JPH04249748A - Measuring method of constituent concentration of mixture of hydrogen peroxide and ammonia - Google Patents

Measuring method of constituent concentration of mixture of hydrogen peroxide and ammonia

Info

Publication number
JPH04249748A
JPH04249748A JP2416075A JP41607590A JPH04249748A JP H04249748 A JPH04249748 A JP H04249748A JP 2416075 A JP2416075 A JP 2416075A JP 41607590 A JP41607590 A JP 41607590A JP H04249748 A JPH04249748 A JP H04249748A
Authority
JP
Japan
Prior art keywords
concentration
absorbance
hydrogen peroxide
ammonia
conversion formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2416075A
Other languages
Japanese (ja)
Other versions
JP2838235B2 (en
Inventor
Shuichi Hirata
平田 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP41607590A priority Critical patent/JP2838235B2/en
Publication of JPH04249748A publication Critical patent/JPH04249748A/en
Application granted granted Critical
Publication of JP2838235B2 publication Critical patent/JP2838235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To conduct measurement of the constituent concentration of a mixture of hydrogen peroxide and ammonia simply and accurately. CONSTITUTION:The concentration of ammonia is determined by using as a concentration conversion formula a multiple regression formula wherein an absorbance x1 of an ultraviolet ray of a specific wavelength and an absorbance x2 of a near infrared ray of a specific wavelength are made to be explanatory variables. The concentration of hydrogen peroxide is determined by using as a hydrogen peroxide concentration conversion formula a regression formula which is determined separately by a multiple regression analysis or a process of nonlinear least squares for each of the four conditions formed of combinations of each of the cases wherein the concentration of the ammonia determined by the ammonia concentration conversion formula is equal to or greater than a predetermined value of alpha (alpha is a value within the range from 1.7 to 2.3) wt.% and less than alphawt.%, with each of the cases wherein the absorbance x1 of the ultraviolet ray is equal to or greater than a predetermined prescribed value betaand less than the prescribed value beta.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、過酸化水素・アンモニ
ア混合液中の各成分の濃度を測定する成分濃度測定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component concentration measuring method for measuring the concentration of each component in a hydrogen peroxide/ammonia mixture.

【0002】0002

【従来の技術】従来、過酸化水素・アンモニア混合液中
の各成分の濃度を測定する方法として、紫外吸収−イオ
ン電極法や近赤外吸収法などが提案されている。そのう
ち、前者の紫外吸収−イオン電極法は、過酸化水素の濃
度を吸光法を用いて、アンモニアの濃度をイオン電極を
用いてそれぞれ測定するものである。この測定方法では
、各成分間の相互作用に起因して測定誤差が大きくなる
のを回避するために、測定する濃度範囲を、各成分間の
相互作用が比較的数値化されやすい範囲に限定して行わ
れる。
BACKGROUND OF THE INVENTION Hitherto, methods such as the ultraviolet absorption-ion electrode method and the near-infrared absorption method have been proposed as methods for measuring the concentration of each component in a hydrogen peroxide/ammonia mixture. Among them, the former ultraviolet absorption-ion electrode method measures the concentration of hydrogen peroxide using an absorption method and the concentration of ammonia using an ion electrode. In this measurement method, in order to avoid large measurement errors due to interactions between each component, the concentration range to be measured is limited to a range where interactions between each component are relatively easy to quantify. will be carried out.

【0003】また、後者の近赤外吸収法は、近赤外線を
混合液に照射して、その吸光度から各成分の濃度を測定
するものである。この測定方法では、各成分間の相互作
用に起因して測定誤差が大きくなるのを回避するために
、最高6種類の波長光を用いて測定が行われ、濃度換算
式は主成分回帰法によって求められる。
The latter near-infrared absorption method irradiates a mixed liquid with near-infrared rays and measures the concentration of each component from its absorbance. In this measurement method, in order to avoid large measurement errors due to interactions between each component, measurements are performed using up to six different wavelengths of light, and the concentration conversion formula is based on the principal component regression method. Desired.

【0004】0004

【発明が解決しようとする課題】しかし、上述した従来
例のうち、前者の紫外吸収−イオン電極法では、各成分
の相互作用による誤差を回避するために測定する濃度範
囲が大幅に限定されており、広い濃度にわたって高精度
に測定できない。
[Problems to be Solved by the Invention] However, among the conventional methods described above, in the former ultraviolet absorption-ion electrode method, the concentration range to be measured is significantly limited in order to avoid errors caused by interactions of each component. Therefore, it is not possible to measure with high precision over a wide range of concentrations.

【0005】また、後者の近赤外吸収法では、多種類の
波長光を用いているので広い濃度範囲にわたって測定で
きるけれども、光学素子を多く使用しなければならない
ので、測定装置のコストが高くなるという問題点を有す
る。
[0005]Although the latter near-infrared absorption method uses light of many different wavelengths and can measure over a wide concentration range, it requires the use of many optical elements, which increases the cost of the measuring device. There is a problem.

【0006】上記の従来欠点に鑑み、本発明は、測定系
の構成が簡単で、広い濃度範囲にわたって各成分の濃度
を簡単かつ正確に測定できる過酸化水素・アンモニア混
合液の成分濃度測定方法を提供せんとするものである。
In view of the above conventional drawbacks, the present invention provides a method for measuring the concentration of components in a hydrogen peroxide/ammonia mixed solution, which has a simple configuration of the measurement system and can easily and accurately measure the concentration of each component over a wide concentration range. This is what we intend to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、過酸化水素・アンモニア混合液中の各
成分の濃度を、その混合液に照射した特定波長光の吸光
度から求める成分濃度測定方法において、アンモニア濃
度については、特定波長の紫外線の吸光度および特定波
長の近赤外線の吸光度をそれぞれ説明変数として得られ
る重回帰式をアンモニア濃度換算式として求め、過酸化
水素濃度については、前記アンモニア濃度換算式から求
めた濃度が予め定めた値α(ただし、αは1.7から2
.3までの範囲内の値)wt%以上でかつ特定波長の紫
外線の吸光度が予め定めた値β以上である第1の条件、
前記アンモニア濃度換算式から求めた濃度が前記値αw
t%以上でかつ特定波長の紫外線の吸光度が前記値β未
満である第2の条件、前記アンモニア濃度換算式から求
めた濃度が前記値αwt%未満でかつ特定波長の紫外線
の吸光度が前記値β以上である第3の条件、前記アンモ
ニア濃度換算式から求めた濃度が前記値αwt%未満で
かつ特定波長の紫外線の吸光度が前記値β未満である第
4の条件の各場合に分け、第1、第2、第3の条件の場
合には前記紫外線の吸光度および近赤外線の吸光度をそ
れぞれ説明変数として各条件で得られる重回帰式をそれ
ぞれ第1,第2,第3の過酸化水素濃度換算式として求
め、第4の条件の場合には前記アンモニア濃度換算式か
ら求めた濃度および前記紫外線の吸光度をそれぞれ説明
変数として非線型最小2乗処理から得られる回帰式を第
4の過酸化水素濃度換算式として求めることを特徴とし
ている。
[Means for Solving the Problems] In order to achieve the above object, the present invention determines the concentration of each component in a hydrogen peroxide/ammonia mixture from the absorbance of light of a specific wavelength irradiated to the mixture. In the component concentration measurement method, for the ammonia concentration, a multiple regression equation obtained using the absorbance of ultraviolet rays of a specific wavelength and the absorbance of near-infrared rays of a specific wavelength as explanatory variables is calculated as an ammonia concentration conversion formula, and for the hydrogen peroxide concentration, The concentration calculated from the ammonia concentration conversion formula is a predetermined value α (however, α is 1.7 to 2
.. 3) wt% or more and the absorbance of ultraviolet rays of a specific wavelength is a predetermined value β or more,
The concentration obtained from the ammonia concentration conversion formula is the value αw
t% or more and the absorbance of ultraviolet rays at a specific wavelength is less than the value β; the concentration calculated from the ammonia concentration conversion formula is less than the value αwt% and the absorbance of ultraviolet rays at a specific wavelength is the value β; The third condition is the above, and the fourth condition is that the concentration calculated from the ammonia concentration conversion formula is less than the value αwt% and the absorbance of ultraviolet rays at a specific wavelength is less than the value β. , in the case of the second and third conditions, the multiple regression equation obtained under each condition is converted into the first, second, and third hydrogen peroxide concentration using the ultraviolet absorbance and near-infrared absorbance as explanatory variables, respectively. In the case of the fourth condition, the concentration obtained from the ammonia concentration conversion formula and the absorbance of the ultraviolet rays are respectively used as explanatory variables, and a regression equation obtained from nonlinear least squares processing is used as the fourth hydrogen peroxide concentration. It is characterized by being calculated as a conversion formula.

【0008】[0008]

【作用】上記の構成によれば、特定波長の紫外線の吸光
度を第1の説明変数、特定波長の近赤外線の吸光度を第
2の説明変数として得られているアンモニア濃度換算式
に実測された各波長光の吸光度を当てはめることによっ
て、先ず過酸化水素・アンモニア混合液中のアンモニア
濃度が求められる。次に、求められたアンモニア濃度が
予め定めた値αwt%以上で、このときの紫外線の吸光
度が予め定めた値β以上の場合には、これに対応付けて
得られている第1の過酸化水素濃度換算式に上記各波長
光の吸光度を当てはめることによって、また、求められ
たアンモニア濃度が前記値αwt%以上で、このときの
紫外線の吸光度が前記値β未満の場合には、これに対応
付けて得られている第2の過酸化水素濃度換算式に上記
各波長光の吸光度を当てはめることによって、また、求
められたアンモニア濃度が前記値αwt%未満で、この
ときの紫外線の吸光度が前記値β以上の場合には、これ
に対応付けて得られている第3の過酸化水素濃度換算式
に上記各波長光の吸光度を当てはめることによって、さ
らに、求められたアンモニア濃度が前記値αwt%未満
で、このときの紫外線の吸光度が前記値β未満の場合に
は、これに対応付けて非線型最小2乗処理により導かれ
ている第4の過酸化水素濃度換算式にアンモニア濃度お
よび上記紫外線の吸光度を当てはめることによって、そ
れぞれの場合に分けて過酸化水素・アンモニア混合液中
の過酸化水素濃度が求められる。
[Operation] According to the above configuration, each of the actually measured ammonia concentrations is applied to the ammonia concentration conversion formula in which the absorbance of ultraviolet rays at a specific wavelength is used as the first explanatory variable and the absorbance of near-infrared rays at a specific wavelength is used as the second explanatory variable. First, the ammonia concentration in the hydrogen peroxide/ammonia mixture is determined by applying the absorbance of the wavelength light. Next, if the determined ammonia concentration is equal to or higher than a predetermined value αwt% and the absorbance of ultraviolet rays at this time is equal to or higher than a predetermined value β, the corresponding first peroxide By applying the absorbance of each wavelength light to the hydrogen concentration conversion formula, and if the obtained ammonia concentration is equal to or higher than the value αwt% and the absorbance of ultraviolet rays at this time is less than the value β, this corresponds to By applying the above-mentioned absorbance of each wavelength light to the second hydrogen peroxide concentration conversion formula obtained by applying If the value is equal to or higher than the value β, by applying the absorbance of each wavelength light to the third hydrogen peroxide concentration conversion formula obtained in association with this, the obtained ammonia concentration is further calculated as the value αwt%. If the absorbance of ultraviolet rays at this time is less than the above value β, the ammonia concentration and the above ultraviolet rays are added to the fourth hydrogen peroxide concentration conversion formula derived by nonlinear least squares processing. By applying the absorbance of , the concentration of hydrogen peroxide in the hydrogen peroxide/ammonia mixture can be determined for each case.

【0009】[0009]

【実施例】この発明の実施例の説明に入る前に、過酸化
水素・アンモニア混合液中の各成分の濃度と照射光の吸
光度の関係に関して、発明者が行った実験結果から説明
する。
EXAMPLES Before entering into the description of the examples of the present invention, the relationship between the concentration of each component in the hydrogen peroxide/ammonia mixture and the absorbance of irradiated light will be explained based on the results of experiments conducted by the inventor.

【0010】図3は、測定セル中の過酸化水素・アンモ
ニア混合液に波長2209.8nmの近赤外線を照射し
たときのアンモニア濃度と近赤外線の吸光度との関係を
、混合液中の過酸化水素の濃度をパラメータとして測定
した結果を示すグラフである。同図において、I,II
,III は、それぞれ過酸化水素の濃度が0%,1%
,5%のときのグラフを示している。ただし、このとき
の測定セルの長さ、つまり近赤外線の光路長は1mmで
ある。また、このとき使用した近赤外線の波長2209
.8nmはアンモニアの特性吸収波長、つまりアンモニ
アに対して吸光度がピークとなる波長であり、分光光度
計を用いて測定している。
FIG. 3 shows the relationship between the ammonia concentration and near-infrared absorbance when the hydrogen peroxide/ammonia mixture in the measurement cell is irradiated with near-infrared rays with a wavelength of 2209.8 nm. 3 is a graph showing the results of measurement using the concentration of as a parameter. In the same figure, I, II
, III are hydrogen peroxide concentrations of 0% and 1%, respectively.
, 5%. However, the length of the measurement cell at this time, that is, the optical path length of near-infrared rays, is 1 mm. In addition, the near-infrared wavelength used at this time was 2209
.. 8 nm is the characteristic absorption wavelength of ammonia, that is, the wavelength at which the absorbance of ammonia reaches its peak, and is measured using a spectrophotometer.

【0011】同図の測定結果から、波長2209.8n
mの近赤外線を用いた場合、近赤外線の吸光度とアンモ
ニア濃度との間には、ほぼ直線関係が成り立ち、若干、
過酸化水素濃度の影響を受けることが分かる。
From the measurement results in the same figure, the wavelength is 2209.8n.
When near-infrared rays of m are used, there is an almost linear relationship between near-infrared absorbance and ammonia concentration,
It can be seen that it is affected by the hydrogen peroxide concentration.

【0012】図4は、測定セル中の過酸化水素・アンモ
ニア混合液に波長312.6nmの紫外線を照射したと
きのアンモニア濃度と紫外線の吸光度との関係を、混合
液中の過酸化水素の濃度をパラメータとして測定した結
果を示すグラフである。同図において、■,■,■,■
,■,■は、それぞれ過酸化水素の濃度が0%,1.3
3%,4.00%,5.34%,8.00%のときのグ
ラフを示している。ただし、このときの測定セルの長さ
、つまり紫外線の光路長は2mmであり、分光光度計を
用いて測定している。また、このとき使用した紫外線の
波長312.6nmは、過酸化水素の特性吸収波長から
少し外れた波長であり、このよう波長を設定することに
よって、測定値が分光光度計の測定レンジ内に収まるよ
うにしている。
FIG. 4 shows the relationship between the ammonia concentration and the absorbance of ultraviolet light when the hydrogen peroxide/ammonia mixture in the measurement cell is irradiated with ultraviolet light with a wavelength of 312.6 nm. It is a graph which shows the result of measurement using as a parameter. In the same figure, ■, ■, ■, ■
,■,■ are hydrogen peroxide concentrations of 0% and 1.3, respectively.
Graphs are shown for 3%, 4.00%, 5.34%, and 8.00%. However, the length of the measurement cell at this time, that is, the optical path length of the ultraviolet rays, was 2 mm, and the measurement was performed using a spectrophotometer. In addition, the wavelength of the ultraviolet light used at this time, 312.6 nm, is a wavelength slightly outside the characteristic absorption wavelength of hydrogen peroxide, and by setting the wavelength in this way, the measured value falls within the measurement range of the spectrophotometer. That's what I do.

【0013】同図の測定結果から、過酸化水素濃度と紫
外線の吸光度との関係に、アンモニア濃度がかなりな影
響を与えていることが分かる。特にアンモニア濃度が2
.0%から5.0%までの範囲と2.0%以下の範囲と
の間では、過酸化水素濃度と紫外線の吸光度と関係に明
らかな相違が有ることが分かる。
From the measurement results shown in the figure, it can be seen that the ammonia concentration has a considerable influence on the relationship between the hydrogen peroxide concentration and the absorbance of ultraviolet light. Especially when the ammonia concentration is 2
.. It can be seen that there is a clear difference in the relationship between hydrogen peroxide concentration and ultraviolet absorbance between the range from 0% to 5.0% and the range of 2.0% or less.

【0014】つまり、図3および図4のグラフから明ら
かなことは、アンモニア濃度については、波長2209
.8nmの近赤外線の吸光度を説明変数とする回帰直線
を濃度換算式として、誤差の少ない濃度を求めることが
できるが、若干、過酸化水素濃度の影響を受けるので、
過酸化水素濃度を良く反映する紫外線の吸光度を別の説
明変数として加味することによって、過酸化水素濃度に
よる影響分を補正すれば、アンモニア濃度を精度よく求
めることができるということである。すなわち、アンモ
ニア濃度については、波長2209.8nmの近赤外線
の吸光度と、波長312.6nmの紫外線の吸光度とを
説明変数とする重回帰式を濃度換算式として導出して置
けば、この濃度換算式からアンモニア濃度を、少なくと
も0〜5wt%の濃度範囲について正確に測定できると
いうことである。
In other words, it is clear from the graphs of FIGS. 3 and 4 that the ammonia concentration
.. Using a regression line with 8 nm near-infrared absorbance as an explanatory variable as a concentration conversion formula, it is possible to find a concentration with little error, but it is slightly affected by the hydrogen peroxide concentration, so
This means that the ammonia concentration can be determined with high accuracy by correcting the influence of the hydrogen peroxide concentration by taking into account the absorbance of ultraviolet rays, which well reflects the hydrogen peroxide concentration, as another explanatory variable. In other words, for ammonia concentration, if a multiple regression equation is derived as a concentration conversion formula using the absorbance of near-infrared rays with a wavelength of 2209.8 nm and the absorbance of ultraviolet rays with a wavelength of 312.6 nm as explanatory variables, this concentration conversion formula can be obtained. This means that the ammonia concentration can be accurately measured over a concentration range of at least 0 to 5 wt%.

【0015】一方、図4のグラフから明らかなことは、
過酸化水素の濃度と紫外線の吸光度との関係は、アンモ
ニア濃度が2.0%以上のときと、2.0%未満のとき
とで異なるので、これらの場合に分けて過酸化水素濃度
の濃度換算式を求めておけば、かなり誤差の少ない測定
が可能であるということである。
On the other hand, what is clear from the graph of FIG.
The relationship between the concentration of hydrogen peroxide and the absorbance of ultraviolet light differs when the ammonia concentration is 2.0% or more and when it is less than 2.0%, so the concentration of hydrogen peroxide is determined separately for these cases. By finding a conversion formula, it is possible to perform measurements with considerably less error.

【0016】これとは別に、過酸化水素濃度の場合には
、さらに上記紫外線の吸光度が0.15以上のときと、
0.15未満のときとの間でも、紫外線の吸光度との関
係が異なること、およびこれらの各条件の中で、アンモ
ニア濃度が2.0wt%未満で、かつ紫外線の吸光度が
0.15未満の条件の場合には、アンモニア濃度および
上記紫外線の吸光度を説明変数として、非線型最小2乗
処理により導出される濃度換算式が実際の関係を良く説
明し、その他の条件では、それぞれの条件ごとに重回帰
分析により導出される濃度換算式、つまり上記紫外線の
吸光度と上記近赤外線の吸光度とを説明変数とする重回
帰式が関係を良く説明していることを、本発明の発明者
は見出した。
Separately, in the case of hydrogen peroxide concentration, when the absorbance of the ultraviolet rays is 0.15 or more,
Even when the ammonia concentration is less than 2.0 wt% and the ultraviolet absorbance is less than 0.15, the relationship with the ultraviolet absorbance is different. In the case of conditions, the concentration conversion formula derived by nonlinear least squares processing with ammonia concentration and the above ultraviolet absorbance as explanatory variables explains the actual relationship well, and in other conditions, The inventor of the present invention has found that a concentration conversion formula derived by multiple regression analysis, that is, a multiple regression formula in which the absorbance of ultraviolet rays and the absorbance of near-infrared rays are used as explanatory variables, explains the relationship well. .

【0017】この発明の過酸化水素・アンモニア混合液
の成分濃度測定方法は、以上の測定結果から得られた知
見に基づいて導かれたものであり、以下にその実施例に
ついて説明する。
The method for measuring the component concentration of a hydrogen peroxide/ammonia mixture according to the present invention was developed based on the knowledge obtained from the above measurement results, and examples thereof will be described below.

【0018】図1は、本発明による測定方法が行われる
測定系の概略的な構成を示す模式図である。図において
、フローセル1は測定試料である過酸化水素・アンモニ
ア混合液2を流通させる管路であり、途中を2つの流路
1a,1bに分岐させてある。このフローセル1の一方
の流路1aには、第1の光源3から干渉フィルタ4を経
て得られる特定の波長313nmの紫外線UVが照射さ
れ、流路1aを透過した紫外線UVは第1の検出器5で
受光される。また、フローセル1の他方の流路1bには
、第2の光源6から回折格子7を経て得られる特定の波
長2209.8nmの近赤外線NIR が照射され、流
路1bを透過した近赤外線NIR は第2の検出器8で
受光される。第1の検出器5で受光される紫外線UVの
光量は電気信号に変換され第1のアンプ9で増幅された
後、第1のA/D変換器10でデジタル信号に変換され
て演算処理装置13に入力される。また、第2の検出器
8で受光される近赤外線NIR の光量も電気信号に変
換され第2のアンプ11で増幅された後、第2のA/D
変換器12でデジタル信号に変換されて演算処理装置1
3に入力される。演算処理装置13に入力される信号は
、上記紫外線UVおよび近赤外線NIR の過酸化水素
・アンモニア混合液2における透過光量を示すデータで
あり、演算処理装置13ではこれらのデータを吸光度x
1,x2に変換した後、後述するアンモニア濃度換算式
および過酸化水素濃度換算式に当てはめる演算処理が行
われ、その演算結果から過酸化水素・アンモニア混合液
中の各成分の濃度が求められる。ここでは、アンモニア
濃度y(NH3) を求める濃度換算式として、重回帰
分析により導出された重回帰式
FIG. 1 is a schematic diagram showing the general configuration of a measurement system in which the measurement method according to the present invention is carried out. In the figure, a flow cell 1 is a conduit through which a hydrogen peroxide/ammonia mixture 2, which is a measurement sample, flows, and is branched into two flow paths 1a and 1b in the middle. One channel 1a of the flow cell 1 is irradiated with ultraviolet rays of a specific wavelength of 313 nm obtained from a first light source 3 through an interference filter 4, and the ultraviolet rays that have passed through the channel 1a are sent to a first detector. The light is received at 5. Further, the other channel 1b of the flow cell 1 is irradiated with near-infrared NIR with a specific wavelength of 2209.8 nm obtained from the second light source 6 via the diffraction grating 7, and the near-infrared NIR transmitted through the channel 1b is The light is received by the second detector 8. The amount of UV light received by the first detector 5 is converted into an electrical signal, amplified by the first amplifier 9, and then converted into a digital signal by the first A/D converter 10, which is then converted to a digital signal by the arithmetic processing unit. 13. Furthermore, the amount of near-infrared NIR light received by the second detector 8 is also converted into an electrical signal, which is amplified by the second amplifier 11 and then sent to the second A/D.
It is converted into a digital signal by the converter 12 and sent to the arithmetic processing unit 1.
3 is input. The signal input to the processing unit 13 is data indicating the amount of light transmitted through the hydrogen peroxide/ammonia mixture 2 of the ultraviolet UV and near-infrared NIR, and the processing unit 13 converts these data into absorbance x
1, x2, arithmetic processing is performed to apply the ammonia concentration conversion formula and hydrogen peroxide concentration conversion formula to be described later, and the concentration of each component in the hydrogen peroxide/ammonia mixture is determined from the calculation results. Here, as the concentration conversion formula for calculating the ammonia concentration y (NH3), we use the multiple regression formula derived by multiple regression analysis.

【0019】[0019]

【数1】[Math 1]

【0020】が適用される。数1で表されるアンモニア
濃度換算式は上記フローセル1における紫外線UVの吸
光度x1および近赤外線NIR の吸光度x2をそれぞ
れ説明変数、アンモニア濃度y(NH3) を目的変数
とする重回帰式であって、次の表1に示す重回帰分析の
結果、
[0020] is applied. The ammonia concentration conversion formula expressed by Equation 1 is a multiple regression equation in which the ultraviolet UV absorbance x1 and the near-infrared NIR absorbance x2 in the flow cell 1 are explanatory variables, and the ammonia concentration y (NH3) is the objective variable. The results of multiple regression analysis shown in Table 1 below,

【0021】[0021]

【表1】[Table 1]

【0022】説明変数x1の回帰係数a1として−1.
369、説明変数x2の回帰係数a2として10.20
7、定数項にあたる回帰係数a0として0.040がそ
れぞれ導出されている。また、過酸化水素濃度y(H2
O2)を求める濃度換算式として、次の4つの数式が適
用される。
The regression coefficient a1 of the explanatory variable x1 is -1.
369, 10.20 as regression coefficient a2 of explanatory variable x2
7. 0.040 is derived as the regression coefficient a0 corresponding to the constant term. In addition, hydrogen peroxide concentration y (H2
The following four formulas are applied as concentration conversion formulas for determining O2).

【0023】[0023]

【数2】[Math 2]

【0024】[0024]

【数3】[Math 3]

【0025】[0025]

【数4】[Math 4]

【0026】[0026]

【数5】[Math 5]

【0027】このうち数2で表される第1の過酸化水素
濃度換算式は、上記フローセル1における紫外線の吸光
度x1および近赤外線の吸光度x2をそれぞれ説明変数
、過酸化水素濃度y1(H2O2)を目的変数として重
回帰分析により得られた重回帰式であって、次の表2に
示す重回帰分析の結果、
The first hydrogen peroxide concentration conversion formula expressed by Equation 2 uses the ultraviolet absorbance x1 and the near-infrared absorbance x2 in the flow cell 1 as explanatory variables, and the hydrogen peroxide concentration y1 (H2O2) as explanatory variables. The multiple regression equation obtained by multiple regression analysis as the objective variable, the results of the multiple regression analysis shown in Table 2 below,

【0028】[0028]

【表2】[Table 2]

【0029】説明変数x1の回帰係数a1として18.
273、説明変数x2の回帰係数a2として−2.42
7、定数項にあたる回帰係数a0として−0.107が
それぞれ導出されている。
18 as regression coefficient a1 of explanatory variable x1.
273, -2.42 as regression coefficient a2 of explanatory variable x2
7. -0.107 is derived as the regression coefficient a0 corresponding to the constant term.

【0030】この第1の過酸化水素濃度換算式は、上記
アンモニア濃度換算式で求められたアンモニア濃度が2
wt%以上で、かつ上記紫外線の吸光度つまり説明変数
x1が0.15以上のときに適用される。
This first hydrogen peroxide concentration conversion formula calculates that the ammonia concentration determined by the above ammonia concentration conversion formula is 2.
wt% or more and the absorbance of the ultraviolet rays, that is, the explanatory variable x1 is 0.15 or more.

【0031】また、数3で表される第2の過酸化水素濃
度換算式は、上記紫外線の吸光度x1および近赤外線の
吸光度x2をそれぞれ説明変数、過酸化水素濃度y2(
H2O2)を目的変数として重回帰分析により得られた
重回帰式であって、次の表3に示す重回帰分析の結果、
The second hydrogen peroxide concentration conversion formula expressed by Equation 3 uses the above-mentioned ultraviolet absorbance x1 and near-infrared absorbance x2 as explanatory variables, and the hydrogen peroxide concentration y2 (
A multiple regression equation obtained by multiple regression analysis with H2O2) as the objective variable, and the results of the multiple regression analysis shown in Table 3 below:

【0032】[0032]

【表3】[Table 3]

【0033】説明変数x1の回帰係数a1として11.
529、説明変数x2の回帰係数a2として−0.65
4、定数項にあたる回帰係数a0として0.196がそ
れぞれ導出されている。
11. As regression coefficient a1 of explanatory variable x1.
529, -0.65 as regression coefficient a2 of explanatory variable x2
4. 0.196 is derived as the regression coefficient a0 corresponding to the constant term.

【0034】この第2の過酸化水素濃度換算式は、上記
アンモニア濃度換算式で求められたアンモニア濃度が2
wt%以上で、かつ上記紫外線の吸光度つまり説明変数
x1が0.15未満のときに適用される。
This second hydrogen peroxide concentration conversion formula calculates that the ammonia concentration determined by the above ammonia concentration conversion formula is 2.
This is applied when the absorbance of ultraviolet rays, that is, the explanatory variable x1 is less than 0.15.

【0035】また、数4で表される第3の過酸化水素濃
度換算式は、上記紫外線の吸光度x1および近赤外線の
吸光度x2をそれぞれ説明変数、過酸化水素濃度y3(
H2O2)を目的変数として重回帰分析により得られた
重回帰式であって、次の表4に示す重回帰分析の結果、
In addition, the third hydrogen peroxide concentration conversion formula expressed by Equation 4 uses the above-mentioned ultraviolet absorbance x1 and near-infrared absorbance x2 as explanatory variables, and the hydrogen peroxide concentration y3 (
A multiple regression equation obtained by multiple regression analysis with H2O2) as the objective variable, and the results of the multiple regression analysis shown in Table 4 below:

【0036】[0036]

【表4】[Table 4]

【0037】説明変数x1の回帰係数a1として24.
270、説明変数x2の回帰係数a2として−20.5
47、定数項にあたる回帰係数a0として1.673が
それぞれ導出されている。
24 as the regression coefficient a1 of the explanatory variable x1.
270, -20.5 as regression coefficient a2 of explanatory variable x2
47, and 1.673 is derived as the regression coefficient a0 corresponding to the constant term.

【0038】この第3の過酸化水素濃度換算式は、上記
アンモニア濃度換算式で求められたアンモニア濃度が2
wt%未満で、かつ上記紫外線の吸光度つまり説明変数
x1が0.15以上のときに適用される。
This third hydrogen peroxide concentration conversion formula calculates that the ammonia concentration determined by the above ammonia concentration conversion formula is 2.
This is applied when the absorbance of ultraviolet rays, that is, the explanatory variable x1 is 0.15 or more.

【0039】さらに、数5で表される第4の過酸化水素
濃度換算式は、上記紫外線の吸光度x1および上記アン
モニア濃度換算式で求められたアンモニア濃度y(NH
3) をそれぞれ説明変数、過酸化水素濃度y3(H2
O2)を目的変数として非線型最小2乗法により得られ
た回帰式であって、この式の各パラメータp1,p2,
p3,p4は次のように導出されている。
Furthermore, the fourth hydrogen peroxide concentration conversion formula expressed by Equation 5 is based on the above ultraviolet absorbance x1 and the ammonia concentration y (NH
3) respectively as explanatory variables and hydrogen peroxide concentration y3 (H2
This is a regression equation obtained by the nonlinear least squares method with O2) as the objective variable, and each parameter p1, p2,
p3 and p4 are derived as follows.

【0040】p1:  0.1523 p2:  0.0080442 p3:  1.39488 p4:  0.0449232[0040] p1: 0.1523 p2: 0.0080442 p3: 1.39488 p4: 0.0449232

【0041】この第4の過酸化水素濃度換算式は、上記
アンモニア濃度換算式で求められたアンモニア濃度が2
wt%未満で、かつ上記紫外線UVの吸光度つまり説明
変数x1が0.15未満のときに適用される。
[0041] This fourth hydrogen peroxide concentration conversion formula is used when the ammonia concentration determined by the above ammonia concentration conversion formula is 2.
It is applied when the absorbance of ultraviolet rays UV, that is, the explanatory variable x1 is less than 0.15.

【0042】すなわち、この測定方法では、過酸化水素
濃度y(H2O2)については、図2に示す4つの条件
の場合ごとに、数2,数3,数4,数5で表される互い
に異なる濃度換算式を適用することによって求められる
That is, in this measurement method, the hydrogen peroxide concentration y (H2O2) is different from each other as expressed by Equation 2, Equation 3, Equation 4, and Equation 5 for each of the four conditions shown in FIG. It is determined by applying the concentration conversion formula.

【0043】表5は、アンモニア濃度Y(NH3) お
よび過酸化水素濃度Y(H2O2)を調整して得た過酸
化水素・アンモニア混合液2の各サンプルと、これらの
サンプルに照射したときの上記紫外線UVの吸光度x1
および上記近赤外線NIR の吸光度x2のデータとを
対応付けて示したものである。ただし、この場合の紫外
線UVおよび近赤外線NIR の吸光度x1,x2は、
水の透過率を100%、光路長を1mmとして測定して
いる。
Table 5 shows each sample of hydrogen peroxide/ammonia mixture 2 obtained by adjusting the ammonia concentration Y (NH3) and hydrogen peroxide concentration Y (H2O2), and the above-mentioned results when these samples were irradiated. Ultraviolet UV absorbance x1
and the above-mentioned near-infrared NIR absorbance x2 data are shown in association with each other. However, in this case, the absorbances x1 and x2 of ultraviolet UV and near-infrared NIR are as follows:
Measurements were made with water transmittance at 100% and optical path length at 1 mm.

【0044】[0044]

【表5】[Table 5]

【0045】表6は、調整されたサンプルのアンモニア
濃度Y(NH3) と、実測された紫外線UVおよび近
赤外線NIR の吸光度x1,x2を数1で表されるア
ンモニア濃度換算式に当てはめて求めたアンモニア濃度
の試算値y(NH3) と、その誤差Δyとを示したも
のである。
[0045] Table 6 shows the ammonia concentration Y (NH3) of the adjusted sample and the actually measured ultraviolet UV and near-infrared NIR absorbances x1 and x2, which were calculated by applying them to the ammonia concentration conversion formula expressed by Equation 1. This figure shows the trial value y(NH3) of ammonia concentration and its error Δy.

【0046】[0046]

【表6】[Table 6]

【0047】この表6から明らかなように、上記アンモ
ニア濃度換算式は実際のアンモニア濃度をよく表してい
ることが分かる。
As is clear from Table 6, the ammonia concentration conversion formula described above represents the actual ammonia concentration well.

【0048】表7は、調整されたサンプルの過酸化水素
濃度Y1(H2O2)と、実測された紫外線UVおよび
近赤外線NIR の吸光度x1,x2を第1の過酸化水
素濃度換算式に当てはめて求めた過酸化水素濃度の試算
値y1(H202)と、その誤差Δy1とを示したもの
である。
Table 7 shows the hydrogen peroxide concentration Y1 (H2O2) of the adjusted sample and the actually measured ultraviolet UV and near-infrared NIR absorbances x1 and x2, which are calculated by applying them to the first hydrogen peroxide concentration conversion formula. 2 shows the estimated value y1 (H202) of the hydrogen peroxide concentration and its error Δy1.

【0049】[0049]

【表7】 この表7から明らかなように、上記第1の過酸化水素濃
度換算式は実際の過酸化水素濃度をよく表していること
が分かる。
[Table 7] As is clear from Table 7, the first hydrogen peroxide concentration conversion formula well represents the actual hydrogen peroxide concentration.

【0050】表8は、調整されたサンプルの酸化水素濃
度Y2(H2O2)と、実測された紫外線UVおよび近
赤外線NIR の吸光度x1,x2を第2の過酸化水素
濃度換算式に当てはめて求めた過酸化水素濃度の試算値
y2(H2O2)と、その誤差Δy2とを示したもので
ある。
[0050] Table 8 shows the hydrogen oxide concentration Y2 (H2O2) of the adjusted sample and the actually measured ultraviolet UV and near-infrared NIR absorbances x1 and x2, which were calculated by applying them to the second hydrogen peroxide concentration conversion formula. It shows the estimated hydrogen peroxide concentration value y2 (H2O2) and its error Δy2.

【0051】[0051]

【表8】 この表8から明らかなように、上記第2の過酸化水素濃
度換算式は実際の過酸化水素濃度をよく表していること
が分かる。
[Table 8] As is clear from Table 8, the second hydrogen peroxide concentration conversion formula well represents the actual hydrogen peroxide concentration.

【0052】表9は、実測された紫外線および近赤外線
の吸光度x1,x2を第3の過酸化水素濃度換算式に当
てはめて求めた過酸化水素濃度の試算値y3(H2O2
)と、調整されたサンプルの過酸化水素濃度Y3(H2
O2)と、その誤差Δy3とを示したものである。
Table 9 shows the estimated hydrogen peroxide concentration y3 (H2O2
) and the hydrogen peroxide concentration Y3 (H2
02) and its error Δy3.

【0053】[0053]

【表9】[Table 9]

【0054】この表9から明らかなように、上記第3の
過酸化水素濃度換算式は実際の過酸化水素濃度をよく表
していることが分かる。
As is clear from Table 9, the third hydrogen peroxide concentration conversion formula well represents the actual hydrogen peroxide concentration.

【0055】表10は、実測された紫外線の吸光度x1
と数1で表される濃度換算式で求められたアンモニア濃
度y(NH3) とを、第4の過酸化水素濃度換算式に
当てはめて求めた過酸化水素濃度の試算値y4(H2O
2)と、調整されたサンプルの過酸化水素濃度Y4(H
2O2)とを比較して示したものである。
Table 10 shows the actually measured ultraviolet absorbance x1
and the ammonia concentration y (NH3) obtained using the concentration conversion formula expressed by Equation 1, and the estimated hydrogen peroxide concentration y4 (H2O
2) and the hydrogen peroxide concentration Y4 (H
2O2).

【0056】[0056]

【表10】[Table 10]

【0057】この表10から明らかなように、上記第4
の過酸化水素濃度換算式は実際の過酸化水素濃度をよく
表していることが分かる。
As is clear from Table 10, the fourth
It can be seen that the hydrogen peroxide concentration conversion formula represents the actual hydrogen peroxide concentration well.

【0058】なお、上記実施例では、過酸化水素濃度を
求める濃度換算式を差し替えて使用するための境界値と
して、アンモニア濃度を2wt%,紫外線UVの吸光度
を0.15としたが、アンモニア濃度については1.7
wt%から2.3wt%までの範囲内の値であれば、ほ
ぼ同等の結果を得ることができる。また、紫外線UVの
吸光度については、フローセル1のセル長など他の条件
によって値が異なるので、条件に応じて適当な値を境界
値として設定すればよい。
In the above example, the ammonia concentration was set to 2 wt% and the absorbance of ultraviolet rays was set to 0.15 as boundary values for replacing and using the concentration conversion formula for determining the hydrogen peroxide concentration. 1.7 for
Approximately equivalent results can be obtained if the value is within the range of wt% to 2.3wt%. Furthermore, since the value of the absorbance of ultraviolet rays varies depending on other conditions such as the cell length of the flow cell 1, an appropriate value may be set as a boundary value depending on the conditions.

【0059】また、上記実施例では紫外線UVとして、
波長が313nmのものを使用した場合を示したが、図
5に示す実験結果から明らかなように、300nm付近
であれば多少波長が異なっても同様の結果を得ることが
できる。すなわち、図5のグラフは過酸化水素・アンモ
ニア混合液の各成分比の4つのサンプルについて、紫外
線の吸収スペクトルを示したものであり、■のグラフは
過酸化水素濃度が1.00wt%でアンモニア濃度が1
.01wt%の場合、■のグラフは過酸化水素濃度が1
.00wt%でアンモニア濃度が5.03wt%の場合
、■のグラフは過酸化水素濃度が5.00wt%でアン
モニア濃度が1.01wt%の場合、■のグラフは過酸
化水素濃度が5.00wt%でアンモニア濃度が5.0
3の場合をそれぞれ示している。ただし、このときの測
定セルの長さ、つまり吸光度測定の光路長は2nmで、
分光光度計を用いて測定したものである。近赤外線NI
R の波長の場合も、実施例の波長2209.8nmの
他に、例えば1530nmの波長を用いて同様の結果を
得ることができる。
Furthermore, in the above embodiment, as ultraviolet rays UV,
Although the case where a wavelength of 313 nm is used is shown, as is clear from the experimental results shown in FIG. 5, similar results can be obtained even if the wavelength is slightly different as long as it is around 300 nm. In other words, the graph in Figure 5 shows the absorption spectra of ultraviolet rays for four samples of each component ratio of the hydrogen peroxide/ammonia mixture. concentration is 1
.. In the case of 01 wt%, the graph of ■ indicates that the hydrogen peroxide concentration is 1
.. 00 wt% and the ammonia concentration is 5.03 wt%, the graph ■ is 5.00 wt%, and the ammonia concentration is 1.01 wt%, the graph ■ is 5.00 wt% hydrogen peroxide concentration. and the ammonia concentration is 5.0
3 cases are shown respectively. However, the length of the measurement cell at this time, that is, the optical path length for absorbance measurement, is 2 nm.
This was measured using a spectrophotometer. Near infrared NI
In the case of the wavelength R, similar results can be obtained by using, for example, a wavelength of 1530 nm in addition to the wavelength of 2209.8 nm in the example.

【発明の効果】本発明は、上述した構成より成り、アン
モニア濃度については、特定波長の紫外線の吸光度およ
び特定波長の近赤外線の吸光度をそれぞれ説明変数とす
る重回帰式の濃度換算式から求め、過酸化水素濃度につ
いては、前記アンモニア濃度換算式から求めた濃度が予
め定めた値α(ただし、αは1.7から2.3までの範
囲内の値)wt%以上で紫外線の吸光度が予め定めた値
β以上の条件、アンモニア濃度換算式による濃度が上記
値αwt%以上で紫外線の吸光度が上記値β未満の条件
、アンモニア濃度換算式による濃度が上記値αwt%未
満で紫外線の吸光度が上記値β以上の条件、アンモニア
濃度換算式による濃度が上記値αwt%未満で紫外線の
吸光度が上記値β未満の条件の各場合に分け、各条件ご
とに別々の回帰式の過酸化水素濃度換算式を導出してそ
れぞれの換算式から求めるようにしているので、簡単な
構成の測定系により、広い濃度範囲にわたって各成分の
濃度を簡単かつ正確に測定できる。
Effects of the Invention The present invention has the above-mentioned configuration, in which the ammonia concentration is determined from a concentration conversion formula of a multiple regression formula in which the absorbance of ultraviolet rays at a specific wavelength and the absorbance of near-infrared rays at a specific wavelength are used as explanatory variables, respectively. Regarding the hydrogen peroxide concentration, if the concentration calculated from the ammonia concentration conversion formula is above a predetermined value α (however, α is a value within the range of 1.7 to 2.3) wt%, the absorbance of ultraviolet rays is determined in advance. Conditions where the concentration according to the ammonia concentration conversion formula is above the above value αwt% and the absorbance of ultraviolet rays is less than the above value β, conditions when the concentration according to the ammonia concentration conversion formula is less than the above value αwt% and the absorbance of ultraviolet rays is above the above value Separate conditions for conditions where the ammonia concentration conversion formula is equal to or higher than the above value αwt%, and conditions where the ultraviolet absorbance is less than the above value β, and create a hydrogen peroxide concentration conversion formula using a separate regression equation for each condition. Since the concentration of each component is derived and determined from each conversion formula, the concentration of each component can be easily and accurately measured over a wide concentration range using a measurement system with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に用いられる測定系の概略的な
構成を示す模式図である。
FIG. 1 is a schematic diagram showing the general configuration of a measurement system used in an example of the present invention.

【図2】各過酸化水素濃度換算式に対応付けられる条件
の領域区分を模式的に示す図である。
FIG. 2 is a diagram schematically showing area divisions of conditions associated with each hydrogen peroxide concentration conversion formula.

【図3】過酸化水素・アンモニア混合液に波長2209
.8nmの近赤外線を照射したときのアンモニア濃度と
近赤外線の吸光度との関係を示すグラフである。
[Figure 3] Wavelength 2209 for hydrogen peroxide/ammonia mixture
.. It is a graph showing the relationship between ammonia concentration and near-infrared absorbance when 8 nm near-infrared rays are irradiated.

【図4】過酸化水素・アンモニア混合液に波長312.
6nmの紫外線を照射したときのアンモニア濃度と紫外
線の吸光度との関係を示すグラフである。
[Figure 4] Hydrogen peroxide/ammonia mixture has a wavelength of 312.
It is a graph showing the relationship between the ammonia concentration and the absorbance of ultraviolet rays when 6 nm ultraviolet rays are irradiated.

【図5】成分比の異なる過酸化水素・アンモニア混合液
の各サンプルについて、紫外線の吸収スペクトルを示し
た図である。
FIG. 5 is a diagram showing the absorption spectra of ultraviolet rays for samples of hydrogen peroxide/ammonia mixtures having different component ratios.

【符号の説明】[Explanation of symbols]

2  過酸化水素・アンモニア混合液 UV  紫外線 NIR  近赤外線 2. Hydrogen peroxide/ammonia mixture UV ultraviolet light NIR Near infrared rays

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  過酸化水素・アンモニア混合液中の各
成分の濃度を、その混合液に照射した特定波長光の吸光
度から求める成分濃度測定方法において、アンモニア濃
度については、特定波長の紫外線の吸光度および特定波
長の近赤外線の吸光度をそれぞれ説明変数として得られ
る重回帰式をアンモニア濃度換算式として求め、過酸化
水素濃度については、前記アンモニア濃度換算式から求
めた濃度が予め定めた値α(ただし、αは1.7から2
.3までの範囲内の値)wt%以上でかつ特定波長の紫
外線の吸光度が予め定めた値β以上である第1の条件、
前記アンモニア濃度換算式から求めた濃度が前記値αw
t%以上でかつ特定波長の紫外線の吸光度が前記値β未
満である第2の条件、前記アンモニア濃度換算式から求
めた濃度が前記値αwt%未満でかつ特定波長の紫外線
の吸光度が前記値β以上である第3の条件、前記アンモ
ニア濃度換算式から求めた濃度が前記値αwt%未満で
かつ特定波長の紫外線の吸光度が前記値β未満である第
4の条件の各場合に分け、第1、第2、第3の条件の場
合には前記紫外線の吸光度および近赤外線の吸光度をそ
れぞれ説明変数として各条件で得られる重回帰式をそれ
ぞれ第1,第2,第3の過酸化水素濃度換算式として求
め、第4の条件の場合には前記アンモニア濃度換算式か
ら求めた濃度および前記紫外線の吸光度をそれぞれ説明
変数として非線型最小2乗処理から得られる回帰式を第
4の過酸化水素濃度換算式として求めることを特徴とす
る過酸化水素・アンモニア混合液の成分濃度測定方法。
Claim 1: In a component concentration measurement method in which the concentration of each component in a hydrogen peroxide/ammonia mixture is determined from the absorbance of light of a specific wavelength irradiated to the mixture, the ammonia concentration is determined by the absorbance of ultraviolet light of a specific wavelength. A multiple regression equation obtained as explanatory variables is the absorbance of near-infrared light of a specific wavelength, and the absorbance of near-infrared rays at a specific wavelength is determined as an ammonia concentration conversion formula.For the hydrogen peroxide concentration, the concentration calculated from the ammonia concentration conversion formula , α is 1.7 to 2
.. 3) wt% or more and the absorbance of ultraviolet rays of a specific wavelength is a predetermined value β or more,
The concentration obtained from the ammonia concentration conversion formula is the value αw
t% or more and the absorbance of ultraviolet rays at a specific wavelength is less than the value β; the concentration calculated from the ammonia concentration conversion formula is less than the value αwt% and the absorbance of ultraviolet rays at a specific wavelength is the value β; The third condition is the above, and the fourth condition is that the concentration calculated from the ammonia concentration conversion formula is less than the value αwt% and the absorbance of ultraviolet rays at a specific wavelength is less than the value β. , in the case of the second and third conditions, the multiple regression equation obtained under each condition is converted into the first, second, and third hydrogen peroxide concentration using the ultraviolet absorbance and near-infrared absorbance as explanatory variables, respectively. In the case of the fourth condition, the concentration obtained from the ammonia concentration conversion formula and the absorbance of the ultraviolet rays are respectively used as explanatory variables, and a regression equation obtained from nonlinear least squares processing is used as the fourth hydrogen peroxide concentration. A method for measuring the component concentration of a hydrogen peroxide/ammonia mixture, characterized by determining it as a conversion formula.
JP41607590A 1990-12-29 1990-12-29 Component concentration measurement method for hydrogen peroxide / ammonia mixture Expired - Fee Related JP2838235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41607590A JP2838235B2 (en) 1990-12-29 1990-12-29 Component concentration measurement method for hydrogen peroxide / ammonia mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41607590A JP2838235B2 (en) 1990-12-29 1990-12-29 Component concentration measurement method for hydrogen peroxide / ammonia mixture

Publications (2)

Publication Number Publication Date
JPH04249748A true JPH04249748A (en) 1992-09-04
JP2838235B2 JP2838235B2 (en) 1998-12-16

Family

ID=18524322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41607590A Expired - Fee Related JP2838235B2 (en) 1990-12-29 1990-12-29 Component concentration measurement method for hydrogen peroxide / ammonia mixture

Country Status (1)

Country Link
JP (1) JP2838235B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075341A (en) * 2001-09-04 2003-03-12 Japan Science & Technology Corp Method for measuring dissolved/suspensible substance concentration by near infrared spectroscopy
JP2007024572A (en) * 2005-07-13 2007-02-01 Kurabo Ind Ltd Fatigue degree evaluation method of alkali aqueous solution
CN102759514A (en) * 2011-04-28 2012-10-31 天津天士力之骄药业有限公司 Determination method for content of total saponins of panax ginseng in qi-tonifying pulse-restoring preparation for injection
JP2015068754A (en) * 2013-09-30 2015-04-13 株式会社日立ハイテクノロジーズ Detector for liquid chromatograph
JP2020128940A (en) * 2019-02-08 2020-08-27 アズビル株式会社 Measurement device, measurement system, and measurement method
CN116297268A (en) * 2023-03-03 2023-06-23 浙江大学 Method for simultaneously detecting concentration of ammonia gas and concentration of water vapor on line

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075341A (en) * 2001-09-04 2003-03-12 Japan Science & Technology Corp Method for measuring dissolved/suspensible substance concentration by near infrared spectroscopy
JP2007024572A (en) * 2005-07-13 2007-02-01 Kurabo Ind Ltd Fatigue degree evaluation method of alkali aqueous solution
CN102759514A (en) * 2011-04-28 2012-10-31 天津天士力之骄药业有限公司 Determination method for content of total saponins of panax ginseng in qi-tonifying pulse-restoring preparation for injection
JP2015068754A (en) * 2013-09-30 2015-04-13 株式会社日立ハイテクノロジーズ Detector for liquid chromatograph
JP2020128940A (en) * 2019-02-08 2020-08-27 アズビル株式会社 Measurement device, measurement system, and measurement method
CN116297268A (en) * 2023-03-03 2023-06-23 浙江大学 Method for simultaneously detecting concentration of ammonia gas and concentration of water vapor on line
CN116297268B (en) * 2023-03-03 2023-11-03 浙江大学 Method for simultaneously detecting concentration of ammonia gas and concentration of water vapor on line

Also Published As

Publication number Publication date
JP2838235B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
Morgan et al. Ultraviolet molar absorptivities of aqueous hydrogen peroxide and hydroperoxyl ion
US7148490B2 (en) Method for determining the concentration of hydrogen peroxide in a process stream and a spectrophotometric system for the same
US20030020907A1 (en) Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy
DE69023859T2 (en) Method and device for the quantitative determination of chemicals for the treatment of semiconductors.
GB1095114A (en) Apparatus for the measurement of dye dilution in blood
US5255072A (en) Apparatus for analyzing fluid by multi-fluid modulation mode
JPH04249748A (en) Measuring method of constituent concentration of mixture of hydrogen peroxide and ammonia
CN116202975A (en) Water parameter prediction method, storage medium and terminal equipment
CN114813633A (en) Concentration detection method for laser multi-gas aliasing spectrum demodulation and nonlinear compensation
JP2006258491A (en) Device and method for measuring concentration of acid solution including peracetic acid
JPH01244341A (en) Light absorbing type ozone concentration measuring device
Kuś et al. Simultaneous determination of palladium and platinum as dithizonates by fifth-derivative spectrophotometry
KR101942784B1 (en) Method and Test Kit For Dectecting Concentration of Hydrogen Peroxide
JPH0416749A (en) Method and apparatus for measuring ozone concentration
JP2017032503A (en) Residual chlorine measurement system, residual chlorine measurement method, and program
JP2004279339A (en) Concentration measuring instrument
JPS63218842A (en) Method and apparatus for measuring concentration of ozone
Balcerzak et al. Determination of ruthenium and osmium with tin (II) chloride by second-order derivative spectrophotometry
CN113640239B (en) Spectrophotometry detection method for nitrate and nitrite
US5102806A (en) Method for analyzing fluid by multi-fluid modulation mode
JP4634596B2 (en) Dissolved ozone concentration measuring device
JPS55119046A (en) Method and apparatus for measuring concentration of components of electrolyzed solution of chromic acid
CN111912814B (en) Method for measuring total nitrogen content in water
JPS62172244A (en) Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride
JP2594936B2 (en) Method and apparatus for measuring nitrate nitrogen and nitrite nitrogen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees