JPH04249069A - Manufacture of sintered base board for alkaline storage battery - Google Patents

Manufacture of sintered base board for alkaline storage battery

Info

Publication number
JPH04249069A
JPH04249069A JP3012134A JP1213491A JPH04249069A JP H04249069 A JPH04249069 A JP H04249069A JP 3012134 A JP3012134 A JP 3012134A JP 1213491 A JP1213491 A JP 1213491A JP H04249069 A JPH04249069 A JP H04249069A
Authority
JP
Japan
Prior art keywords
organic resin
pore
spheres
forming agent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3012134A
Other languages
Japanese (ja)
Other versions
JP2951008B2 (en
Inventor
Etsuya Fujisaka
悦也 藤阪
Takahisa Awajiya
隆久 淡路谷
Kenji Yokota
賢治 横田
Shinsuke Nakahori
真介 中堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3012134A priority Critical patent/JP2951008B2/en
Publication of JPH04249069A publication Critical patent/JPH04249069A/en
Application granted granted Critical
Publication of JP2951008B2 publication Critical patent/JP2951008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To provide a strong base board by enhancing the porosity of the base board made through sintering. CONSTITUTION:A sintered base board is fabricated with an organic resin used as a pore making agent consisting both of organic resin hollow spheres and organic resin spheres, and thereby the base board is provided with a high porosity owing to the pore making effect of the organic resin hollow spheres and a very high pore making effect of the organic resin spheres. Also the strength of the base board can be increased. Because of a minor resin quantity of the pore making agent used, gas generation is lesser likely when the organic resin is decomposed at sintering, and also the amount of residual organic substances is lesser, which enables preventing contamination of the inside of a sintering furnace.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、アルカリ蓄電池に用い
られる焼結基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing sintered substrates used in alkaline storage batteries.

【0002】0002

【従来の技術】アルカリ蓄電池用の電極としては、従来
から焼結式電極がよく用いられている。この焼結式電極
の製造方法を、ニッケル正極を例にとり説明すると、ま
ず、ニッケル粉末、増粘剤及び分散媒を混練してスラリ
ーを作製し、このスラリーを導電芯体に塗着、乾燥した
後、還元性雰囲気で焼結して多孔性ニッケル焼結基板を
得る。そして、この焼結基板に硝酸ニッケル水溶液など
の活物質の塩溶液を含浸し、次いで、アルカリ水溶液に
浸漬するなどして、基板中に水酸化ニッケル活物質を生
成させて製造される。この焼結式電極の容量を決定する
要因となる活物質の充填量は、前記焼結基板の多孔度に
比例するため、前記スラリーに造孔剤を添加することに
より、焼結基板の高多孔度化をはかり活物質の充填量を
増大させるという提案がなされている。
2. Description of the Related Art Sintered electrodes have been commonly used as electrodes for alkaline storage batteries. To explain the manufacturing method of this sintered electrode using a nickel positive electrode as an example, first, nickel powder, a thickener, and a dispersion medium are kneaded to prepare a slurry, and this slurry is applied to a conductive core and dried. After that, sintering is performed in a reducing atmosphere to obtain a porous nickel sintered substrate. Then, this sintered substrate is impregnated with a salt solution of an active material such as an aqueous nickel nitrate solution, and then immersed in an aqueous alkaline solution, thereby producing a nickel hydroxide active material in the substrate. The filling amount of active material, which is a factor that determines the capacity of this sintered electrode, is proportional to the porosity of the sintered substrate. Proposals have been made to increase the filling amount of active material by increasing the temperature.

【0003】例えば、特開昭58−66267号公報や
特開昭62−100945号公報では、熱分解可能な有
機樹脂中空球体を造孔剤として用いることが提案されて
いる。ここで、造孔剤の有機樹脂中空球体とは、有機樹
脂球体の内部が中空であるものを指す。
For example, JP-A-58-66267 and JP-A-62-100945 propose the use of thermally decomposable organic resin hollow spheres as a pore-forming agent. Here, the organic resin hollow sphere of the pore-forming agent refers to an organic resin sphere whose interior is hollow.

