電位、たとえば
0Vとなる。この場合、演算部6の比較手段は電源系統
の状態が図2の領域S4あるいはS5にあることを検知
し、これにより磁気センサ11の故障と判断する。この
ように図1の実施例においては磁気センサの故障も検出
可能であり、図1と比べて構成が簡単であるのみならず
、ECU3の信頼性を更に高めることができる。
[Table 1] Next, a case where the magnetic sensor 11 fails will be described. In most cases, if the transmission is open or shorted (short to ground or power line) in any of the paths from the magnetic sensor 11 to the A/D converter 7 via the amplifier 4, the A/D conversion will be interrupted. The output of the device 7 is at the maximum potential, for example 5V, or at the minimum potential, for example 0V. In this case, the comparing means of the calculation unit 6 detects that the state of the power supply system is in the region S4 or S5 in FIG. 2, and thereby determines that the magnetic sensor 11 is malfunctioning. In this way, in the embodiment shown in FIG. 1, it is possible to detect a failure of the magnetic sensor, and the structure is not only simpler than that in FIG. 1, but also the reliability of the ECU 3 can be further improved.

【0020】[0020]

【発明の効果】以上説明したように本発明は、バッテリ
と、該バッテリの出力電圧を安定化させる電圧レギュレ
ータと、バッテリのプラス側端子と電圧レギュレータの
プラス側端子とを接続する複数のプラス側電源線と、前
記バッテリのマイナス側端子と前記電圧レギュレータの
マイナス側端子とを接続する複数のマイナス側電源線と
を有する電源系統の故障検知装置において、所定数の前
記プラス側電源線とこれと同一本数の前記マイナス側電
源線との電源線対に流れる電流によって発生する合成磁
界の値を検出する磁気センサと、この磁気センサの出力
信号値と所定値とを比較する比較手段と、該比較手段の
比較結果に応じて前記電源系統に故障が生じたか否かを
判別する判別手段とを備えたことにより、電源線の故障
検知のための電流検出系統を一系統とすることができる
ので、構成が簡単となり、コストダウンを図ることがで
き、また部品点数の減少による信頼性の向上を図ること
もできる効果がある。
As explained above, the present invention provides a battery, a voltage regulator that stabilizes the output voltage of the battery, and a plurality of positive terminals that connect the positive terminal of the battery and the positive terminal of the voltage regulator. A failure detection device for a power supply system having a power supply line and a plurality of negative power supply lines connecting a negative terminal of the battery and a negative terminal of the voltage regulator, wherein a predetermined number of the positive power supply lines and A magnetic sensor that detects the value of a composite magnetic field generated by a current flowing in a power line pair with the same number of negative side power line, a comparison means that compares an output signal value of this magnetic sensor with a predetermined value, and the comparison means. By providing a determining means for determining whether or not a failure has occurred in the power supply system according to a comparison result of the means, the current detection system for detecting a failure in the power supply line can be reduced to one system. The structure is simplified, costs can be reduced, and reliability can be improved by reducing the number of parts.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係る電源系統の故障検知装
置を示すブロック図である。
FIG. 1 is a block diagram showing a failure detection device for a power supply system according to an embodiment of the present invention.

【図2】磁気センサの一例を示す略図である。FIG. 2 is a schematic diagram showing an example of a magnetic sensor.

【図3】正常、異常の各領域を示す説明図である。FIG. 3 is an explanatory diagram showing normal and abnormal regions.

【図4】従来の電源系統の故障検知装置を示す回路図で
ある。
FIG. 4 is a circuit diagram showing a conventional failure detection device for a power supply system.

【符号の説明】[Explanation of symbols]

1  バッテリ 2  ヒューズ 3  ECU 4  増幅部 5  電源回路(電圧レギュレータ) 6  演算部 7  A/D変換器 8  故障表示器 9  入力線 10  出力線 11  磁気センサ 12a〜12d  電源線 1 Battery 2 Fuse 3 ECU 4 Amplification section 5 Power supply circuit (voltage regulator) 6 Arithmetic section 7 A/D converter 8 Malfunction indicator 9 Input line 10 Output line 11 Magnetic sensor 12a-12d Power line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  バッテリと、該バッテリの出力電圧を
安定化させる電圧レギュレータと、バッテリのプラス側
端子と電圧レギュレータのプラス側端子とを接続する複
数のプラス側電源線と、前記バッテリのマイナス側端子
と前記電圧レギュレータのマイナス側端子とを接続する
複数のマイナス側電源線とを有する電源系統の故障検知
装置において、所定数の前記プラス側電源線とこれと同
一本数の前記マイナス側電源線との電源線対に流れる電
流によって発生する合成磁界の値を検出する磁気センサ
と、この磁気センサの出力信号値と所定値とを比較する
比較手段と、該比較手段の比較結果に応じて前記電源系
統に故障が生じたか否かを判別する判別手段とを備えた
ことを特徴とする電源系統の故障検知装置。
1. A battery, a voltage regulator that stabilizes the output voltage of the battery, a plurality of positive power supply lines connecting a positive terminal of the battery and a positive terminal of the voltage regulator, and a negative side of the battery. In a failure detection device for a power supply system having a plurality of negative power supply lines connecting a terminal and a negative terminal of the voltage regulator, a predetermined number of the positive power supply lines and the same number of negative power supply lines; a magnetic sensor for detecting the value of a composite magnetic field generated by a current flowing through a pair of power supply lines; a comparison means for comparing an output signal value of the magnetic sensor with a predetermined value; What is claimed is: 1. A failure detection device for a power supply system, comprising: determination means for determining whether or not a failure has occurred in the system.
【請求項2】  前記判別手段は、前記比較手段の比較
結果に応じて、前記複数のプラス側電源線および前記複
数のマイナス側電源線のいずれかに断線が生じたか否か
を判別することを特徴とする請求項1記載の電源系統の
故障検知装置。
2. The determining means determines whether a disconnection has occurred in any of the plurality of positive power supply lines and the plurality of negative power supply lines, according to the comparison result of the comparison means. A failure detection device for a power supply system according to claim 1.
【請求項3】  前記判別手段は、前記比較手段の比較
結果に応じて、前記磁気センサが故障しているか否かを
判別することを特徴とする請求項1記載の電源系統の故
障検知装置。
3. The failure detection device for a power supply system according to claim 1, wherein the determining means determines whether or not the magnetic sensor is malfunctioning in accordance with the comparison result of the comparing means.
【請求項4】  前記磁気センサはホール素子と、トロ
イダルコアとから成ることを特徴とする請求項1乃至3
のいずれかに記載の電源系統の故障検知装置。
4. Claims 1 to 3, wherein the magnetic sensor comprises a Hall element and a toroidal core.
A failure detection device for a power supply system according to any one of the above.
JP2414926A 1990-12-27 1990-12-27 Detecting device for failure in power system Pending JPH04251523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414926A JPH04251523A (en) 1990-12-27 1990-12-27 Detecting device for failure in power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2414926A JPH04251523A (en) 1990-12-27 1990-12-27 Detecting device for failure in power system

Publications (1)

Publication Number Publication Date
JPH04251523A true JPH04251523A (en) 1992-09-07

Family

ID=18523350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414926A Pending JPH04251523A (en) 1990-12-27 1990-12-27 Detecting device for failure in power system

Country Status (1)

Country Link
JP (1) JPH04251523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013575A (en) * 2013-07-05 2015-01-22 西日本旅客鉄道株式会社 Railway signal cable disconnection detector
KR101539398B1 (en) * 2014-07-16 2015-07-27 장상호 Remotely controlled magnetic sensing type line fault indicator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013575A (en) * 2013-07-05 2015-01-22 西日本旅客鉄道株式会社 Railway signal cable disconnection detector
KR101539398B1 (en) * 2014-07-16 2015-07-27 장상호 Remotely controlled magnetic sensing type line fault indicator

Similar Documents

Publication Publication Date Title
CN109416382B (en) Grounding loss detection circuit
JP4296811B2 (en) Physical quantity sensor device
JPH0373212B2 (en)
US8154312B2 (en) Sensor system
US20100289499A1 (en) Monitoring device for monitoring a terminal of a terminal component
US4253056A (en) Ground fault detector for DC power supply
US5610532A (en) Isolated DC fault current sensor
EP0723161B1 (en) Trouble monitor device for bridge circuit
US4945336A (en) Trouble detection apparatus for automobile air-bag system
JPH04251523A (en) Detecting device for failure in power system
SE466172B (en) DEVICE FOR THE PREPARATION OF A VARIOUS CURRENT RESPONSIBLE FOR A DEVICE APPLIED
CN111123106B (en) Sensor and method for checking a sensor
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
US5315256A (en) Fault detection circuit for use in determining the existence of a fault in any one of a plurality of DC loads
US5034681A (en) Voltage detection
JPH04238272A (en) Power supply circuit with leakage current detecting function
JPH02157915A (en) Fault detector for analog output circuit
US11592511B2 (en) Methods and systems for diagnosing magnetic sensors
JPS6357851A (en) Detecting device for throttle valve opening
JP3812693B2 (en) Vehicle driving state detection device
JPS6049417A (en) Overcurrent detecting circuit
JPH0142054Y2 (en)
JP4803161B2 (en) Power transistor circuit
JP2692135B2 (en) Load control device
SU974589A2 (en) Majority device for discriminating vector quantity projections