JPH04251190A - Honeycomb type heat accumulating body - Google Patents

Honeycomb type heat accumulating body

Info

Publication number
JPH04251190A
JPH04251190A JP2415583A JP41558390A JPH04251190A JP H04251190 A JPH04251190 A JP H04251190A JP 2415583 A JP2415583 A JP 2415583A JP 41558390 A JP41558390 A JP 41558390A JP H04251190 A JPH04251190 A JP H04251190A
Authority
JP
Japan
Prior art keywords
honeycomb
heat storage
wall thickness
cell wall
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2415583A
Other languages
Japanese (ja)
Other versions
JPH0739913B2 (en
Inventor
Masao Kawamoto
川本 雅男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP2415583A priority Critical patent/JPH0739913B2/en
Publication of JPH04251190A publication Critical patent/JPH04251190A/en
Publication of JPH0739913B2 publication Critical patent/JPH0739913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To make the constitution of a honeycomb type heat accumulating body so as to be suitable for the heat accumulating body for a combustion device. CONSTITUTION:In a honeycomb type heat accumulating body 2, recovering waste heat in exhaust gas by passing the exhaust gas and gas to be heated alternately, the values of P and T are set within a range wherein the value of (f) obtained by a next formula f(Vc/V, At/V, 1/ p)=(1-beta)beta<3>, here, beta is the ration of the openings of the honeycomb beta=(P-T)<2>/P<2>, P is the cell pitch of the honeycomb and T is the wall thickness of the cell the honeycomb, shows the maximum valve or a valve bear the maximum valve.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ハニカム状の蓄熱体に
関する。更に詳述すると、本発明は蓄熱式ラジアントチ
ューブバーナや蓄熱式オープンフレームバーナ(直火式
蓄熱方式バーナ)等の燃焼装置の排熱回収システムにお
いて例えば20秒〜60秒の短時間で蓄熱−放熱サイク
ルを繰返す(以下高周期蓄熱という)のに用いて好適な
ハニカム状蓄熱体に関する。尚、本明細書においてハニ
カム状とは本来の六角形の穴を有する場合だけでなく、
四角形、三角形の穴を無数にあけたものも含む。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a honeycomb-shaped heat storage body. More specifically, the present invention provides heat storage and heat dissipation in a short period of, for example, 20 seconds to 60 seconds in an exhaust heat recovery system for a combustion device such as a heat storage type radiant tube burner or a heat storage type open flame burner (direct fire type heat storage type burner). The present invention relates to a honeycomb-shaped heat storage body suitable for use in repeating cycles (hereinafter referred to as high-cycle heat storage). In addition, in this specification, the term "honeycomb shape" refers not only to cases having hexagonal holes;
It also includes those with countless square or triangular holes.

【0002】0002

【従来の技術】近年、廃棄ガスから相当量の熱量を回収
して熱効率を高めるため燃焼用空気のプレヒート技術が
開発されている。例えば、図示していないが、ラジアン
トチューブの両端に蓄熱体を有するバーナをそれぞれ設
け、これらを交互に燃焼させてその燃焼ガスを燃焼させ
ていないバーナ側の蓄熱体を通して排出し、蓄熱体に蓄
熱された燃焼ガスの熱を使って燃焼用空気をプレヒート
する蓄熱式ラジアントチューブバーナが提供されている
(工業加熱Vol.23,NO.6,P71  日本工
業炉協会発行)。
BACKGROUND OF THE INVENTION In recent years, combustion air preheating techniques have been developed in order to recover a significant amount of heat from waste gas and increase thermal efficiency. For example, although not shown, burners each having a heat storage body are provided at both ends of a radiant tube, and the burners are alternately combusted, and the combustion gas is discharged through the heat storage body on the side of the burner that is not being burned, and the heat is stored in the heat storage body. A regenerative radiant tube burner is provided that preheats combustion air using the heat of the combustion gas (Industrial Heating Vol. 23, No. 6, P71, published by the Japan Industrial Furnace Association).

【0003】このような排熱回収システムに使用される
蓄熱体として高性能なもの、換言すれば最適なものとし
ての条件は、例えば図4及び図4Bに示すようなハニカ
ム状の蓄熱体を仮定すれば次の通りである。尚、図4A
及び図4Bにおいて、Dはハニカムの外径、Lはハニカ
ムの長さ、Pはハニカムのセルピッチ、Tはハニカムの
セル壁厚さ、Aはハニカムの空筒断面積である。■Vc
/Vが大きいこと、即ち限られた容積の中で蓄熱容量が
大きいことである。コンパクトなサイズで大量の熱を蓄
え得るようにするためである。ここで、Vはハニカムの
空筒容積、Vcはハニカムの蓄熱容積(蓄熱に寄与する
真の体積)である。■At/Vが大きいこと、即ち伝熱
面面積が大きいことである。一定量の熱を蓄熱する速度
は、一定蓄熱容量に対し伝熱面面積が広いほど速くなり
高レスポンスとなる。結果として高周期蓄熱が実現され
る。熱の出入りは速い方が好ましいからである。■単位
空筒断面積当りの通風抵抗ΔPが小さいことである。
[0003]The conditions for a high-performance heat storage body to be used in such an exhaust heat recovery system, in other words, an optimal one, are assumed to be a honeycomb-shaped heat storage body as shown in FIGS. 4 and 4B, for example. Then, it is as follows. Furthermore, Figure 4A
In FIG. 4B, D is the outer diameter of the honeycomb, L is the length of the honeycomb, P is the cell pitch of the honeycomb, T is the cell wall thickness of the honeycomb, and A is the cross-sectional area of the hollow cylinder of the honeycomb. ■Vc
/V is large, that is, the heat storage capacity is large within a limited volume. This is to allow a large amount of heat to be stored in a compact size. Here, V is the cavity volume of the honeycomb, and Vc is the heat storage volume (true volume that contributes to heat storage) of the honeycomb. (2) At/V is large, that is, the heat transfer surface area is large. The larger the heat transfer surface area is for a given heat storage capacity, the faster the rate of storing a certain amount of heat becomes, resulting in a higher response. As a result, high-cycle heat storage is achieved. This is because it is preferable for heat to flow in and out quickly. (2) The ventilation resistance ΔP per unit cross-sectional area of the cavity is small.