【0004】しかしながら、上記方法では、造孔剤とし
ての有機樹脂中空球体の添加量を増すにしたがって焼結
基板の多孔度は増大するものの、ある一定量を超えると
、造孔効果がなくなり多孔度が向上しなくなる。これは
、造孔剤自身がつぶれてしまうために基板の多孔度が上
がらないと考えられる。さらに、多孔度を上げようと一
定量を超えて有機樹脂中空球体を添加していくと、造孔
剤が基板の骨格を形成するニッケル粒子の幹の接合をも
破壊し、焼結基板の強度を著しく低下させるという問題
がある。
However, in the above method, the porosity of the sintered substrate increases as the amount of organic resin hollow spheres added as a pore-forming agent increases, but when the amount exceeds a certain amount, the pore-forming effect disappears and the porosity decreases. will no longer improve. This is thought to be because the porosity of the substrate does not increase because the pore-forming agent itself collapses. Furthermore, when adding more than a certain amount of organic resin hollow spheres to increase the porosity, the pore-forming agent also destroys the bonding of the nickel particle trunks that form the skeleton of the substrate, increasing the strength of the sintered substrate. There is a problem in that it significantly reduces the

【0005】一方、特開昭62−55869号公報では
、軟化点が100℃以上のポリスチレンマイクロビーズ
からなる有機樹脂球体を造孔剤として用いることが提案
されている。ここで、有機樹脂球体は、内部まで樹脂が
詰まっているものを指す。
On the other hand, JP-A-62-55869 proposes the use of organic resin spheres made of polystyrene microbeads having a softening point of 100° C. or higher as a pore-forming agent. Here, the organic resin sphere refers to one whose inside is filled with resin.

【0006】ところが、この方法においては、造孔剤自
身がつぶれることがないため有機樹脂球体の添加量を増
すにしたがって焼結基板の多孔度は増加するが、造孔剤
に用いる球体の樹脂量が、前記有機樹脂中空球体に比べ
て極めて多量となる。このため、基板を焼結するときに
発生する有機樹脂球体の分解ガスや焼結炉で分解しきれ
なかった残留有機物によってニッケル粒子の焼結を阻害
するので焼結基板の強度を低下させるという問題点があ
る。
However, in this method, the porosity of the sintered substrate increases as the amount of organic resin spheres added increases because the pore-forming agent itself does not collapse; However, the amount is extremely large compared to the organic resin hollow spheres. For this reason, the problem is that the sintering of the nickel particles is inhibited by the decomposition gas of the organic resin spheres generated when the substrate is sintered and the residual organic matter that cannot be completely decomposed in the sintering furnace, reducing the strength of the sintered substrate. There is a point.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述の如き
問題点を解決し、造孔剤による十分な高多孔度効果を維
持し、さらに基板強度の優れた焼結基板の製造方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for manufacturing a sintered substrate that maintains a sufficiently high porosity effect due to a pore-forming agent and has excellent substrate strength. It is something to do.

【0008】[0008]

【課題を解決するための手段】本発明の製造方法によれ
ば、分散媒と、増粘剤と、金属粉末と、造孔剤とを混練
してスラリーを作製して、該スラリーを導電性芯体に塗
着、乾燥した後、焼結して得られる焼結基板の製造方法
において、前記造孔剤に有機樹脂球体と有機樹脂中空球
体の両者を用いることを特徴とするものである。
[Means for Solving the Problems] According to the manufacturing method of the present invention, a slurry is prepared by kneading a dispersion medium, a thickener, a metal powder, and a pore-forming agent, and the slurry is made conductive. A method for manufacturing a sintered substrate obtained by coating a core, drying, and sintering, characterized in that both organic resin spheres and organic resin hollow spheres are used as the pore-forming agent.

【0009】[0009]

【作用】造孔剤として有機樹脂中空球体と有機樹脂球体
を併用すると、焼結基板を高多孔度化できると共に、造
孔剤として用いる前記球体の使用樹脂量を減少させるこ
とができる。
[Function] When organic resin hollow spheres and organic resin spheres are used together as a pore-forming agent, the sintered substrate can be made highly porous, and the amount of resin used in the spheres used as the pore-forming agent can be reduced.

【0010】まず、焼結基板の高多孔度化については、
造孔剤として有機樹脂中空球体のみを用いた場合には、
ある程度の高多孔度化は可能であるが、より一層の高多
孔度化を行おうと有機樹脂中空球体の添加量を増加して
も、多孔度の増加はほとんど見られない。これは、有機
樹脂中空球体を多量に添加しても、スラリー作製時の混
練、撹拌や乾燥時に前記球体が潰れてしまい、充分な造
孔効果が得られなくなるからである。これに対し、前記
有機樹脂中空球体に加え、有機樹脂球体を造孔剤として
用いると、有機樹脂球体は球体内部まで樹脂がつまって
おり、前記スラリー作製時及び乾燥時においても球体が
潰れることがないため、有機樹脂中空球体のみではでき
ない焼結基板の高多孔度を行うことができる。
First, regarding the high porosity of the sintered substrate,
When only organic resin hollow spheres are used as a pore-forming agent,
Although it is possible to increase the porosity to some extent, even if the amount of organic resin hollow spheres added is increased in an attempt to further increase the porosity, almost no increase in the porosity is observed. This is because even if a large amount of organic resin hollow spheres is added, the spheres will be crushed during kneading, stirring, and drying during slurry preparation, making it impossible to obtain a sufficient pore-forming effect. On the other hand, when organic resin spheres are used as a pore-forming agent in addition to the organic resin hollow spheres, the organic resin spheres are filled with resin to the inside of the spheres, and the spheres are not crushed even during the slurry preparation and drying. Therefore, it is possible to create a sintered substrate with high porosity, which cannot be achieved with organic resin hollow spheres alone.

【0011】また、造孔剤の使用樹脂量については、造
孔剤として有機樹脂中空球体を使用していることから、
有機樹脂球体のみを造孔剤として使用した場合に比較し
て、造孔剤の使用樹脂量を低く抑えることができ、焼結
時における有機樹脂の分解ガスや焼結炉で分解しきれな
かった残留有機物によってニッケル粒子の焼結を阻害す
るといった不都合をも解消し、焼結基板の強度を強固に
することができる。
[0011] Also, regarding the amount of resin used for the pore-forming agent, since organic resin hollow spheres are used as the pore-forming agent,
Compared to using only organic resin spheres as a pore-forming agent, the amount of resin used for the pore-forming agent can be kept low, and the organic resin does not decompose in the decomposed gas during sintering or in the sintering furnace. The inconvenience of inhibiting sintering of nickel particles due to residual organic matter can also be eliminated, and the strength of the sintered substrate can be increased.

【0012】0012

【実施例】分散媒として純水140重量部と、増粘剤と
してカルボキシメチルセルロース3重量部と、金属粉末
としてニッケル粉末100重量部と、造孔剤には、有機
樹脂中空球体としてポリメチルメタアクリレートとアク
リロニトリルとをほぼ1:1に共重合させたマイクロス
フェアーと有機樹脂球体としてポリメチルアクリレート
の重合体であるマイクロビーズとを用い、有機樹脂中空
球体と有機樹脂球体を重量比で1:20の比にして、こ
れらを混練して、スラリーを作製した。このスラリーを
パンチングメタルよりなる導電性芯体に1mmの厚みに
コーティングして、乾燥を行い、グリーンシートを作製
した。このグリーンシートを850℃の還元雰囲気中で
焼結を行い、本発明基板Aを作製した。
[Example] 140 parts by weight of pure water as a dispersion medium, 3 parts by weight of carboxymethyl cellulose as a thickener, 100 parts by weight of nickel powder as a metal powder, and polymethyl methacrylate as a pore-forming agent as organic resin hollow spheres. Using microspheres copolymerized with acrylonitrile and acrylonitrile at a ratio of approximately 1:1 and microbeads which are a polymer of polymethyl acrylate as organic resin spheres, the weight ratio of organic resin hollow spheres and organic resin spheres was 1:20. These were kneaded to prepare a slurry. This slurry was coated on a conductive core made of punched metal to a thickness of 1 mm and dried to produce a green sheet. This green sheet was sintered in a reducing atmosphere at 850° C. to produce a substrate A of the present invention.

【0013】(比較例)造孔剤に有機樹脂中空球体とし
てマイクロスフェアーのみを用いる以外は実施例と同様
にして、比較基板Bを作製した。
(Comparative Example) Comparative substrate B was prepared in the same manner as in Example except that only microspheres were used as the organic resin hollow spheres as the pore-forming agent.

【0014】また、造孔剤に有機樹脂球体としてマイク
ロビーズのみを用いる以外は実施例と同様にして、比較
基板Cを作製した。
[0014] Further, a comparative substrate C was prepared in the same manner as in Example except that only microbeads were used as the pore-forming agent and the organic resin spheres.

【0015】次に、この本発明基板A及び比較基板B、
Cについて、それぞれの焼結基板の多孔度と造孔剤添加
量の関係を図1に示す。図1における造孔剤添加体積(
%)はニッケル粉末の体積に対する造孔剤の体積比であ
る。
Next, the present invention substrate A and comparative substrate B,
Regarding C, the relationship between the porosity of each sintered substrate and the amount of pore-forming agent added is shown in FIG. Pore-forming agent addition volume in Figure 1 (
%) is the volume ratio of the pore-forming agent to the volume of the nickel powder.

【0016】図中の符号□は本発明基板A、△は比較基
板B、○は比較基板Cを示す。また、図2は、図1にお
ける横軸を造孔剤の樹脂量に置き替えた図である。ここ
での造孔剤樹脂量(%)はニッケル粉末の重量に対する
造孔剤の重量比である。
In the figure, the symbol □ indicates the substrate A of the present invention, the symbol △ indicates the comparative substrate B, and the symbol ◯ indicates the comparative substrate C. Moreover, FIG. 2 is a diagram in which the horizontal axis in FIG. 1 is replaced with the amount of resin in the pore-forming agent. The amount of pore-forming agent resin (%) here is the weight ratio of the pore-forming agent to the weight of the nickel powder.

【0017】図1より、本発明基板Aは、ニッケル粉末
の重量に対する造孔剤の体積比では比較基板Cとほとん
ど変わらないほど、高多孔度化できることが判る。これ
は、造孔剤に有機樹脂中空球体と有機樹脂球体の両方を
用いると、有機樹脂中空球体自身がつぶれてしまい有機
樹脂中空球体では得られない高多孔度化が、有機樹脂球
体により得られる。
From FIG. 1, it can be seen that the substrate A of the present invention can be made highly porous to the extent that the volume ratio of the pore-forming agent to the weight of the nickel powder is almost the same as that of the comparative substrate C. This is because if both organic resin hollow spheres and organic resin spheres are used as a pore-forming agent, the organic resin hollow spheres themselves will collapse, making it possible to obtain high porosity with organic resin spheres that cannot be obtained with organic resin hollow spheres. .

【0018】さらに、図2より、ニッケル粉末の重量に
対する造孔剤の重量比では、比較基板B及びCよりも本
発明基板Aは、少量の有機樹脂量で高多孔度焼結基板が
得られていることが判る。これは、造孔剤に有機樹脂中
空球体と有機樹脂球体の両方を用い、少量で高多孔度を
得られる有機樹脂中空球体の効果を最大限に利用し、そ
れ以上の高多孔度化を有機樹脂球体によってなすもので
ある。
Furthermore, from FIG. 2, in terms of the weight ratio of the pore-forming agent to the weight of the nickel powder, the substrate A of the present invention allows a highly porous sintered substrate to be obtained with a smaller amount of organic resin than the comparative substrates B and C. It can be seen that This uses both organic resin hollow spheres and organic resin spheres as the pore-forming agent, and takes full advantage of the effect of the organic resin hollow spheres, which can obtain high porosity with a small amount. It is made of resin spheres.

【0019】また、図3に焼結基板の多孔度と焼結基板
の強度の関係を示す。図3中、基板曲げ応力の測定には
、3点曲げ強度試験を行い、焼結基板にクラックが入る
ときの、すなわち破壊時の曲げ応力を求めた。
Further, FIG. 3 shows the relationship between the porosity of the sintered substrate and the strength of the sintered substrate. In FIG. 3, a three-point bending strength test was performed to measure the bending stress of the substrate, and the bending stress at the time of cracking in the sintered substrate, that is, at the time of destruction, was determined.

【0020】これより、本発明基板Aは、同じ多孔度の
比較基板Cよりも、基板の曲げ応力が大きく、焼結基板
の強度が向上していることが判る。さらに、本発明では
有機樹脂量が少量なために、基板を焼結するときに発生
する有機樹脂の分解ガスや焼結炉で分解できなかった残
留有機物は少量になり、ニッケル粒子の焼結を阻害する
不純物が少なくなるため、焼結基板の強度の低下もなく
なる。また、分解ガスや残留有機物による焼結炉内の汚
染もなくなる。
From this, it can be seen that the substrate A of the present invention has a larger bending stress than the comparative substrate C having the same porosity, and the strength of the sintered substrate is improved. Furthermore, in the present invention, since the amount of organic resin is small, the decomposed gas of the organic resin generated when sintering the substrate and the residual organic matter that could not be decomposed in the sintering furnace are small, making it easier to sinter the nickel particles. Since there are fewer inhibiting impurities, there is no decrease in the strength of the sintered substrate. Furthermore, there is no contamination in the sintering furnace due to decomposition gas or residual organic matter.

【0021】以上のように本発明の基板は、造孔剤の樹
脂量を低減することにより、少量で極めて高い多孔度に
することができる。また、造孔剤の樹脂量が少量のため
焼結する際に、有機樹脂の分解生成物が焼結炉や焼結基
板中に残留せず、基板強度が強固となる。
As described above, the substrate of the present invention can be made to have extremely high porosity with a small amount by reducing the amount of resin as a pore-forming agent. Further, since the amount of resin in the pore-forming agent is small, no decomposition products of the organic resin remain in the sintering furnace or the sintered substrate during sintering, and the substrate strength becomes strong.

【0022】そして、添加する有機樹脂量については、
図1において、造孔剤に有機樹脂中空球体のみを用いた
曲線と、造孔剤に有機樹脂球体のみを用いた曲線の交点
付近までは、有機樹脂中空球体のみを添加し、それ以上
多孔度を増加する場合は前記交点以降の造孔剤の添加を
有機樹脂球体によって行い、より有効な高多孔度化が可
能である。
[0022] Regarding the amount of organic resin added,
In Figure 1, only organic resin hollow spheres are added up to the intersection of the curve using only organic resin hollow spheres as a pore-forming agent and the curve using only organic resin spheres as a pore-forming agent, and the porosity increases beyond that point. When increasing the porosity, the pore-forming agent is added after the intersection using organic resin spheres, thereby making it possible to increase the porosity more effectively.

【0023】このことは、有機樹脂中空球体を上述した
曲線の交点以上添加すると、有機樹脂中空球体自身が混
練、撹拌、乾燥時等に特に潰れてしまい、潰れた有機樹
脂中空球体がニッケルパウダーの粒子間に入り込み、ニ
ッケル粒子の結合をはなしてしまい焼結時に、焼結基体
の骨格形成を阻害するために焼結基板の強度を低下させ
るからである。他方、有機樹脂中空球体が上述した曲線
の交点以下の添加量で、有機樹脂球体を添加して有機樹
脂中空球体のみを用いた場合と同じ多孔度を得るには、
添加した造孔剤の樹脂量が多くなる。したがって、造孔
剤の有機樹脂量が多いと、焼結時に分解できなかった有
機樹脂の残留有機物が多く、また、有機樹脂の分解ガス
によって、ニッケル粒子の結合を阻害するために焼結基
板の強度が低下してしまうからである。そして、残留有
機物や分解ガスによって、焼結炉内が汚染されやすくな
る。
This means that if the organic resin hollow spheres are added beyond the intersection of the above-mentioned curves, the organic resin hollow spheres themselves will be particularly crushed during kneading, stirring, drying, etc., and the crushed organic resin hollow spheres will be absorbed by the nickel powder. This is because the nickel particles enter between the particles and break the bond between the nickel particles, inhibiting the formation of a skeleton of the sintered substrate during sintering, thereby reducing the strength of the sintered substrate. On the other hand, in order to obtain the same porosity as when only the organic resin hollow spheres are used by adding the organic resin hollow spheres in an amount below the intersection of the above-mentioned curves,
The amount of added pore-forming agent resin increases. Therefore, if the amount of organic resin in the pore-forming agent is large, there will be a large amount of residual organic matter from the organic resin that could not be decomposed during sintering, and the decomposition gas of the organic resin will inhibit the bonding of nickel particles. This is because the strength will decrease. The interior of the sintering furnace is likely to be contaminated by residual organic matter and decomposed gas.

【0024】さらに、この交点は金属粉末であるニッケ
ル粉末の物性(かさ密度や粒子径)及び造孔剤の粒子径
などによって変動するものである。したがって、ニッケ
ル粉末や造孔剤の粒子径の違いによって、添加する造孔
剤の有機樹脂中空球体と有機樹脂球体の比率を変えなけ
ればならない。
Furthermore, this point of intersection varies depending on the physical properties (bulk density and particle size) of the nickel powder, which is a metal powder, and the particle size of the pore-forming agent. Therefore, depending on the particle size of the nickel powder and the pore-forming agent, the ratio of organic resin hollow spheres to organic resin spheres of the pore-forming agent to be added must be changed.

【0025】[0025]

【発明の効果】本発明によれば、造孔剤として有機樹脂
中空球体と有機樹脂球体とを用いることによって、造孔
剤の使用樹脂量を少量に抑えて、極めて高い多孔度の焼
結基板を製造ができるものであり、また、その焼結基板
極度も強固となり優れた焼結基板を製造することができ
、その工業的価値は極めて大である。
According to the present invention, by using organic resin hollow spheres and organic resin spheres as a pore-forming agent, the amount of resin used for the pore-forming agent can be suppressed to a small amount, and a sintered substrate with extremely high porosity can be obtained. Moreover, the sintered substrate is extremely strong, and an excellent sintered substrate can be manufactured, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】造孔剤添加体積と焼結基板の多孔度の関係を示
す図である。
FIG. 1 is a diagram showing the relationship between the volume of pore-forming agent added and the porosity of a sintered substrate.

【図2】造孔剤の有機樹脂量と焼結基板の多孔度の関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of organic resin in the pore-forming agent and the porosity of the sintered substrate.

【図3】焼結基板の多孔度と強度の関係を示す図である
FIG. 3 is a diagram showing the relationship between porosity and strength of a sintered substrate.

【符号の説明】 □    本発明基板A △    比較基板B ○    比較基板C[Explanation of symbols] □ Invention substrate A △ Comparison board B ○ Comparison board C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  分散媒と、増粘剤と、金属粉末と、造
孔剤とを混練してスラリーを作製して、該スラリーを導
電性芯体に塗着、乾燥した後、焼結して得られる焼結基
板の製造方法において、前記造孔剤に有機樹脂球体と有
機樹脂中空球体の両者を用いることを特徴とするアルカ
リ蓄電池用焼結基板の製造方法。
Claim 1: A slurry is prepared by kneading a dispersion medium, a thickener, a metal powder, and a pore-forming agent, and the slurry is applied to a conductive core, dried, and then sintered. A method for producing a sintered substrate for an alkaline storage battery, characterized in that both organic resin spheres and organic resin hollow spheres are used as the pore-forming agent.
JP3012134A 1991-02-01 1991-02-01 Method for producing sintered substrate for alkaline storage battery Expired - Fee Related JP2951008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3012134A JP2951008B2 (en) 1991-02-01 1991-02-01 Method for producing sintered substrate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3012134A JP2951008B2 (en) 1991-02-01 1991-02-01 Method for producing sintered substrate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04249069A true JPH04249069A (en) 1992-09-04
JP2951008B2 JP2951008B2 (en) 1999-09-20

Family

ID=11797059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3012134A Expired - Fee Related JP2951008B2 (en) 1991-02-01 1991-02-01 Method for producing sintered substrate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2951008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824925B2 (en) * 2001-07-10 2004-11-30 Matsushita Electric Industrial Co., Ltd. Method for manufacturing base for electrode plate, method for manufacturing positive electrode plate and alkaline storage battery
JP2006120372A (en) * 2004-10-20 2006-05-11 Sanyo Chem Ind Ltd Electrode forming composition, metallic porous body, and electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824925B2 (en) * 2001-07-10 2004-11-30 Matsushita Electric Industrial Co., Ltd. Method for manufacturing base for electrode plate, method for manufacturing positive electrode plate and alkaline storage battery
JP2006120372A (en) * 2004-10-20 2006-05-11 Sanyo Chem Ind Ltd Electrode forming composition, metallic porous body, and electrode

Also Published As

Publication number Publication date
JP2951008B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US2461410A (en) Porous electrode for electrolytic cells
JPH0897095A (en) Tantalum powder and electrolytic capacitor employing it
CN108807957A (en) Anode material of lithium-ion battery lacks layer rhenium disulfide nanometer sheet/hollow carbon sphere and preparation method thereof
JPH04249069A (en) Manufacture of sintered base board for alkaline storage battery
JPS60131765A (en) Nickel positive electrode for battery
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH05221601A (en) Hydrogen occluding porous material and its production
JPS6264062A (en) Positive plate for alkaline storage battery
JP2581362B2 (en) Electrodes for alkaline storage batteries
JPS60170167A (en) Manufacturing method for alkaline cell electrode
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JPS62100945A (en) Manufacture of sintered substrate for nickel-cadmium-alkaline storage battery
JPH0834100B2 (en) Hydrogen storage alloy electrode
JP2004183055A (en) Porous liquid absorbing-holding member, and alcohol absorbing-holding member
JP3783457B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
KR20220058417A (en) Method for producing composite alloy and method for producing electrode
JPH0326903B2 (en)
JPS62108452A (en) Method of manufacturing cadmium plate for alkaline storage battery
JPS6157397B2 (en)
JPH09161807A (en) Electrode base for lithium ion battery
JPH04272660A (en) Sintered carrier for alkaline storage battery
Guo et al. Effects of electrode manufacture on electrochemical properties for hydrogen storage alloys

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees