JPH04249744A - Automatic apparatus for biochemical analysis - Google Patents

Automatic apparatus for biochemical analysis

Info

Publication number
JPH04249744A
JPH04249744A JP41867690A JP41867690A JPH04249744A JP H04249744 A JPH04249744 A JP H04249744A JP 41867690 A JP41867690 A JP 41867690A JP 41867690 A JP41867690 A JP 41867690A JP H04249744 A JPH04249744 A JP H04249744A
Authority
JP
Japan
Prior art keywords
reaction
absorbance
reagent
value
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41867690A
Other languages
Japanese (ja)
Other versions
JP2666568B2 (en
Inventor
Junichi Matsumoto
順一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2418676A priority Critical patent/JP2666568B2/en
Publication of JPH04249744A publication Critical patent/JPH04249744A/en
Application granted granted Critical
Publication of JP2666568B2 publication Critical patent/JP2666568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To shorten the total time for analysis in a biochemical analysis by preestimating by computation whether or not an abnormality value comes out in a process of a reaction, on the basis of the absorbance of a reaction liquid which changes with time. CONSTITUTION:Using as parameters absorbance data at each prescribed reaction time after distribution of a first reagent in respect to items of a first reagent system, absorbance data obtained likewise after distribution of a second reagent in respect to items of a second reagent system, absorbance data at a reaction time determined beforehand in respect to a standard sample liquid and an optical density value of a reaction reagent blank liquid, a computer 19 for control and data processing executes end-point measurement and calculates a quantitative value of each constituent to be measured, by conversion. Herein a regression formula is determined on the basis of the absorbance at the reaction time in a process of a reaction, a value of density or activity is calculated, this value is compared subsequently with a threshold value set beforehand, a reinspection request signal is issued immediately when the value exceeds the threshold value, and a control is made so that an operation for reinspection be executed. In the case when the reinspection is not needed, the density is outputted on the basis of the absorbance data obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は生化学自動分析装置に
関する。さらに詳しくは、血清や尿などの多成分を含む
生化学試料(以下検体という)中の目的成分濃度又は活
性値を測定する生化学自動分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic biochemical analyzer. More specifically, the present invention relates to an automatic biochemical analyzer that measures the concentration or activity value of a target component in a biochemical sample (hereinafter referred to as a sample) containing multiple components such as serum or urine.

【0002】0002

【従来の技術】従来から血清や尿などの多成分を含む検
体中の目的成分濃度又は活性値を分析するには、検体中
に1種又は2種以上の所定の反応試薬を混合して反応さ
せ、この反応によって生じる反応液の光学濃度値(吸光
度値、蛍光光度値等)の変化や反応途中の変化率に基づ
いて所定成分を定量する方法が、いわゆるエンドポイン
ト法やレート法として知られており、各種生化学自動分
析装置に適用されている。
[Prior Art] Conventionally, in order to analyze the concentration or activity value of a target component in a sample containing multiple components such as serum or urine, one or more predetermined reaction reagents are mixed in the sample and reacted. The method of quantifying a given component based on the change in optical density value (absorbance value, fluorescence value, etc.) of the reaction solution caused by this reaction and the rate of change during the reaction is known as the so-called end point method or rate method. It is applied to various automatic biochemical analyzers.

【0003】上記生化学自動分析装置の代表的なものと
しては、検体分注位置、試薬分注位置、測光部の順に多
数の反応管を順次回転移送しうる反応ディスクを備え、
上記測光部がこの反応ディスクと同じ軸の回りに往復回
転しながら、試薬分注後の検体−試薬反応液の光学濃度
を一定時間間隔で経時的に測定しうるよう構成されたシ
ングルマルチ自動分析装置が挙げられる。
A typical biochemical automatic analyzer is equipped with a reaction disk capable of rotating and transporting a large number of reaction tubes in sequence from a sample dispensing position to a reagent dispensing position to a photometry section,
Single multi-automatic analysis configured so that the photometric section can measure the optical density of the sample-reagent reaction solution after reagent dispensing over time at regular time intervals while reciprocating around the same axis as the reaction disk. Examples include devices.

【0004】0004

【発明が解決しようとする課題】上記のごとき生化学自
動分析装置では、各成分の測定法は成分毎に1つに決め
られていて、1つの検体に対して複数の成分を測定する
場合には、最後に測定する項目が最終測光位置を過ぎる
まで結果は出力されない。すなわち試薬分注から最終測
光位置までの最大反応時間は固定されている。従って、
上記従来の装置ではどんなに急いでも結果出力まで一定
時間待たねばならず、異常検体についての再検操作もそ
の後に行わざるを得なかった。この発明はかかる状況に
鑑み為されたものであり、再検操作をも含む結果出力ま
での時間短縮を図ることができる生化学自動分析装置を
提供しようとするものである。
[Problem to be Solved by the Invention] In the above-mentioned automatic biochemical analyzer, one method for measuring each component is determined for each component, and when measuring multiple components for one specimen, results are not output until the last item to be measured passes the final photometry position. That is, the maximum reaction time from reagent dispensing to the final photometric position is fixed. Therefore,
With the above-mentioned conventional apparatus, no matter how quickly the results are output, it is necessary to wait a certain period of time for the results to be output, and a retest operation for abnormal samples must be performed afterwards. The present invention has been made in view of this situation, and aims to provide an automatic biochemical analyzer that can shorten the time required to output results, including retesting operations.

【0005】[0005]

【課題を解決するための手段】かくしてこの発明によれ
ば、検体と試薬とを混合して反応させる反応部、この反
応部で得られる反応液について経時的に変化する吸光度
を反応が完結するまで一定時間毎に測定して記憶し、こ
れらの記憶吸光度の変化又は変化率に基づいて検体中に
含まれる目的成分の濃度又は活性値を演算して出力する
演算部を備えてなり、上記演算部が、(a)経時的に変
化する吸光度に基づいて上記濃度又は活性値を算出しう
る迅速モード、及び(b)上記濃度若しくは活性値を、
反応完結状態における吸光度に基づいてエンドポイント
法により、又は全測光区間の吸光度の変化率に基づいて
レート法により算出しうる通常モードのいずれかに演算
モードを切換える演算モード切換手段と、迅速モードで
の濃度若しくは活性値を予め設定された閾値と比較しこ
の閾値を越えた場合にその検体についての再検操作を開
始するよう制御し、閾値以内であれば演算モードを通常
モードに切換えて濃度若しくは活性値を出力しうる演算
作動部を具備してなる生化学自動分析装置が提供される
[Means for Solving the Problems] According to the present invention, there is provided a reaction section in which a sample and a reagent are mixed and reacted, and a reaction solution obtained in this reaction section whose absorbance changes over time until the reaction is completed. a calculation unit that measures and stores the measured values at regular time intervals, and calculates and outputs the concentration or activity value of the target component contained in the sample based on the change or rate of change of these stored absorbances, and the calculation unit (a) a rapid mode in which the concentration or activity value can be calculated based on the absorbance that changes over time; and (b) the concentration or activity value is calculated based on the absorbance that changes over time.
Calculation mode switching means for switching the calculation mode to either a normal mode in which the calculation can be performed by the end point method based on the absorbance in the reaction completed state or by the rate method based on the rate of change in the absorbance over the entire photometry interval; The concentration or activity value of the sample is compared with a preset threshold value, and if the threshold value is exceeded, the retest operation for that sample is started, and if it is within the threshold value, the calculation mode is switched to normal mode and the concentration or activity value is An automatic biochemical analyzer is provided which includes an arithmetic operation section capable of outputting values.

【0006】この発明の生化学自動分析装置は、演算部
を以下に述べる構成とし、かつこの演算部を作動する演
算作動部を設ける以外は、当該分野で公知の生化学自動
分析装置を基本構成として用いることができる。この基
本構成はことにシングルマルチ自動分析装置が好ましい
The automatic biochemical analyzer of the present invention has the basic structure of an automatic biochemical analyzer known in the art, except that the calculation section has the configuration described below and a calculation operation section that operates the calculation section is provided. It can be used as A single multi-automatic analyzer is particularly preferred for this basic configuration.

【0007】この発明の装置の演算部においては、迅速
モード及び通常モードの2つの演算モードが設定される
。ここで迅速モードとは、再検が必要かどうかを迅速に
判断する演算モードを意味し、通常モードとは検体に対
する通常の演算モードを意味する。上記迅速モードでの
演算方法はレート法であってもよく、エンドポイント法
であってもよい。通常エンドポイント法による測定は、
検体と試薬との反応が完結した定常状態における吸光度
(終点吸光度)を測定し、この吸光度から所定の演算式
に基づいて検体中の目的成分の濃度又は活性値を算出す
るものであり、このことから従来の公知の分析装置では
最終測光位置において測定される反応完結時の吸光度が
用いられる。しかし、再検用ワークシートを発行する場
合、時間を短縮して早く再検操作に移行することが重要
となるため、反応途中において得られる経時的に変化す
る吸光度をもって目的成分の濃度又は活性値を算出する
よう構成されたところがこの発明の新規な点の1つであ
る。
[0007] In the arithmetic section of the device of the present invention, two arithmetic modes are set: a quick mode and a normal mode. Here, the "quick mode" means a calculation mode that quickly determines whether retesting is necessary, and the "normal mode" means a normal calculation mode for a specimen. The calculation method in the quick mode may be a rate method or an endpoint method. Normally, measurement using the end point method is
The absorbance in a steady state after the reaction between the sample and reagent is completed (end point absorbance) is measured, and the concentration or activity value of the target component in the sample is calculated from this absorbance based on a predetermined calculation formula. In the conventionally known analytical apparatus, the absorbance measured at the final photometric position upon completion of the reaction is used. However, when issuing a worksheet for retesting, it is important to shorten the time and move to the retesting process quickly, so the concentration or activity value of the target component is calculated from the absorbance that changes over time obtained during the reaction. One of the novel points of this invention is that it is configured to do so.

【0008】この発明の装置において、迅速モードでの
演算に用いられる吸光度は、反応途中で得られたものが
対象とされ、測定開始から結果出力までの時間短縮の点
から、検体・試薬混合後の反応開始からできるだけ早い
時期に測定されたものを用いることが好ましい。
In the apparatus of the present invention, the absorbance used for calculation in the rapid mode is the absorbance obtained during the reaction, and in order to shorten the time from the start of measurement to the output of results, it is It is preferable to use measurements taken as early as possible from the start of the reaction.

【0009】この発明の装置において、上記迅速モード
に設定される演算法としては、1つ又はそれ以上の演算
法が挙げられる。
[0009] In the apparatus of the present invention, the calculation method set in the quick mode includes one or more calculation methods.

【0010】上記迅速モードにおける演算法としては、
例えば、 1)反応途中、吸光度がまだ変化している段階での吸光
度を利用して、
The calculation method in the above-mentioned quick mode is as follows:
For example, 1) Using the absorbance during the reaction, when the absorbance is still changing,

【式1】 (ここでKは検量線定数、Asは反応液吸光度、Abは
試薬ブランク吸光度)を用いて濃度Cを算出する方法、
2)反応途中の時間t1,t2における吸光度As1,
As2を利用して次式:
[Formula 1] (where K is the calibration curve constant, As is the absorbance of the reaction solution, and Ab is the absorbance of the reagent blank).
2) Absorbance As1 at times t1 and t2 during the reaction,
Using As2, the following formula:

【式2】 に従って濃度Cを算出する2点法による方法、3)反応
途中の時間t1〜tnにおける吸光度As1〜Asnを
利用して回帰式を求めて最終測光時間trにおける吸光
度(終点吸光度)Arを予測し、上記式(1)を適用し
て濃度Cを算出する方法、 4)上記3と同様にしてt=0の吸光度を予測し、2点
法により上式(2)を用いて濃度Cを求める方法等が挙
げられる。上式(1)における、K、(As−Ab)や
、上式(2)における、K′、(Ab2−Ab1)′は
再検判断用のみ必要な値であるので別途求めておく必要
があるが、他の定数は通常分析用のものがそのまま用い
られる。なお、上記例において、1)及び3)に関して
はクロモゲンの影響を受ける可能性があるがこれは反応
試薬添加後の吸光度を差引くいわゆる検体ブランク法の
併用で、時間は短縮したままで補正をすることができる
[Equation 2] A two-point method to calculate the concentration C according to 3) A regression equation is calculated using the absorbances As1 to Asn at times t1 to tn during the reaction to calculate the absorbance at the final photometry time tr (end point absorbance) Ar 4) Predict the absorbance at t=0 in the same way as in 3 above, and use the above equation (2) using the two-point method to calculate the concentration C. Examples include methods for determining C. K, (As-Ab) in the above formula (1) and K', (Ab2-Ab1)' in the above formula (2) are values only necessary for reexamination judgment, so they need to be calculated separately. However, the other constants used for analysis are usually used as they are. In the above example, 1) and 3) may be affected by chromogen, but this can be corrected by using the so-called sample blank method, which subtracts the absorbance after adding the reaction reagent, while reducing the time. can do.

【0011】一方、この発明の装置において、通常モー
ドでの演算は、エンドポイント法又はレート法のいずれ
かで処理される。
On the other hand, in the apparatus of the present invention, calculations in the normal mode are processed using either the endpoint method or the rate method.

【0012】またこの発明の装置の演算部においては、
該演算部における演算モードが迅速モード又は通常モー
ドのいずれかに設定可能な演算モード切換手段が設けら
れる。またさらに上記演算部には、迅速モードでの濃度
若しくは活性値を算出し、又は上記両演算モードによる
演算値を出力しうる演算作動部が具備される。該作動部
と上記切換手段はマイクロコンピュータを用いて構成す
ることができる。
[0012] Furthermore, in the arithmetic unit of the device of the present invention,
Calculation mode switching means is provided which can set the calculation mode in the calculation section to either quick mode or normal mode. Furthermore, the arithmetic operation section is provided with an arithmetic operation section capable of calculating the concentration or activity value in the rapid mode, or outputting a calculated value in both of the aforesaid calculation modes. The operating section and the switching means can be constructed using a microcomputer.

【0013】[0013]

【作用】この発明によれば、検体と試薬とが混合された
後、反応開始から反応途中を経て反応完結まで一定時間
毎に吸光度が測定されて記憶されるが、まず反応途中の
吸光度の変化又は変化率に基づいて検体中の目的成分の
濃度又は活性値が算出され、この濃度を用いて再検の要
・不要の判定が行われる。その後同じ検体についての同
目的成分の濃度又は活性値が反応完結時の吸光度に基づ
いてエンドポイント法により、又は全測光区間の吸光度
の変化率に基づいてレート法により算出されることとな
る。
[Operation] According to the present invention, after the sample and reagent are mixed, the absorbance is measured and stored at regular intervals from the start of the reaction, through the middle of the reaction, and until the completion of the reaction. First, the absorbance changes during the reaction. Alternatively, the concentration or activity value of the target component in the sample is calculated based on the rate of change, and this concentration is used to determine whether retesting is necessary. Thereafter, the concentration or activity value of the same target component for the same specimen is calculated by the end point method based on the absorbance at the completion of the reaction, or by the rate method based on the rate of change in absorbance over the entire photometry interval.

【0014】以下実施例によりこの発明を詳細に説明す
るが、これによりこの発明は限定されるものではない。
[0014] The present invention will be explained in detail with reference to Examples below, but the present invention is not limited thereby.

【0015】[0015]

【実施例】第1図はこの発明の生化学自動分析装置の一
例の要部構成説明図である。該図において1は試料(=
検体)分注ポンプ、2は試料分注ノズル、3は試料分注
ノズル移動機構、4,5はそれぞれ標準試料容器及び標
準試料、6は試料用ターンテーブル、7,8はそれぞれ
試料容器及び試料、9は反応ディスク、10、10′、
10”は反応セル、11は第1試薬分注ポンプ、12は
第1試薬分注ノズル、13は第1試薬分注ノズル移動機
構、14は試薬庫、15,16はそれぞれ第1試薬容器
及び第1試薬、17は分光器、18は分光器移動機構、
19は制御及びデータ処理コンピュータ、20は第2試
薬分注ポンプ、21は第2試薬分注ノズル、22は第2
試薬分注ノズル移動機構、23,24はそれぞれ第2試
薬容器及び第2試薬、25は洗浄ポンプ、26は洗浄ノ
ズル上下機構、27は洗浄ノズルである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of the main parts of an example of an automatic biochemical analyzer according to the present invention. In the figure, 1 is the sample (=
Sample) dispensing pump, 2 is a sample dispensing nozzle, 3 is a sample dispensing nozzle moving mechanism, 4 and 5 are a standard sample container and a standard sample, respectively, 6 is a sample turntable, 7 and 8 are a sample container and a sample, respectively. , 9 is a reaction disk, 10, 10',
10'' is a reaction cell, 11 is a first reagent dispensing pump, 12 is a first reagent dispensing nozzle, 13 is a first reagent dispensing nozzle moving mechanism, 14 is a reagent storage, 15 and 16 are a first reagent container and A first reagent, 17 a spectrometer, 18 a spectrometer moving mechanism,
19 is a control and data processing computer, 20 is a second reagent dispensing pump, 21 is a second reagent dispensing nozzle, and 22 is a second reagent dispensing nozzle.
A reagent dispensing nozzle moving mechanism, 23 and 24 are a second reagent container and a second reagent, respectively, 25 is a cleaning pump, 26 is a cleaning nozzle up/down mechanism, and 27 is a cleaning nozzle.

【0016】かかる装置において、試料分注ポンプ1と
連結されている試料分注ノズル2が試料分注ノズル移動
機構3によって移動し、標準試料容器4から一定量の標
準試料5を吸引し、続いて試料用ターンテーブル6にセ
ットされた試料容器7から一定量の試料8を吸引し、反
応ディスク9に配置されている反応セル10の中に試料
8及び標準試料5を分注する。反応ディスク9が回転し
て反応セル10が1ステップ進んだところで、第1試薬
分注ポンプ11と連結されている第1試薬分注ノズル1
2が第1試薬分ノズル移動機構13によって移動し、試
薬庫14内にセットされている第1試薬容器15から一
定量の第1試薬16を吸引し、続いて反応セル10′の
所に移動して反応セル10′内に分注する。このとき、
1試薬系の反応試薬を用いる項目の反応セルについて、
分光器17が分光器移動機構18により反応ディスク9
と同じ軸の回りに往復回転しながら制御及びデータ処理
コンピュータ19に記憶する。
In such an apparatus, a sample dispensing nozzle 2 connected to a sample dispensing pump 1 is moved by a sample dispensing nozzle moving mechanism 3, sucks a certain amount of a standard sample 5 from a standard sample container 4, and then A certain amount of the sample 8 is sucked out from the sample container 7 set on the sample turntable 6, and the sample 8 and the standard sample 5 are dispensed into the reaction cell 10 arranged on the reaction disk 9. When the reaction disk 9 rotates and the reaction cell 10 advances by one step, the first reagent dispensing nozzle 1 connected to the first reagent dispensing pump 11
2 is moved by the first reagent nozzle moving mechanism 13, sucks a certain amount of the first reagent 16 from the first reagent container 15 set in the reagent storage 14, and then moves to the reaction cell 10'. and dispensed into the reaction cell 10'. At this time,
Regarding reaction cells for items that use one-reagent type reaction reagents,
The spectrometer 17 is moved to the reaction disk 9 by the spectrometer moving mechanism 18.
is stored in the control and data processing computer 19 while reciprocatingly rotating around the same axis.

【0017】次いで反応セル10が反応セル10”の位
置に来たところで第2試薬分注ポンプ20と連結した第
2試薬分注ノズル21が第2試薬分注ノズル移動機構2
2に上がって移動し、試薬庫14内にセットされている
第2試薬容器23から一定量の第2試薬24を吸引し、
続いて反応セル10”のところに移動して2試薬系の反
応試薬を用いる項目の反応セル10”内に分注する。第
2試薬添加後に反応セル10”が洗浄ポンプ25に連結
され、洗浄ノズル上下機構26により上下する洗浄ノズ
ル27の位置に進むまでの間も前記のごとき各位置での
吸光度Atが測定されコンピュータ19に記憶されてい
る。
Next, when the reaction cell 10 reaches the position of the reaction cell 10'', the second reagent dispensing nozzle 21 connected to the second reagent dispensing pump 20 moves to the second reagent dispensing nozzle moving mechanism 2.
2, and aspirates a certain amount of the second reagent 24 from the second reagent container 23 set in the reagent storage 14.
Subsequently, the mixture is moved to the reaction cell 10'' and dispensed into the reaction cell 10'' for the item in which the two-reagent system reaction reagent is used. After the addition of the second reagent, the reaction cell 10'' is connected to the washing pump 25, and the absorbance At at each position is measured as described above until the reaction cell 10'' is moved to the position of the washing nozzle 27, which is moved up and down by the washing nozzle up-and-down mechanism 26, and the computer 19 is stored in

【0018】そして、制御及びデータ処理コンピュータ
19は、各部の動作を同期制御すると同時に、1試薬系
の項目については第1試薬分注後(反応開始後)から一
定時間毎の反応時間(t1,t2……)における吸光度
データ〔As(1)、As(2)……〕、及び2試薬系
の項目については第2試薬分注後(反応開始後)から一
定時  間毎の反応時間(t1,t2……)における吸
光度データ〔As(1)、As(2)……〕と、予め標
準試料液について求められた反応時間(t1,t2……
)における吸光度データ〔Ast(1)、Ast(2)
……〕及び反応試薬ブランク液の光学濃度値Abをパラ
メータとして下記式からエンドポイント測定を行い、各
測定成分の定量値を換算測定する。またさらに制御及び
データ処理コンピュータ19には、反応途中の吸光度デ
ータを用いて演算処理する迅速モードと、反応完結時の
吸光度データを用いて演算処理する通常モードとを切換
える演算モード切換プログラムが設定されており、分析
開始時には、迅速モード側が選択されている。
The control and data processing computer 19 synchronously controls the operations of each part, and at the same time, for items related to one reagent system, the control and data processing computer 19 controls the reaction time (t1, For the absorbance data [As(1), As(2)...] at t2...) and the items of the two-reagent system, the reaction time (t1 , t2...) [As(1), As(2)...] and the reaction time (t1, t2...) determined in advance for the standard sample solution.
) absorbance data [Ast(1), Ast(2)
...] and the optical density value Ab of the reaction reagent blank solution as parameters, end point measurement is performed using the following formula, and the quantitative value of each measurement component is converted and measured. Further, the control and data processing computer 19 is set with a calculation mode switching program for switching between a quick mode in which calculations are performed using absorbance data during the reaction and a normal mode in which calculations are performed using absorbance data at the time of completion of the reaction. The rapid mode side is selected at the start of analysis.

【0019】ここで、上記実施例の装置の制御及びデー
タ処理コンピュータ19には、反応途中の反応時間t1
〜tnにおける吸光度As1〜Asnに基づいて回帰式
、例えば〔Y=k/(X−a)+b〕を求め、最終測光
時間trにおける吸光度(終点吸光度)Arを予測し、
C=K×(AsーAb)(ここでKは検量線定数、As
は反応液吸光度、Abは試薬ブランク吸光度)を適用し
て濃度(又は活性値)Cを算出し、次いでこの値Cと予
め設定された閾値Xとを比較し、値Cが閾値Xを越える
と、その場で直ちに再検要求信号を発して、再検操作を
行うよう制御する。すなわち、コンピュータ19を制御
してその検体についての割込み処理を行うよう駆動する
と共に、試料分注ポンプ1を制御して分注検体量を減少
させて(例えば1/2〜1/5量)、再検を行うよう制
御する(迅速モード)。但し、閾値として吸光度限界値
(超高値)を用いずに正常値に近い値を採用した場合に
は、必ずしも分注検体量を低下させなくてもよい。 このような再検は分析値の再確認のために有意義である
Here, the control and data processing computer 19 of the apparatus of the above embodiment has a reaction time t1 during the reaction.
A regression equation, for example, [Y = k / (X - a) + b] is determined based on the absorbances As1 to Asn at ~tn, and the absorbance (end point absorbance) Ar at the final photometry time tr is predicted,
C=K×(As-Ab) (where K is the calibration curve constant, As
is the reaction solution absorbance and Ab is the reagent blank absorbance) to calculate the concentration (or activity value) C, then compare this value C with a preset threshold X, and if the value C exceeds the threshold X, , immediately issues a retest request signal on the spot and controls the retest operation to be performed. That is, the computer 19 is controlled to perform interrupt processing for the sample, and the sample dispensing pump 1 is controlled to reduce the amount of the sample to be dispensed (for example, 1/2 to 1/5 amount). Control to perform re-examination (quick mode). However, if a value close to a normal value is used as the threshold without using the absorbance limit value (ultra-high value), it is not necessary to reduce the amount of sample to be dispensed. Such retesting is meaningful for reconfirming analytical values.

【0020】そして、再検が不要(値CがX以下)の場
合には、t1〜tnで得られる吸光度データに基づいて
濃度Cを出力すると共に、これと並行して最終測光時間
trまでを順次測定し、このtrで得られる吸光度に基
づいて濃度Crを出力する(通常モード)よう構成され
ている。
[0020] If retesting is not necessary (value C is less than or equal to It is configured to output the concentration Cr based on the absorbance obtained at this tr (normal mode).

【0021】以下、実際に実施した際のデータについて
説明する。1試薬系の項目であるTP(総タンパク)濃
度が異なる5種の試料〔2g/dl(No.1),4g
/dl(No.2),6g/dl(No.3),8g/
dl(No.4),10g/dl(No.5)〕につい
て、第1試薬分注後(反応開始後)から一定時間毎の反
応時間:t1,t2,…,t16における吸光度データ
:As(1),As(2),…,As(16)を測定し
、このうち反応時間t1,t2及びt3の3点における
吸光度データAs(1),As(2)及びAs(3)に
基づいて、上記回帰式のk,a,bを求めて、t16に
おける終点吸光度As(16)rを予測し、実測値As
(16)と比較した。このときの実測値及び予想タイム
コースを図2に示す。
[0021] Data obtained from actual implementation will be explained below. 5 types of samples with different TP (total protein) concentrations [2 g/dl (No. 1), 4 g
/dl (No.2), 6g/dl (No.3), 8g/
dl (No. 4), 10 g/dl (No. 5)], absorbance data at reaction times: t1, t2,..., t16 at fixed time intervals from after the first reagent dispensing (after the start of the reaction): As( 1), As(2),..., As(16), based on the absorbance data As(1), As(2) and As(3) at three points of reaction time t1, t2 and t3. , calculate k, a, b of the above regression equation, predict the end point absorbance As(16)r at t16, and calculate the actual value As
(16). The actual measured values and expected time course at this time are shown in Figure 2.

【表1】[Table 1]

【0022】上記結果から、反応途中の初期の3点にお
ける吸光度でもって予測される終点吸光度As(16)
rは、実測値の終点吸光度As(16)に対して有意な
差はない。従って、前述したごとく、より詳しくは、図
3に示すような制御プログラム(エンド法、レート法共
通)を設定することによりレート測定用最終吸光度の測
定を持つまでもなく、必要な検体についての再検を進行
させることができる。もちろん、図3の代わりに、図4
のごときエンドポイント法的な迅速モード−通常モード
を設定した場合にも、反応終了時を待つまでもなく再検
を進行させることができる。
From the above results, the end point absorbance As(16) predicted from the absorbance at the initial three points during the reaction
There is no significant difference in r from the actually measured end point absorbance As(16). Therefore, as mentioned above, in more detail, by setting the control program (common to the end method and rate method) as shown in Figure 3, it is not necessary to measure the final absorbance for rate measurement, but it is possible to retest the necessary specimen. can proceed. Of course, instead of Figure 3, Figure 4
Even when the endpoint legal quick mode-normal mode is set, retesting can proceed without waiting for the end of the reaction.

【0023】[0023]

【発明の効果】この発明によれば、再検操作も含む分析
結果出力までの時間を短縮することができる。すなわち
、従来の装置においては、一連の分析結果が出力された
後、必要な検体(正常値から著しく外れた検体)につい
ての再検操作を行うことが余儀なくされていたが、この
発明の装置によれば、分析結果出力前の段階、ことに反
応開始後の初期吸光度立上り期間において、再検の要・
不要の判定と再検操作の開始がなされるため、再検をも
含む全検体についての総分析時間を著しく短縮すること
ができる。
According to the present invention, it is possible to shorten the time required to output analysis results, including retesting operations. In other words, with conventional devices, after a series of analysis results have been output, it is necessary to retest the necessary samples (samples that deviate significantly from normal values); however, with the device of the present invention, this is possible. For example, before the analysis results are output, especially during the initial absorbance rise period after the start of the reaction, there is a need for re-examination.
Since the unnecessary determination is made and the retest operation is started, the total analysis time for all samples, including the retest, can be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の生化学自動分析装置の一例の要部構
成説明図である。
FIG. 1 is an explanatory diagram of a main part configuration of an example of an automatic biochemical analyzer of the present invention.

【図2】吸光度変化についての実測値及び予測タイムコ
ースの例を示すグラフ図である。
FIG. 2 is a graph diagram showing an example of actually measured values and predicted time courses regarding absorbance changes.

【図3】この発明の生化学自動分析装置の演算モードの
一例を示すフローチャート図である。
FIG. 3 is a flowchart showing an example of the calculation mode of the automatic biochemical analyzer of the present invention.

【図4】図3と同様な他の例のフローチャート図である
FIG. 4 is a flowchart diagram of another example similar to FIG. 3;

【符号の説明】[Explanation of symbols]

1    試料(=検体)分注ポンプ 2    試料分注ノズル 9    反応ディスク 11  第1試薬分注ポンプ 12  第1試薬分注ノズル 17  分光器 19  制御及びデータ処理コンピュータ20  第2
試薬分注ポンプ 21  第2試薬分注ノズル
1 Sample (=specimen) dispensing pump 2 Sample dispensing nozzle 9 Reaction disk 11 First reagent dispensing pump 12 First reagent dispensing nozzle 17 Spectrometer 19 Control and data processing computer 20 Second
Reagent dispensing pump 21 Second reagent dispensing nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  検体と試薬とを混合して反応させる反
応部、この反応部で得られる反応液について経時的に変
化する吸光度を反応が完結するまで一定時間毎に測定し
て記憶し、これらの記憶吸光度の変化又は変化率に基づ
いて検体中に含まれる目的成分の濃度又は活性値を演算
して出力する演算部を備えてなり、上記演算部が、(a
)経時的に変化する吸光度に基づいて上記濃度又は活性
値を算出しうる迅速  モード、及び(b)上記濃度若
しくは活性値を、反応完結状態における吸光度に基づい
てエンドポイント法により、又は全測光区間の吸光度の
変化率に基づいてレート法により算出しうる通常モード
のいずれかに演算モードを切換える演算モード切換手段
と、迅速モードでの濃度若しくは活性値を予め設定され
た閾値と比較しこの閾値を越えた場合にその検体につい
ての再検操作を開始するよう制御し、閾値以内であれば
演算モードを通常モードに切換えて濃度若しくは活性値
を出力しうる演算作動部を具備してなる生化学自動分析
装置。
Claim 1: A reaction section in which a sample and a reagent are mixed and reacted, and the absorbance of the reaction solution obtained in this reaction section is measured and memorized at regular intervals until the reaction is completed. a calculation unit that calculates and outputs the concentration or activity value of the target component contained in the sample based on the change or rate of change in the stored absorbance of (a);
) a rapid mode in which the concentration or activity value can be calculated based on the absorbance that changes over time, and (b) the concentration or activity value can be calculated by the end point method based on the absorbance at the completion of the reaction, or over the entire photometry interval. calculation mode switching means for switching the calculation mode to one of the normal modes that can be calculated by the rate method based on the rate of change in the absorbance of Automatic biochemical analysis comprising a calculation operation part that controls to start retesting of the sample when it exceeds the threshold, and if it is within the threshold, switches the calculation mode to normal mode and outputs the concentration or activity value. Device.
JP2418676A 1990-12-29 1990-12-29 Biochemical automatic analyzer Expired - Lifetime JP2666568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418676A JP2666568B2 (en) 1990-12-29 1990-12-29 Biochemical automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418676A JP2666568B2 (en) 1990-12-29 1990-12-29 Biochemical automatic analyzer

Publications (2)

Publication Number Publication Date
JPH04249744A true JPH04249744A (en) 1992-09-04
JP2666568B2 JP2666568B2 (en) 1997-10-22

Family

ID=18526471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418676A Expired - Lifetime JP2666568B2 (en) 1990-12-29 1990-12-29 Biochemical automatic analyzer

Country Status (1)

Country Link
JP (1) JP2666568B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056312A1 (en) * 2001-12-27 2003-07-10 Arkray, Inc. Concentration measuring method
JP2010175355A (en) * 2009-01-29 2010-08-12 Hitachi High-Technologies Corp Automatic analyzer
US9568488B2 (en) 2004-10-22 2017-02-14 Sysmex Corporation Biological sample analyzing apparatus
WO2022255140A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Automatic analysis device and specimen analysis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380123B2 (en) * 2009-03-25 2014-01-08 株式会社日立ハイテクノロジーズ Sample analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056312A1 (en) * 2001-12-27 2003-07-10 Arkray, Inc. Concentration measuring method
US7054759B2 (en) 2001-12-27 2006-05-30 Arkray, Inc Concentration measuring method
CN100410650C (en) * 2001-12-27 2008-08-13 爱科来株式会社 Concentration measuring method
US9568488B2 (en) 2004-10-22 2017-02-14 Sysmex Corporation Biological sample analyzing apparatus
JP2010175355A (en) * 2009-01-29 2010-08-12 Hitachi High-Technologies Corp Automatic analyzer
WO2022255140A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Automatic analysis device and specimen analysis method

Also Published As

Publication number Publication date
JP2666568B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
EP1840559B1 (en) Blood analyzer and blood analyzing method
JPH0224337B2 (en)
US11674970B2 (en) Automatic analysis device and automatic analysis method
US6635488B1 (en) Automated analyzer and automated analysis
JP2666568B2 (en) Biochemical automatic analyzer
JP7109166B2 (en) Determining and correcting signal offsets
JPH0627117A (en) Automatic analyzer
JPH0599930A (en) Automatic chemical analyzing apparatus
JPH0359461A (en) Automatic biochemical analysis apparatus
JP2000221195A (en) Prozone judging method, storage medium storing the same and automatic analyzer using the same
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
JPH05256852A (en) Automatic analysis method
JPH04204378A (en) Immune reaction automatic analyzer
JPH0579984A (en) Automatic analyzer
JP2508115B2 (en) Automatic biochemical analyzer
JPH11108934A (en) Automatic analyser
JP7420976B2 (en) Automatic analyzer and analysis method
Daniels The fitting, acceptance, and processing of standard curve data in automated immunoassay systems, as exemplified by the Serono SR1 analyzer
JPH02223859A (en) Biochemical analysis
JPH0684973B2 (en) Automatic analyzer
JP2727706B2 (en) Automatic biochemical analyzer
JP2646731B2 (en) Biochemical analysis method
JPH03181861A (en) Automatic analyser
JPH0363025B2 (en)
JP2643428B2 (en) Biochemical analysis method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13