【0004】一方、顕熱を利用する蓄熱システムに使用
される従来の蓄熱体としては、製鉄や窯業などの工業炉
で用いられる蓄熱レンガや、金属製蓄熱材等が一般的で
ある。蓄熱レンガは6cm程度の厚さのものが格子状に
配列されて積み重ねて使用され、また金属製の蓄熱材は
2〜3cmの厚みの純鉄等が使用されている。また、近
年、アルミナボールのようなセラミックの球体を蓄熱体
として使用することも考えられている。
On the other hand, as conventional heat storage bodies used in heat storage systems that utilize sensible heat, heat storage bricks used in industrial furnaces such as iron and ceramic industries, metal heat storage materials, and the like are generally used. Heat storage bricks with a thickness of about 6 cm are arranged in a lattice pattern and stacked on top of each other, and the metal heat storage material is made of pure iron or the like with a thickness of 2 to 3 cm. Furthermore, in recent years, it has been considered to use ceramic spheres such as alumina balls as heat storage bodies.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、蓄熱レ
ンガの場合、数十分から1時間の蓄熱−放熱サイクルを
繰返すものであり、熱の出し入れの速度が遅くなり、平
均温度が下がって熱効率が悪くなる。即ち、蓄熱体容量
が大きいために十分蓄熱されかつ十分放熱されるには十
分長い時間が必要となる。このため、20〜60秒の短
時間で蓄熱−放熱サイクルを繰返す高周期蓄熱には適し
ていない。また金属製蓄熱材の場合、分単位で蓄熱−放
熱サイクルを繰返すことができるが、燃焼排ガスのよう
な酸化性のガスに対しての使用には向かない。また、1
000℃程度以上の高温燃焼ガスの場合も耐熱上の理由
で使用できない。
[Problems to be Solved by the Invention] However, in the case of heat storage bricks, the heat storage/heat release cycle is repeated for several tens of minutes to an hour, which slows down the rate of heat transfer and lowers the average temperature, resulting in poor thermal efficiency. Become. That is, since the capacity of the heat storage element is large, a sufficiently long time is required for sufficient heat storage and sufficient heat dissipation. Therefore, it is not suitable for high-cycle heat storage in which the heat storage-heat release cycle is repeated in a short period of 20 to 60 seconds. In addition, in the case of a metal heat storage material, the heat storage/heat release cycle can be repeated in minutes, but it is not suitable for use with oxidizing gases such as combustion exhaust gas. Also, 1
In the case of high-temperature combustion gas of approximately 000°C or higher, it cannot be used for heat resistance reasons.

【0006】そこで、本発明者が種々検討の結果、燃焼
ガスに対して不活性でかつ耐熱性に優れるセラミックを
用い、比表面積が大きなハニカム状の筒体に形成するこ
とを考えた。このような形態をとるセラミックとしては
、従来、自動車用触媒セラミックが存在する。
[0006] As a result of various studies, the inventor of the present invention came up with the idea of forming a honeycomb-shaped cylindrical body with a large specific surface area using ceramic that is inert to combustion gas and has excellent heat resistance. Conventionally, as a ceramic having such a form, there is a catalytic ceramic for automobiles.

【0007】しかし、この触媒用セラミックは、できる
だけ多くの触媒を担持するために広い表面積を得ること
を第1の目的としている。このため、ハニカムのセル壁
厚さをできるだけ薄くしてピッチを細かくするようにし
ている。通常、製造技術の極限に達するまで薄く形成さ
れている。しかしながら、このような構成では通風抵抗
が大きくなる問題がある。圧力比の高い自動車用エンジ
ンの場合にはそれほど問題とならないが、バーナ等の燃
焼装置においては圧力損失の増大は無視できなく、燃焼
装置用蓄熱体としては不向きである。反面、通風抵抗を
小さくするため、セル壁厚さを変えずにピッチを大きく
して通気性を良くすれば蓄熱容量が低下する。このため
、自動車用触媒セラミックを単に蓄熱体として転用する
だけでは燃焼装置の蓄熱体としては不向きである。斯様
に従来の蓄熱体ではコンパクトサイズで通風抵抗が小さ
い上に蓄熱容量も伝熱面面積も適度に大きいという関係
、即ち燃焼装置の蓄熱体として好適なハニカム状の蓄熱
体を得ることは難しかった。
However, the primary purpose of this catalyst ceramic is to obtain a large surface area in order to support as much catalyst as possible. For this reason, the cell wall thickness of the honeycomb is made as thin as possible to make the pitch fine. Usually, they are made as thin as possible to reach the limits of manufacturing technology. However, such a configuration has a problem of increased ventilation resistance. Although this is not so much of a problem in the case of automobile engines with high pressure ratios, the increase in pressure loss cannot be ignored in combustion devices such as burners, making it unsuitable as a heat storage body for combustion devices. On the other hand, if the pitch is increased to improve ventilation without changing the cell wall thickness in order to reduce ventilation resistance, the heat storage capacity will decrease. For this reason, simply reusing automotive catalytic ceramics as a heat storage body is not suitable as a heat storage body for a combustion device. In this way, it is difficult to obtain a honeycomb-shaped heat storage body that is compact in size, has low ventilation resistance, and has a moderately large heat storage capacity and heat transfer surface area, that is, is suitable as a heat storage body for combustion equipment. Ta.

【0008】本発明は燃焼装置用蓄熱体として妥当なハ
ニカム状蓄熱体を提供することを目的とする。
An object of the present invention is to provide a honeycomb-shaped heat storage body suitable as a heat storage body for a combustion device.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の蓄熱体は、排ガスと被加熱ガスとを交互に
通過させて排ガス中の排熱を回収するハニカム状蓄熱体
において、次式 f(Vc/V,At/V,1/ΔP)=(1−β)β3
 但し、β=ハニカムの開口割合 β=(P−T)2 /P2  P=ハニカムのセルピッチ T=ハニカムのセル壁厚さ で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定するようにしている。
[Means for Solving the Problems] In order to achieve the above object, the heat storage body of the present invention is a honeycomb-shaped heat storage body in which exhaust gas and heated gas are passed alternately to recover exhaust heat in the exhaust gas. Formula f(Vc/V, At/V, 1/ΔP)=(1-β)β3
However, β = honeycomb opening ratio β = (P-T)2 /P2 P = honeycomb cell pitch T = honeycomb cell wall thickness P and T are within the range where f, which is determined by the honeycomb cell wall thickness, has a maximum value or a value close to it. I am trying to set it.

【0010】また、本発明の蓄熱体において肉厚は、セ
ル壁厚さTがガスの切り替え時間に応じて変えられるこ
と、好ましくはセル壁厚さTが0.04〜0.06mm
/秒の範囲で設定されることを特徴としている。
[0010] Furthermore, in the heat storage body of the present invention, the cell wall thickness T can be changed depending on the gas switching time, and preferably the cell wall thickness T is 0.04 to 0.06 mm.
It is characterized by being set in the range of / seconds.

【0011】[0011]

【作用】例えば、図4A及び図4Bに示すような構造の
ハニカムセラミックスを仮定すると、ハニカムの開口割
合βは、 β=(P−T)2 /P2  と表され、蓄熱容積割合Vc/Vは、 Vc/V=1−β となる。また、伝熱面面積割合  At/Vは
[Operation] For example, assuming a honeycomb ceramic structure as shown in FIGS. 4A and 4B, the opening ratio β of the honeycomb is expressed as β=(PT)2/P2, and the heat storage volume ratio Vc/V is , Vc/V=1-β. In addition, the heat transfer surface area ratio At/V is

【数1】 となり、圧力損失ΔPは ΔP=λ・(γ/2g)・v2 ・L/deで表される
。 ここで、λ:摩擦係数 γ:流体の比重量(kg/m3 ) v:流体の流速(m/sec) g:重力加速度(9.8m/sec2 )de:ハニカ
ム流路相等直径(mm) 流体の流速vは v=G/3600AR  ここで、G:流体の流量(m3 /H)AR :ハニカ
ムの流路断面積(m2 )ハニカムの流路断面積AR 
は AR =βA ハニカムの流路相等直径deは
[Formula 1] The pressure loss ΔP is expressed as ΔP=λ·(γ/2g)·v2·L/de. Here, λ: Friction coefficient γ: Specific weight of fluid (kg/m3) v: Fluid flow velocity (m/sec) g: Gravitational acceleration (9.8 m/sec2) de: Equivalent diameter of honeycomb channels (mm) Fluid The flow velocity v is v=G/3600AR where, G: Fluid flow rate (m3/H) AR: Honeycomb flow passage cross-sectional area (m2) Honeycomb flow passage cross-sectional area AR
is AR = βA The equal diameter de of the honeycomb channels is

【数2】 よって単位長さあたりのハニカム圧力損失の逆数1/Δ
Pは
[Equation 2] Therefore, the reciprocal of honeycomb pressure loss per unit length is 1/Δ
P is

【数3】 よって単位流量あたりのハニカム圧力損失の逆数1/Δ
Pは
[Equation 3] Therefore, the reciprocal of honeycomb pressure loss per unit flow rate is 1/Δ
P is

【数4】 よって単位空筒断面あたりのハニカム圧力損失の逆数1
/ΔPは
[Equation 4] Therefore, the reciprocal of the honeycomb pressure loss per unit cavity cross section is 1
/ΔP is

【数5】 したがって、高性能ハニカムの条件■■■を評価する評
価式として、   f(Vc/V,At/V,1/ΔP)      
  =(1−β)×(β/P−T)×(P−T)β2 
=(1−β)β3   が得られる。ここで、(P/T
)の値に対してfを算出した結果(図1のグラフ参照)
、fはP/T=7.5の時最大値を示すことが分かる。 そこで、Tの値即ちセル壁厚さが定まればその7.5倍
のピッチをとるときが蓄熱用ハニカムとしては最適であ
る。
[Equation 5] Therefore, as an evaluation formula for evaluating the conditions for high-performance honeycomb, f(Vc/V, At/V, 1/ΔP)
=(1-β)×(β/P-T)×(P-T)β2
=(1-β)β3 is obtained. Here, (P/T
) for the value of f (see graph in Figure 1)
, f shows the maximum value when P/T=7.5. Therefore, once the value of T, that is, the cell wall thickness is determined, a pitch that is 7.5 times that value is optimal for a heat storage honeycomb.

【0012】またセル隔壁厚さと切換え時間とを変えて
そのときの蓄熱量の変化を検討すると、切換え時間が長
い場合はセル壁厚さTが増加すると蓄熱量はほぼ比例し
て増加するが、切換え時間が短い場合はセル壁厚さがあ
る程度以上になるとそれ以上厚くしても蓄熱量は増加し
なくなる。これは短い時間ではセル壁厚さが厚い場合、
奥まで十分熱が入り込まず、かつ放出されないことによ
る。したがって、切換え時間毎に採用し得る最大セル壁
厚さが存在することは明らかである。
Furthermore, when changing the cell partition wall thickness and switching time and examining the change in heat storage amount, it is found that when the switching time is long, as the cell wall thickness T increases, the heat storage amount increases almost proportionally; When the switching time is short, once the cell wall thickness exceeds a certain level, the amount of heat storage will not increase even if the cell wall thickness is made thicker. This is true if the cell wall thickness is thick in a short period of time.
This is because heat does not penetrate deep enough and is not released. It is therefore clear that there is a maximum cell wall thickness that can be adopted for each switching time.

【0013】そこで、切換え時間を無限大にしてハニカ
ムセル壁内温度分布がなくなるまで十分加熱した状態の
単位伝熱面面積あたりの蓄熱量で切換え時の蓄熱量を割
って100を掛けた値を蓄熱効率とし、これを算出した
図3の結果から一定の蓄熱効率に対し表1に示すような
切り換時間とセル壁厚さの関係があることが理解できる
。即ち、切換え時間が短いほど、セル壁厚さを薄くしな
ければ切換え時間を無限に長くしたときの蓄熱効率10
0%に相当する線(細線で示される)から大きく乖離す
る。換言すれば、蓄熱効率が悪化している。そして、切
換え時間が長くなる程、セル壁厚さを厚くしなければ小
さな乖離とならない。依って、セル壁厚さ毎に最適の切
換え時間が存在することとなる。
[0013] Therefore, the amount of heat storage at the time of switching is divided by the amount of heat storage per unit heat transfer surface area when the switching time is set to infinity and the honeycomb cell is sufficiently heated until the temperature distribution within the wall disappears, and the value is calculated by multiplying by 100. It can be seen from the calculated results of FIG. 3 that there is a relationship between switching time and cell wall thickness as shown in Table 1 for a constant heat storage efficiency. In other words, the shorter the switching time, the lower the heat storage efficiency (10) when the switching time is made infinitely long unless the cell wall thickness is made thinner.
It deviates significantly from the line corresponding to 0% (indicated by a thin line). In other words, heat storage efficiency is deteriorating. As the switching time becomes longer, the cell wall thickness must be made thicker to achieve a small deviation. Therefore, there is an optimum switching time for each cell wall thickness.

【0014】                     表1  セ
ル壁厚さと切り換え時間の関係切り換え時間     
                 蓄熱効率    
(%)  (SEC)        99     
     98          97      
    96    20           0.
8514        1.0031       
 1.1084        1.2012    
 30           1.3251     
   1.5356        1.6811  
      1.8019     40      
     1.7647        2.0341
        2.2291        2.3
839     50           2.20
43        2.5139        2
.7368        2.9164     6
0           2.6223       
 2.9783        3.2353    
    3.4520     70        
   3.0031        3.4118  
      3.7121        3.947
4     80           3.3963
        3.8421        4.1
734        4.4334     90 
          3.7771        4
.2632        4.6130      
  4.8916 これらを考慮するとき、ハニカムセ
ラックスのセル壁厚さTと切り換え時間との間には相関
関係があり、0.004〜0.006mm/secの範
囲に肉厚Tを設定すると高い蓄熱効率で通風抵抗の上昇
を最小限に抑えることができる。
Table 1 Relationship between cell wall thickness and switching time Switching time
Heat storage efficiency
(%) (SEC) 99
98 97
96 20 0.
8514 1.0031
1.1084 1.2012
30 1.3251
1.5356 1.6811
1.8019 40
1.7647 2.0341
2.2291 2.3
839 50 2.20
43 2.5139 2
.. 7368 2.9164 6
0 2.6223
2.9783 3.2353
3.4520 70
3.0031 3.4118
3.7121 3.947
4 80 3.3963
3.8421 4.1
734 4.4334 90
3.7771 4
.. 2632 4.6130
4.8916 When considering these, there is a correlation between the cell wall thickness T of honeycomb cellax and the switching time, and it is high when the wall thickness T is set in the range of 0.004 to 0.006 mm/sec. Heat storage efficiency can minimize the increase in ventilation resistance.

【0015】[0015]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the structure of the present invention will be explained in detail based on embodiments shown in the drawings.

【0016】図4A及び図4Bにハニカムセラミックス
の概略構造を示す。このハニカムセラミックス2は、ハ
ニカムのセルピッチとハニカムのセル壁厚さとの関係及
びハニカムのセル壁厚さと排ガスと被加熱ガスとの切替
え時間との関係に特徴を有し、全体の形状やセル形状に
特に特徴を有するものではない。例えば、本実施例では
図示の如き四角形のセルを無数に長手方向に有する円柱
形状のセラミックス製ハニカム蓄熱体が例に挙げられて
いるがこれに特に限定されるものではない。このハニカ
ムセラミックスにおいてセルピッチPとセル壁厚さTと
の比P/Tは次式の評価式 f(Vc/V,At/V,1/ΔP)=(1−β)β3
 但し、β=ハニカムの開口割合 β=(P−T)2 /P2  P=ハニカムのセルピッチ T=ハニカムのセル壁厚さ で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定するようにしている。例えば、図4A及
び図4Bのハニカム状蓄熱体に関しセルピッチとセル壁
厚さとの関係を求めた結果を示す図1のグラフからも明
らかなようにfはP/Tが7.5の時に最大値を示すこ
とがわかる。そこで、セル壁厚さTが定まればその7.
5倍のピッチをとるときが蓄熱用ハニカムとしては最適
である。
FIGS. 4A and 4B schematically show the structure of honeycomb ceramics. This honeycomb ceramic 2 has characteristics in the relationship between the honeycomb cell pitch and the honeycomb cell wall thickness, and the relationship between the honeycomb cell wall thickness and the switching time between the exhaust gas and the heated gas, and the overall shape and cell shape. It has no particular characteristics. For example, in this embodiment, a cylindrical ceramic honeycomb heat storage body having countless rectangular cells in the longitudinal direction as shown in the figure is taken as an example, but the present invention is not particularly limited to this. In this honeycomb ceramic, the ratio P/T between the cell pitch P and the cell wall thickness T is calculated using the following evaluation formula f(Vc/V, At/V, 1/ΔP)=(1-β)β3
However, β = honeycomb opening ratio β = (P-T)2 /P2 P = honeycomb cell pitch T = honeycomb cell wall thickness P and T are within the range where f, which is determined by the honeycomb cell wall thickness, is at its maximum value or a value close to it. I am trying to set it. For example, as is clear from the graph in FIG. 1, which shows the relationship between cell pitch and cell wall thickness for the honeycomb-shaped heat storage bodies shown in FIGS. 4A and 4B, f reaches its maximum value when P/T is 7.5. It can be seen that this shows that Therefore, if the cell wall thickness T is determined, 7.
The optimum honeycomb for heat storage is when the pitch is five times as large.

【0017】一方、燃焼装置用ハニカム状蓄熱体として
適当なセル壁厚さTは、切り換え時間毎に最適な最大セ
ル壁厚さが存在する。例えば、切換え時間が長い場合は
セル壁厚さTが増加するとqはほぼ比例して増加するが
、切換え時間が短い場合はセル壁厚さTがある程度以上
になるとそれ以上厚くしてもqは増加しなくなる。これ
は短い時間ではセル壁厚さTが厚い場合、奥まで十分熱
が入り込まず、かつ放出されないことによる。これを蓄
熱効率の観点から算出した結果を示す図3からも明らか
なように、一定の蓄熱効率に対し表1に示すような切換
え時間とセル壁厚さの関係が存在することがわかった。 これらを考慮するときハニカムセラミックスのセル壁厚
さTと切り換え時間との間には相関関係があり、0.0
04〜0.006mm/secの範囲に肉厚Tを設定す
ると高い蓄熱効率で通風抵抗の上昇を最小限に抑えるこ
とができる。尚、セルピッチとセル壁厚さとの関係に対
する蓄熱容量と伝熱面面積の大きさを示す図2からも明
らかなように、圧力損失を無視すればセルピッチPとセ
ル壁厚さTとの比x(=P/T)が約2のときに蓄熱容
量と伝熱面面積の双方が最大となる。しかし、この場合
、圧力損失が無視できないバーナ等の燃焼装置の排ガス
から熱回収するシステムへの使用には向かない。 そこで、例えば40秒切り替えのハニカム状蓄熱体を想
定すると、好適なセル壁厚さTは1.6mm〜2.4m
mとなり、より好ましくは表1からも明らかなように1
.76mm程度である。すると、好適なセル壁ピッチP
は13.2mmである。このようなセル壁厚さ及びセル
ピッチを設定するとき、ハニカム状蓄熱体は蓄熱容量と
伝熱面面積と通気性の全てがバランスがとれた状態で大
きくなる。また、後述の実施例1に示すようなバーナ装
置の蓄熱体としては1mm以下のセル壁厚さでは好まし
くないと考えられるが、1mmを越えれば好適なものと
考えられる。
On the other hand, as for the cell wall thickness T suitable for a honeycomb-shaped heat storage body for a combustion device, there is an optimum maximum cell wall thickness for each switching time. For example, when the switching time is long, when the cell wall thickness T increases, q increases almost proportionally, but when the switching time is short and the cell wall thickness T exceeds a certain level, q does not increase even if the cell wall thickness T increases beyond a certain level. It will no longer increase. This is because if the cell wall thickness T is large in a short period of time, heat does not penetrate deep enough and is not released. As is clear from FIG. 3, which shows the results of calculation from the viewpoint of heat storage efficiency, it was found that for a constant heat storage efficiency, there exists a relationship between switching time and cell wall thickness as shown in Table 1. When considering these, there is a correlation between the cell wall thickness T of honeycomb ceramics and the switching time, which is 0.0
When the wall thickness T is set in the range of 0.04 mm/sec to 0.006 mm/sec, it is possible to minimize the increase in ventilation resistance with high heat storage efficiency. As is clear from Figure 2, which shows the heat storage capacity and heat transfer surface area in relation to the relationship between cell pitch and cell wall thickness, if pressure loss is ignored, the ratio of cell pitch P to cell wall thickness T is When (=P/T) is about 2, both the heat storage capacity and the heat transfer surface area are maximized. However, in this case, it is not suitable for use in a system for recovering heat from the exhaust gas of a combustion device such as a burner, where the pressure loss cannot be ignored. Therefore, assuming a honeycomb-shaped heat storage body that can be switched for 40 seconds, the suitable cell wall thickness T is 1.6 mm to 2.4 m.
m, and more preferably 1 as is clear from Table 1.
.. It is about 76mm. Then, the suitable cell wall pitch P
is 13.2 mm. When such cell wall thickness and cell pitch are set, the honeycomb-shaped heat storage body becomes large with heat storage capacity, heat transfer surface area, and air permeability all being well balanced. Further, as a heat storage body for a burner device as shown in Example 1 described later, a cell wall thickness of 1 mm or less is considered undesirable, but a cell wall thickness of more than 1 mm is considered suitable.

【0018】ここでハニカムセラミックスのセル形状と
しては、図示の四角形のものが製造上安易であり好適な
形状の1つとして挙げることができるが、特にこれに限
定されるものではない。また、このハニカムセラミック
スとしては、例えばコージライト、ムライト等を材料と
し押出し成形によって製造されたものが好適なものの1
つとして挙げられる。
As for the cell shape of the honeycomb ceramics, the rectangular shape shown in the drawing is easy to manufacture and can be cited as one of the preferred shapes, but it is not particularly limited to this shape. Preferably, this honeycomb ceramic is made of cordierite, mullite, etc., and manufactured by extrusion molding.
It is mentioned as one of the

【0019】実施例1 図5に本発明のハニカム状蓄熱体を用いた蓄熱式ラジア
ントチューブバーナ装置の一例を示す。この蓄熱式ラジ
アントチューブバーナ装置は、ラジアントチューブ1と
、その両端に夫々装備されたバーナ3A,3Bと、各バ
ーナ3A,3Bのバーナシェル5内に設けられた蓄熱体
2と、各バーナ3A,3Bを燃焼用空気供給系9と燃焼
ガス排気系10とに選択的に接続する四方弁8と、各バ
ーナ3A,3Bに燃料供給系13を選択的に接続してい
ずれか一方のバーナに燃料を供給する三方弁7及びパイ
ロットバーナ6とから構成されている。バーナ3A,3
Bは交互に燃焼してその燃焼ガスを燃焼させていない他
方のバーナ側から蓄熱体2を通して排出させる一方、燃
焼させている側のバーナには蓄熱体2を通して燃焼用空
気を予熱してから供給する。
Example 1 FIG. 5 shows an example of a heat storage type radiant tube burner device using the honeycomb-shaped heat storage body of the present invention. This heat storage type radiant tube burner device includes a radiant tube 1, burners 3A and 3B installed at both ends thereof, a heat storage body 2 provided in a burner shell 5 of each burner 3A and 3B, and a heat storage body 2 provided in a burner shell 5 of each burner 3A and 3B. 3B to the combustion air supply system 9 and the combustion gas exhaust system 10, and a four-way valve 8 to selectively connect the fuel supply system 13 to each burner 3A, 3B to supply fuel to either one of the burners. It consists of a three-way valve 7 and a pilot burner 6. Burner 3A, 3
B burns alternately and discharges the combustion gas from the other burner that is not combusting through the heat storage body 2, while the combustion air is supplied to the burner on the burning side after being preheated through the heat storage body 2. do.

【0020】蓄熱体2は、ラジアントチューブ1を通過
した燃焼ガスの顕熱を回収して蓄えるためのものであり
、一般には燃焼ガスと反応したり燃焼用空気に悪影響を
与えない材質から成るハニカム状セラミックス等の使用
が好ましい。また、この蓄熱体2は中央にバーナガン4
を貫通させている。蓄熱体2はバーナガン4の噴出口よ
りも上流側、例えばバーナガン4を包囲するようにバー
ナシェル5内に設置したり、場合によってはバーナシェ
ル5の外に設置されている。勿論、蓄熱体2はバーナシ
ェル5内に収容せず円柱形状のままバーナシェル5の外
に配置することも可能である。蓄熱体2としては、例え
ばコージライト、ムライト等を材料とし、押出し成形に
よって成形された四角穴のハニカム体が好適なものの1
つとして挙げられる。そして、このハニカムのセル壁厚
さTとセル壁ピッチPとの関係はP/Tが5〜10、好
ましくは6〜8、最も好ましくは約7.5に設定するこ
とである。また、好ましい肉厚と切り替え時間との関係
は表1に示すように、蓄熱効率との関係で変化するが蓄
熱効率96%以上を好ましい蓄熱体の条件とすれば20
秒〜90秒の間の切り替え時間を設定するとき0.85
mm〜4.89mmの範囲に肉厚を設定すれば最も妥当
なハニカム状蓄熱体を提供することができる。最も、蓄
熱効率をある程度犠牲にしても蓄熱容量を確保したいと
きには肉厚を厚めに設定すれば良い。しかし、蓄熱−放
熱サイクルを数十秒単位例えば30〜60秒単位で早く
切換えることが要求される場合には、図3に示すように
2〜3mm前後のセル壁厚さとすることが好ましい。
The heat storage body 2 is for collecting and storing the sensible heat of the combustion gas that has passed through the radiant tube 1, and is generally a honeycomb made of a material that does not react with the combustion gas or adversely affect the combustion air. It is preferable to use ceramics such as ceramics. In addition, this heat storage body 2 has a burner gun 4 in the center.
is penetrated. The heat storage body 2 is installed on the upstream side of the ejection port of the burner gun 4, for example, inside the burner shell 5 so as to surround the burner gun 4, or in some cases installed outside the burner shell 5. Of course, it is also possible to arrange the heat storage body 2 outside the burner shell 5 without housing it inside the burner shell 5 and keeping the cylindrical shape. A preferable example of the heat storage body 2 is a square hole honeycomb body made of cordierite, mullite, etc., and formed by extrusion molding.
It is mentioned as one of the The relationship between the cell wall thickness T and the cell wall pitch P of this honeycomb is such that P/T is set to 5 to 10, preferably 6 to 8, and most preferably about 7.5. In addition, as shown in Table 1, the preferable relationship between wall thickness and switching time varies depending on the heat storage efficiency, but if a heat storage efficiency of 96% or more is a desirable condition for a heat storage body, then 20%
0.85 when setting the switching time between seconds and 90 seconds
If the wall thickness is set in the range of mm to 4.89 mm, the most appropriate honeycomb-shaped heat storage body can be provided. Most importantly, if you want to secure heat storage capacity even if you sacrifice some heat storage efficiency, you can set the wall thickness to be thicker. However, when it is required to quickly switch the heat storage-heat radiation cycle in units of several tens of seconds, for example, in units of 30 to 60 seconds, it is preferable to set the cell wall thickness to about 2 to 3 mm as shown in FIG. 3.

【0021】両バーナ3A,3Bのバーナシェル5には
四方弁8を介して燃焼用空気供給系9と燃焼ガス排気系
10とが接続され、四方弁8の操作によって燃焼用空気
供給系9の押込み送風機11から供給される燃焼用空気
を2つのバーナ3A,3Bのいずれか一方へ供給して燃
焼させる一方、この燃焼ガスを他方のバーナの蓄熱体2
を経て排気ブロワ12によって誘引排気するように設け
られている。この燃焼用空気と燃焼ガスの流れの切替え
は、タイマ(図示省略)を使って一定時間置き例えば2
0秒〜90秒、好ましくは20秒〜60秒毎、最も好ま
しくは40秒毎に行なわれるか、あるいは蓄熱体2を通
過した燃焼ガス温度をサーモセンサ(図示省略)で測定
してこれが所定温度に達したときに行なわれる。
A combustion air supply system 9 and a combustion gas exhaust system 10 are connected to the burner shells 5 of both burners 3A and 3B via a four-way valve 8, and the combustion air supply system 9 is connected by operating the four-way valve 8. Combustion air supplied from the forced air blower 11 is supplied to one of the two burners 3A, 3B for combustion, while this combustion gas is transferred to the heat storage body 2 of the other burner.
The exhaust blower 12 is provided so as to induce the exhaust through the exhaust blower 12. The flow of combustion air and combustion gas is switched at fixed intervals, for example, by using a timer (not shown).
This is carried out every 0 seconds to 90 seconds, preferably every 20 seconds to 60 seconds, most preferably every 40 seconds, or the temperature of the combustion gas passing through the heat storage body 2 is measured with a thermosensor (not shown) and the temperature is set to a predetermined temperature. will be carried out when the

【0022】[0022]

【発明の効果】以上の説明より明らかなように、本発明
のハニカム状蓄熱体は、 f(Vc/V,At/V,1/ΔP)=(1−β)β3
 で求まるfが最大値あるいはその近傍の値を示す範囲
でPとTとを設定するようにしているので、蓄熱容量と
伝熱面面積が大きくかつ通風抵抗が小さなハニカム状蓄
熱体即ち燃焼装置用蓄熱体として好適な蓄熱体を提供で
きる。また、セル壁厚さをガスの切り替え時間に応じて
変えられること、好ましくは0.04〜0.06mm/
秒の範囲とした場合、蓄熱効率を落さずに最適な蓄熱体
を得ることができる。
Effects of the Invention As is clear from the above explanation, the honeycomb-shaped heat storage body of the present invention has the following characteristics: f(Vc/V, At/V, 1/ΔP)=(1−β)β3
Since P and T are set within a range in which f, which is calculated by A heat storage body suitable as a heat storage body can be provided. In addition, the cell wall thickness can be changed depending on the gas switching time, preferably 0.04 to 0.06 mm/
In the case of a range of seconds, an optimal heat storage body can be obtained without reducing heat storage efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のハニカム状蓄熱体を説明するためのf
値とセル壁厚さとピッチとの関係を示すグラフである。
[Fig. 1] f for explaining the honeycomb-shaped heat storage body of the present invention.
It is a graph showing the relationship between cell wall thickness and pitch.

【図2】蓄熱型バーナシステム用ハニカムにおけるセル
ピッチとセル壁厚さとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between cell pitch and cell wall thickness in a honeycomb for a regenerative burner system.

【図3】切換え時間が蓄熱効率とセル壁厚さの関係に与
える影響を示すグラフである。
FIG. 3 is a graph showing the effect of switching time on the relationship between heat storage efficiency and cell wall thickness.

【図4A】ハニカム状蓄熱体の一例を示す斜視図である
FIG. 4A is a perspective view showing an example of a honeycomb-shaped heat storage body.

【図4B】ハニカム状蓄熱体のセル壁とセルピッチとの
関係を示す拡大図である。
FIG. 4B is an enlarged view showing the relationship between cell walls and cell pitch of a honeycomb-shaped heat storage body.

【図5】ハニカム状蓄熱体と応用した排熱回収システム
の一例を示す概略図である。
FIG. 5 is a schematic diagram showing an example of an exhaust heat recovery system applied with a honeycomb-shaped heat storage body.

【符号の説明】[Explanation of symbols]

2  ハニカム状蓄熱体 P  ハハニカムのセルピッチ T  ハニカムのセル壁厚さ 2 Honeycomb-shaped heat storage body P Honeycomb cell pitch T Honeycomb cell wall thickness

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排ガスと被加熱ガスとを交互に通過させて
排ガス中の排熱を回収するハニカム状蓄熱体において、
次式 f(Vc/V,At/V,1/ΔP)=(1−β)β3
 但し、β=ハニカムの開口割合 β=(P−T)2 /P2  P=ハニカムのセルピッチ T=ハニカムのセル壁厚さ で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定することを特徴とするハニカム状蓄熱体
Claim 1: A honeycomb-shaped heat storage body that recovers exhaust heat in exhaust gas by passing exhaust gas and heated gas alternately,
The following formula f(Vc/V, At/V, 1/ΔP)=(1-β)β3
However, β = honeycomb opening ratio β = (P-T)2 /P2 P = honeycomb cell pitch T = honeycomb cell wall thickness P and T are within the range where f, which is determined by the honeycomb cell wall thickness, has a maximum value or a value close to it. A honeycomb-shaped heat storage body characterized by setting.
【請求項2】前記セル壁厚さTがガスの切り替え時間に
応じて変えられることを特徴とする請求項1記載のハニ
カム状蓄熱体。
2. The honeycomb-shaped heat storage body according to claim 1, wherein the cell wall thickness T is changed depending on the gas switching time.
【請求項3】前記セル壁厚さTは0.04〜0.06m
m/秒の範囲で設定されることを特徴とする請求項2記
載のハニカム状蓄熱体。
3. The cell wall thickness T is 0.04 to 0.06 m.
The honeycomb-shaped heat storage body according to claim 2, characterized in that the speed is set within a range of m/sec.
JP2415583A 1990-12-28 1990-12-28 Honeycomb heat storage Expired - Fee Related JPH0739913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415583A JPH0739913B2 (en) 1990-12-28 1990-12-28 Honeycomb heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415583A JPH0739913B2 (en) 1990-12-28 1990-12-28 Honeycomb heat storage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10135278A Division JP3106124B2 (en) 1998-05-18 1998-05-18 Combustion air preheating method and honeycomb-shaped heat storage body

Publications (2)

Publication Number Publication Date
JPH04251190A true JPH04251190A (en) 1992-09-07
JPH0739913B2 JPH0739913B2 (en) 1995-05-01

Family

ID=18523922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415583A Expired - Fee Related JPH0739913B2 (en) 1990-12-28 1990-12-28 Honeycomb heat storage

Country Status (1)

Country Link
JP (1) JPH0739913B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607921A1 (en) * 1993-01-19 1994-07-27 Nippon Furnace Kogyo Kaisha Ltd. High-cycle regenerative heat exchanger
JPH0783585A (en) * 1993-07-19 1995-03-28 Nippon Furnace Kogyo Kaisha Ltd Heat accumulative type heat exchanger and heat accumulative type burner system utilizing the exchanger
JPH07280475A (en) * 1994-04-05 1995-10-27 Ngk Insulators Ltd Rotatable incinerator and operating method therefor
EP0687879A1 (en) 1994-06-17 1995-12-20 Ngk Insulators, Ltd. Honeycomb Regenerator
EP0724126A2 (en) 1995-01-25 1996-07-31 Ngk Insulators, Ltd. Honeycomb regenerator
EP0939289A2 (en) 1998-02-27 1999-09-01 Ngk Insulators, Ltd. Honeycomb regenerator
JP2015175587A (en) * 2014-03-18 2015-10-05 東京窯業株式会社 honeycomb structure
JP2015210064A (en) * 2014-04-30 2015-11-24 東京窯業株式会社 Heat storage body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695002A (en) * 1993-01-19 1997-12-09 Nippon Furnace Kogyo Kaisha, Ltd. High-cycle regenerative heat exchanger
JPH06213585A (en) * 1993-01-19 1994-08-02 Nippon Furnace Kogyo Kaisha Ltd Switching heat accumulative type heat exchanger
EP0607921A1 (en) * 1993-01-19 1994-07-27 Nippon Furnace Kogyo Kaisha Ltd. High-cycle regenerative heat exchanger
JPH0783585A (en) * 1993-07-19 1995-03-28 Nippon Furnace Kogyo Kaisha Ltd Heat accumulative type heat exchanger and heat accumulative type burner system utilizing the exchanger
JPH07280475A (en) * 1994-04-05 1995-10-27 Ngk Insulators Ltd Rotatable incinerator and operating method therefor
EP0687879A1 (en) 1994-06-17 1995-12-20 Ngk Insulators, Ltd. Honeycomb Regenerator
US5992504A (en) * 1994-06-17 1999-11-30 Ngk Insulators, Ltd. Honeycomb regenerator
EP0724126A2 (en) 1995-01-25 1996-07-31 Ngk Insulators, Ltd. Honeycomb regenerator
US6210645B1 (en) 1995-01-25 2001-04-03 Ngk Insulators, Ltd. Honeycomb regenerator
EP0939289A2 (en) 1998-02-27 1999-09-01 Ngk Insulators, Ltd. Honeycomb regenerator
US6062297A (en) * 1998-02-27 2000-05-16 Ngk Insulators, Ltd. Honeycomb regenerator
EP0939289A3 (en) * 1998-02-27 2000-10-18 Ngk Insulators, Ltd. Honeycomb regenerator
JP2015175587A (en) * 2014-03-18 2015-10-05 東京窯業株式会社 honeycomb structure
JP2015210064A (en) * 2014-04-30 2015-11-24 東京窯業株式会社 Heat storage body

Also Published As

Publication number Publication date
JPH0739913B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US3895918A (en) High efficiency, thermal regeneration anti-pollution system
US5963709A (en) Hot air blower having two porous materials and gap therebetween
JPH04251190A (en) Honeycomb type heat accumulating body
JP2678964B2 (en) Switching heat storage type heat exchanger
JPH06180109A (en) Exhaust heat recovering combustion apparatus
CN107842851B (en) Regenerative combustion system and control method
JP3106124B2 (en) Combustion air preheating method and honeycomb-shaped heat storage body
US5516571A (en) Honeycomb-like regenerative bed element
US4249594A (en) High efficiency furnace
US4333524A (en) High efficiency furnace
JP2598619Y2 (en) Thermal storage type alternating combustion device
JPH0223950Y2 (en)
JP3413141B2 (en) Metal honeycomb body, heat exchanger for heat exchanger, heat storage burner and metal carrier
WO1997024554A1 (en) Gas flow circulation type tubular heating equipment
JP2996618B2 (en) Thermal storage combustion burner
JP2997655B2 (en) Combustion method for industrial combustion equipment
US2196829A (en) Air heater
CN2424374Y (en) Thermal storage burning nozzle
KR100362846B1 (en) Heat accumulator for furnace regenerative combustion system_
JP2002228144A (en) Burner heat storage unit and high temperature regenerative radiant tube burner
CN220618740U (en) Regenerator and glass kiln
JPH09178112A (en) Hot air circulating system
JP3720905B2 (en) Industrial furnace combustion equipment
JPH02157038A (en) Packing element for use in heat conduction or chemical tower
JPH0638003B2 (en) Heat exchanger for water heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees