JPH04248257A - Solid electrode composition - Google Patents

Solid electrode composition

Info

Publication number
JPH04248257A
JPH04248257A JP3007501A JP750191A JPH04248257A JP H04248257 A JPH04248257 A JP H04248257A JP 3007501 A JP3007501 A JP 3007501A JP 750191 A JP750191 A JP 750191A JP H04248257 A JPH04248257 A JP H04248257A
Authority
JP
Japan
Prior art keywords
electrode
ion
powder
solid
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3007501A
Other languages
Japanese (ja)
Other versions
JP2929726B2 (en
Inventor
Tadashi Tonomura
正 外邨
Yoshiko Sato
佳子 佐藤
Yasushi Uemachi
裕史 上町
Teruhisa Kanbara
神原 輝寿
Hiromu Matsuda
宏夢 松田
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3007501A priority Critical patent/JP2929726B2/en
Publication of JPH04248257A publication Critical patent/JPH04248257A/en
Application granted granted Critical
Publication of JP2929726B2 publication Critical patent/JP2929726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide electrode compositions which can be used as a negative electrode for a solid litium secondary cell which is uniform and less in polarization. CONSTITUTION:Electrode compositions are composed of carbon powder, aluminum or aluminum alloy powder, cationic surface active agent to which ethylene oxide chain and/or propylene oxide chain are added, ion exchanging layer compound, and of ionic material represented by a formula MX, wherein M represents metal ion, proton, and ammonium ion which travel within solid electrolyte compositions by the action of electric fields, and X represents anion strong in acid. The carbon powder and the aluminum or aluminum alloy powder are uniformly dispersed, so that large reactive areas can thereby be obtained, and ion conductive paths preferable to cell reaction are formed within the electrode compositions by the cationic surface active agent combined with ionic material and the ion exchanging layer compound. The electrode compositions thus formed can effectively be used as a negative electrode for a lithium cell less in polarization.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池、キャパシター、
センサー、表示素子、記録素子等の電気化学素子に用い
られる固形電極組成物、とくに、リチウムイオン伝導性
の電解質と組み合わせて固体状のリチウム電池の負極と
して用いる固形電極組成物に関する。
[Industrial Application Field] The present invention relates to batteries, capacitors,
The present invention relates to solid electrode compositions used in electrochemical devices such as sensors, display elements, and recording elements, and particularly to solid electrode compositions used in combination with lithium ion conductive electrolytes as negative electrodes of solid lithium batteries.

【0002】0002

【従来の技術】固体の電解質を用いることで液漏れがな
く、小形薄形化の電池、電気二重層キャパシタ等の固体
の電気化学デバイスを得ることができる。
2. Description of the Related Art By using a solid electrolyte, it is possible to obtain small and thin solid electrochemical devices such as batteries and electric double layer capacitors without liquid leakage.

【0003】しかしながら、従来の固体電気化学的デバ
イスは、弾性に欠ける固体物質で素子が構成されること
から、機械的衝撃に対してはきわめて脆く、破損しやす
い欠点がある。この様な問題を解決するため、ポリエチ
レンオキシド(PEO)とアルカリ金属塩とからなる高
分子固体電解質が提案されている(”Fast Ion
   Tra−nsport in Solid” P
.Vanishstaet.al., Eds. P.
 131(1979) North Holand P
ubl−ishing Co.) 。高分子固体電解質
は無機系固体電解質に較べ、軽量で、柔軟性、成形性に
優れている。以来、優れた柔軟性、成形性を保持したま
まで無機系固体電解質に匹敵する高いイオン伝導性を示
す材料の研究開発が盛んに行われている。特に、金属リ
チウム負極と組み合わせることで電圧が3ボルト以上の
高エネルギー密度の固体二次電池が期待できることから
、盛んに研究開発が行われている。
[0003] However, conventional solid-state electrochemical devices have the disadvantage that they are extremely brittle and easily damaged by mechanical impacts because their elements are constructed of solid materials lacking elasticity. In order to solve these problems, a solid polymer electrolyte consisting of polyethylene oxide (PEO) and an alkali metal salt has been proposed ("Fast Ion").
Transport in Solid”P
.. Vanishstate. al. , Eds. P.
131 (1979) North Holland P.
ubl-ishing Co. ). Polymer solid electrolytes are lighter and have superior flexibility and moldability compared to inorganic solid electrolytes. Since then, research and development has been actively conducted on materials that exhibit high ionic conductivity comparable to inorganic solid electrolytes while maintaining excellent flexibility and moldability. In particular, active research and development is being carried out on solid-state secondary batteries with high energy density and a voltage of 3 volts or more, which can be expected by combining it with a metallic lithium negative electrode.

【0004】0004

【発明が解決しようとする課題】しかし、これまで提案
されている金属リチウムあるいはリチウムーアルミニウ
ムなどのリチウム合金を負極とするリチウム二次電池で
は、負極と高分子電解質との間で低分極性の可逆性の良
い均一な接合界面が必ずしも得られず、例えば、0.1
mA/cm2を越える電流密度の充放電では50サイク
ル以下の充放電サイクルの初期においても分極が急激に
増大する問題があった。また、電解質層を破って金属リ
チウムが析出し短絡にいたるという問題があった。
[Problems to be Solved by the Invention] However, in the lithium secondary batteries that have been proposed so far that use metallic lithium or lithium alloys such as lithium-aluminum as the negative electrode, there is a problem of low polarization between the negative electrode and the polymer electrolyte. A uniform bonding interface with good reversibility cannot always be obtained, for example, 0.1
When charging and discharging at a current density exceeding mA/cm2, there is a problem in that polarization increases rapidly even at the beginning of 50 or less charge/discharge cycles. Further, there was a problem that the electrolyte layer was broken and metallic lithium was deposited, leading to a short circuit.

【0005】本発明はこのような課題を解決するもので
、固体状のリチウム二次電池用の負極として、イオン伝
導性と電子伝導性がともに優れた固形の電極組成物を得
ることを目的とするものである。
[0005] The present invention is intended to solve these problems, and its purpose is to obtain a solid electrode composition having excellent ionic conductivity and electronic conductivity as a negative electrode for a solid lithium secondary battery. It is something to do.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は炭素粉末と、金属アルミニウムあるいはその
合金粉末と、エチレンオキサイド鎖(EO)またはプロ
ピレンオキサイド鎖(PO)のいずれかを有するカチオ
ン界面活性剤、あるいはエチレンオキサイド鎖(EO)
およびプロピレンオキサイド鎖を有するカチオン界面活
性剤と、イオン交換性の層状化合物と、式MXで表され
るイオン性物質(ただし、Mは電界の作用で固形電極組
成物内を移動する金属イオン、プロトン、アンモニウム
イオンであり、Xは強酸のアニオンである)を少なくと
も含有させたものである。さらに電極組成物内のイオン
伝導性を大きくする目的でイオン伝導性の粒子を含有さ
せたものである。
[Means for Solving the Problem] In order to solve this problem, the present invention provides carbon powder, metal aluminum or its alloy powder, and a cation having either an ethylene oxide chain (EO) or a propylene oxide chain (PO). Surfactant or ethylene oxide chain (EO)
and a cationic surfactant having a propylene oxide chain, an ion-exchange layered compound, and an ionic substance represented by the formula MX (where M is a metal ion or proton that moves within the solid electrode composition under the action of an electric field. , ammonium ion, and X is an anion of a strong acid). Furthermore, ion conductive particles are included for the purpose of increasing the ion conductivity within the electrode composition.

【0007】[0007]

【作用】このようにして得られる固形電極組成物内にあ
っては、イオン性の化合物MXはカチオン界面活性剤と
イオン交換性の層状化合物とで複合体を形成し層状化合
物の結晶の層間あるいは表面に高濃度に保持されイオン
伝導に有利な経路を形成する。また、炭素粉末および金
属アルミニウムあるいはアルミニウム合金粉末は、カチ
オン界面活性剤の作用により溶媒とイオン交換性の層状
化合物とが均一に混和される。さらに、イオン伝導性粉
末の添加混合に際しては、カチオン界面活性剤は金属粉
末の凝集を防止し、溶媒とイオン交換性の層状化合物、
炭素粉末、金属アルミニウム粉末あるいはその合金粉末
との均一な混合分散を可能にする。このようにして、高
い電子・イオン伝導性と均質性が発現される。その結果
、分極の小さい電極組成物となる。すなわち、電池反応
の進行に伴って、炭素粉末あるいは金属アルミニウムあ
るいはその合金粉末上へ負極金属が析出・溶解を繰り返
すが、本発明の電極組成物は均質で電極面積が大きいの
で電流の局部集中が起こり難い。さらに、負極金属の析
出はイオン交換性の層状化合物が介在することにより一
方向に起こり難くなり、電解質層を突き破って負極金属
が析出し、両極が短絡することはない。また、カチオン
界面活性剤のポリエチレンオキサイド鎖および/または
プロピレンオキサイド鎖とイオン交換性の層状化合物と
のマイクロポーラス構造とが絡まって良好な成形性と十
分な機械的強度が付与される。
[Function] In the solid electrode composition thus obtained, the ionic compound MX forms a complex with the cationic surfactant and the ion-exchange layered compound, and forms a complex between the crystals of the layered compound. It is retained at a high concentration on the surface and forms an advantageous path for ion conduction. In addition, the carbon powder and the metallic aluminum or aluminum alloy powder are uniformly mixed with the solvent and the ion-exchangeable layered compound by the action of the cationic surfactant. Furthermore, when adding and mixing the ion conductive powder, the cationic surfactant prevents the agglomeration of the metal powder, and the solvent and the ion exchange layered compound,
Enables uniform mixing and dispersion of carbon powder, metal aluminum powder, or their alloy powder. In this way, high electronic and ionic conductivity and homogeneity are achieved. As a result, an electrode composition with low polarization is obtained. That is, as the battery reaction progresses, the negative electrode metal repeatedly precipitates and dissolves on carbon powder, metallic aluminum, or its alloy powder, but the electrode composition of the present invention is homogeneous and has a large electrode area, so that local concentration of current is prevented. Hard to happen. Furthermore, the presence of the ion-exchange layered compound makes it difficult for the negative electrode metal to precipitate in one direction, so that the negative electrode metal does not break through the electrolyte layer and precipitate, thereby preventing short-circuiting between the two electrodes. In addition, the microporous structure of the polyethylene oxide chain and/or propylene oxide chain of the cationic surfactant and the ion-exchangeable layered compound are entangled to provide good moldability and sufficient mechanical strength.

【0008】[0008]

【実施例】以下、本発明の一実施例を説明するが、本発
明は以下の実施例に限定されるものではない。また、以
下の実施例において部、%、比は特に断わらない限り重
量部、重量%、重量比を表わす。
[Example] An example of the present invention will be described below, but the present invention is not limited to the following example. Further, in the following examples, parts, percentages, and ratios represent parts by weight, percentages by weight, and weight ratios unless otherwise specified.

【0009】本実施例の炭素材料としては、天然黒鉛、
人造黒鉛、無定形炭素、繊維状、粉末状、石油ピッチ系
、石炭コークス系のいずれも用いることができる。粒子
あるいは繊維の大きさは、直径あるいは繊維径が0.0
1〜10μm、繊維長が数μmから数mm までが望ま
しい。 金属アルミニウムまたはその合金粉末としては、Al,
 Al−Fe, Al−Si, Al−Zn, Al−
Li, Al−Zn−Siなどの超急冷により得られた
フレーク状のものを、空気あるいは窒素などの不活性ガ
ス中で機械的な粉砕により得られた球状あるいは無定形
の粉末が用いられる。粒子の大きさは、直径1〜100
μmが望ましい。炭素材料とアルミニウムまたはアルミ
ニウム合金粉末との混合割合は、アルミニウムまたはア
ルミニウム合金粉末1部に対し炭素材料粉末0.01〜
5.0部、望ましくは0.05〜0.5部である。炭素
材料が0.01部以下であるとアルミニウムまたはアル
ミニウム合金粉末との均一分散が困難になり、炭素粉末
が凝集しアルミニウムあるいはアルミニウム合金粒子間
の電導性が不良になり、電極として有効に働かなくなる
。また5.0部以上になるとアルミニウムまたはアルミ
ニウム合金粉末粒子が炭素粒子で厚く覆われてしまい、
電解質との接触が断たれ、電極が不安定になったり分極
が大きくなったりする。
The carbon materials used in this example include natural graphite,
Any of artificial graphite, amorphous carbon, fibrous, powdered, petroleum pitch-based, and coal-coke-based materials can be used. The size of particles or fibers is 0.0 in diameter or fiber diameter.
Preferably, the fiber length is 1 to 10 μm, and the fiber length is from several μm to several mm. Metal aluminum or its alloy powder includes Al,
Al-Fe, Al-Si, Al-Zn, Al-
Spherical or amorphous powder obtained by mechanically pulverizing flakes obtained by ultra-quenching Li, Al-Zn-Si, etc. in air or an inert gas such as nitrogen is used. The particle size is 1 to 100 mm in diameter.
μm is desirable. The mixing ratio of carbon material and aluminum or aluminum alloy powder is 0.01 to 1 part of carbon material powder to 1 part of aluminum or aluminum alloy powder.
The amount is 5.0 parts, preferably 0.05 to 0.5 parts. If the carbon material is less than 0.01 part, it will be difficult to uniformly disperse the aluminum or aluminum alloy powder, the carbon powder will aggregate, the conductivity between aluminum or aluminum alloy particles will be poor, and the material will not work effectively as an electrode. . Moreover, if the amount exceeds 5.0 parts, the aluminum or aluminum alloy powder particles will be thickly covered with carbon particles.
Contact with the electrolyte is broken, causing the electrode to become unstable and polarized.

【0010】本発明のEO鎖およびPO鎖を有するカチ
オン界面活性剤、あるいはEO鎖またはPO鎖のいずれ
かを有するカチオン活性剤としては、例えば下式(化1
)あるいは(化2)で示されるものが挙げられる。
[0010] The cationic surfactant having an EO chain and a PO chain, or a cationic surfactant having either an EO chain or a PO chain of the present invention is, for example, represented by the following formula (Chemical formula 1).
) or (Chemical formula 2).

【0011】[0011]

【化1】[Chemical formula 1]

【0012】式中、Yは窒素あるいは燐、A−はCl,
−Br−,I−,F−,ClO4−,CH3COO−,
CF3SO3−,OH−,CH3SO3−,AlCl4
−,BF4−,PF6−,NO2−またはこれらの組合
せ、R1,R2,R3,R4の少なくとも一つはEO鎖
あるいは、およびPO鎖を有する置換基を有するあるい
は有しない炭素数1から30個の炭化水素基であり、残
りは水素あるいは置換基を有するあるいは有しない炭素
数1から30個の同じあるいは異なる炭化水素基である
。  EO鎖あるいは、およびPO鎖の付加モル数は2
0から500が望ましい。
In the formula, Y is nitrogen or phosphorus, A- is Cl,
-Br-, I-, F-, ClO4-, CH3COO-,
CF3SO3-, OH-, CH3SO3-, AlCl4
-, BF4-, PF6-, NO2- or a combination thereof; at least one of R1, R2, R3, R4 has 1 to 30 carbon atoms with or without a substituent having an EO chain or a PO chain; The rest are hydrogen or the same or different hydrocarbon groups having 1 to 30 carbon atoms with or without a substituent. The number of added moles of EO chain or PO chain is 2
0 to 500 is desirable.

【0013】[0013]

【化2】[Case 2]

【0014】式中、Zは硫黄、A−はCl,−Br−,
I−,F−,ClO4−,CH3COO−,CF3SO
3−,OH−,CH3SO3−,AlCl4−,BF4
−,PF6−,NO2−またはこれらの組合せ、R1,
R2,R3,R4の少なくとも一つはEO鎖あるいは、
およびPO鎖を有する置換基を有する、あるいは有しな
い炭素数1から30個の炭化水素基であり、残りは水素
あるいは置換基を有する、あるいは有しない炭素数1か
ら30個の同じあるいは異なる炭化水素基である。
In the formula, Z is sulfur, A- is Cl, -Br-,
I-, F-, ClO4-, CH3COO-, CF3SO
3-, OH-, CH3SO3-, AlCl4-, BF4
-, PF6-, NO2- or a combination thereof, R1,
At least one of R2, R3, and R4 is an EO chain or
and a hydrocarbon group having 1 to 30 carbon atoms with or without a substituent having a PO chain, and the remainder being hydrogen or the same or different hydrocarbon group having 1 to 30 carbon atoms with or without a substituent. It is the basis.

【0015】このカチオン界面活性剤の添加量は、固形
電極組成物全量に対し、0.5から20%が望ましい。
The amount of the cationic surfactant added is preferably 0.5 to 20% based on the total amount of the solid electrode composition.

【0016】イオン性物質としては、特に制限はないが
、LiI, LiClO4, LiCF3SO3, L
iPF6, LiBF4, LiSCN, LiAsF
6などの可溶性のリチウム塩が用いられる。
[0016] There are no particular restrictions on the ionic substance, but LiI, LiClO4, LiCF3SO3, L
iPF6, LiBF4, LiSCN, LiAsF
A soluble lithium salt such as 6 is used.

【0017】イオン交換性の層状化合物としては、モン
モリロナイト、ヘクトライト、サポナイト、スメクタイ
トなどのけい酸塩を含む粘土鉱物、りん酸ジルコニウム
、りん酸チタニウムなどのりん酸エステル、バナジン酸
、アンチモン酸、タングステン酸、あるいは、それらを
第4級アンモニウム塩等の有機カチオンあるいはエチレ
ンオキサイド、プロピレンオキサイド等の有機の極性化
合物で変性したものが挙げられる。
Examples of ion exchange layered compounds include clay minerals containing silicates such as montmorillonite, hectorite, saponite, and smectite, phosphate esters such as zirconium phosphate and titanium phosphate, vanadate, antimonic acid, and tungsten. Examples include acids, or those modified with organic cations such as quaternary ammonium salts, or organic polar compounds such as ethylene oxide and propylene oxide.

【0018】さらにイオン伝導性の粉末としては、Li
I、LiI・H2O、Li−β−Al2O3、LiI−
Li2S−B2S3、PEO−LiCF3SO3などの
リチウムイオン伝導性固体電解質が望ましく用いられる
。イオン伝導性粉末の添加量は、固形電極組成物の成形
性が損なわれない限り制限はない。
Furthermore, as the ion conductive powder, Li
I, LiI・H2O, Li-β-Al2O3, LiI-
Lithium ion conductive solid electrolytes such as Li2S-B2S3 and PEO-LiCF3SO3 are preferably used. There is no limit to the amount of ion conductive powder added as long as the moldability of the solid electrode composition is not impaired.

【0019】本発明の固形電極組成物はつぎのようにし
て得られる。イオン性化合物を1〜50%溶解した溶剤
にイオン交換性の層状化合物粉末を1〜50%となるよ
うに加え、つぎにEO鎖あるいは、およびPO鎖を有す
るカチオン界面活性剤をスラリー全体に対して0.1〜
20%の割合になるように加え、ディスパーサなどの混
合粉砕機により粉砕混合して固形分含量が5〜95%の
電解質スラリーを調製する。
The solid electrode composition of the present invention can be obtained as follows. Add 1 to 50% ion exchange layered compound powder to a solvent in which 1 to 50% of an ionic compound is dissolved, and then add a cationic surfactant having an EO chain or a PO chain to the entire slurry. Te 0.1~
The electrolyte slurry is added at a ratio of 20% and pulverized and mixed using a mixer such as a disperser to prepare an electrolyte slurry having a solid content of 5 to 95%.

【0020】また、イオン性化合物を1から50%溶解
した溶剤にEO鎖あるいは、およびPO鎖を有するカチ
オン界面活性剤を0.1〜20%含むカチオン界面活性
剤溶液に、炭素粉末とアルミニウムあるいはアルミニウ
ム合金粉末とをあらかじめ混合した粉末を添加し電極ス
ラリーとする。つぎに、電解質スラリーと電極スラリー
を混合して電極組成物スラリーを得る。混合は、直径が
3〜10mmアルミナ球と一緒にアルミナボールミル中
で行うのが望ましい。このようにして得られた電極組成
物スラリーを、テフロン板やナイロンメッシュシートな
どの支持体上に流延あるいは塗布して成形した後、溶剤
を一部あるいは全部散逸させることで固形電解質組成物
を得ることができる。支持体がメッシュ状であれば支持
体を一体化したままで固形電極組成物として用いること
も可能である。必要に応じ、これらの工程は相対湿度が
40%以下の乾燥雰囲気中で行われる。
[0020] Also, carbon powder and aluminum or A pre-mixed powder with aluminum alloy powder is added to form an electrode slurry. Next, the electrolyte slurry and the electrode slurry are mixed to obtain an electrode composition slurry. Mixing is preferably carried out in an alumina ball mill with alumina balls having a diameter of 3 to 10 mm. The electrode composition slurry obtained in this manner is cast or coated onto a support such as a Teflon plate or a nylon mesh sheet and formed, and then the solid electrolyte composition is formed by dissipating some or all of the solvent. Obtainable. If the support is in the form of a mesh, it is possible to use it as a solid electrode composition with the support integrated. If necessary, these steps are performed in a dry atmosphere with a relative humidity of 40% or less.

【0021】また、溶剤としては、アセトン、メチルエ
チルケトン、メチルイソブチルケトンなどのケトン系溶
剤、n−ヘキサン、n−ヘプタン、n−オクタン、シク
ロヘキサンなどの飽和炭化水素系溶剤、ベンゼン、トル
エン、キシレンなどの芳香族系溶剤、酢酸エチル、酢酸
プチル、プロピレンカーボネートなどのエステル系溶剤
、メタノール、エタノール、イソプロピルアルコール、
エチレングリコール、グリセリン、ポリエチレングリコ
ールなどのアルコール系溶剤、アセトニトリルなどのニ
トリル類、あるいは水が用いられる。
Examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, saturated hydrocarbon solvents such as n-hexane, n-heptane, n-octane, and cyclohexane, and benzene, toluene, and xylene. Aromatic solvents, ester solvents such as ethyl acetate, butyl acetate, propylene carbonate, methanol, ethanol, isopropyl alcohol,
Alcohol solvents such as ethylene glycol, glycerin, and polyethylene glycol, nitriles such as acetonitrile, or water are used.

【0022】(実施例1)(化3)で示されるカチオン
界面活性剤をアセトニトリルに溶解し20%のカチオン
界面活性剤溶液を調整した。
(Example 1) A cationic surfactant represented by (Chemical formula 3) was dissolved in acetonitrile to prepare a 20% cationic surfactant solution.

【0023】[0023]

【化3】[Chemical formula 3]

【0024】さらに、イオン性物質としてLiCF3S
O3を10%溶解したカチオン界面活性剤溶液に、固形
分含量が30%となるように平均粒径が15μmのγー
りん酸ジルコニウム粉末を添加し、40℃で24時間撹
半混合し電解質スラリーを得た。つぎに、カチオン界面
活性剤溶液に平均粒径が18μmの純度99.8%の金
属アルミニウム粉末1部と黒鉛化度48%、平均粒径が
2μmの人造黒鉛粉末0.1部との混合粉末を固形分含
量が50%となるように加え40℃で24時間混合し電
極スラリーを得た。電解質スラリーと電極スラリーとを
固形分比が1:2となるようにアルミナボールミル中で
24時間混合して電極組成物スラリーを得た。電極組成
物スラリーを平滑なテフロン製の板の上でドクターブレ
ードを用い塗布した後、130℃の乾燥アルゴン気流中
で1時間乾燥し、さらに5時間真空乾燥することにより
大きさ  80x80mm、厚さ210μmのシート状
の固形電極組成物を得た。また、電極組成物の電気化学
特性を評価する電解セルの構成用として、電解質スラリ
ーのみを同様にして塗布乾燥して大きさ80x80mm
、厚さ90ミクロンの電解質シートを作製した。
Furthermore, LiCF3S is used as an ionic substance.
γ-zirconium phosphate powder with an average particle size of 15 μm was added to a cationic surfactant solution containing 10% O3 dissolved therein so that the solid content was 30%, and the mixture was stirred and mixed at 40°C for 24 hours to form an electrolyte slurry. I got it. Next, a mixed powder of 1 part of 99.8% pure metal aluminum powder with an average particle size of 18 μm and 0.1 part of artificial graphite powder with a degree of graphitization of 48% and an average particle size of 2 μm is added to the cationic surfactant solution. was added so that the solid content was 50% and mixed at 40°C for 24 hours to obtain an electrode slurry. Electrolyte slurry and electrode slurry were mixed in an alumina ball mill for 24 hours so that the solid content ratio was 1:2 to obtain an electrode composition slurry. After applying the electrode composition slurry on a smooth Teflon plate using a doctor blade, it was dried in a dry argon stream at 130°C for 1 hour, and then vacuum dried for 5 hours, resulting in a size of 80 x 80 mm and a thickness of 210 μm. A sheet-like solid electrode composition was obtained. In addition, for the construction of an electrolytic cell for evaluating the electrochemical properties of the electrode composition, only the electrolyte slurry was coated and dried in the same manner, and the size was 80 x 80 mm.
, an electrolyte sheet with a thickness of 90 microns was prepared.

【0025】(実施例2)窒素ガス雰囲気中で粉砕した
球状の平均粒径が40μmのAl−Si合金(Si含量
:25原子%)粉末1部と、平均粒径7μm、純度99
.99%の高純度天然黒鉛0.1部とをエタノールを分
散媒として混合し、乾燥したものを電極粉末として用い
、(化4)で示されるカチオン性界面活性剤をアセトニ
トリルに溶解した10%のカチオン界面活性剤溶液と、
平均粒径が25μmのモンモリロナイト粉末、イオン性
物質としてトリフルオロスルフォン酸リチウム(LiC
F3SO3)とを用いた以外は実施例1と同様にして、
厚さが300μmのシート状電極組成物と厚さが110
μmのシート状電解質を作製した。
(Example 2) One part of spherical Al-Si alloy (Si content: 25 atomic %) powder with an average particle size of 40 μm crushed in a nitrogen gas atmosphere, and an average particle size of 7 μm with a purity of 99
.. 0.1 part of 99% high-purity natural graphite was mixed with ethanol as a dispersion medium, and the dried product was used as an electrode powder. a cationic surfactant solution;
Montmorillonite powder with an average particle size of 25 μm, lithium trifluorosulfonate (LiC) as an ionic substance
F3SO3) was used in the same manner as in Example 1,
Sheet electrode composition with a thickness of 300 μm and a thickness of 110 μm
A sheet-like electrolyte of μm size was produced.

【0026】[0026]

【化4】[C4]

【0027】実施例3 空気中で粉砕した平均粒径が12μmの無定形Al−C
u合金(Cu含量:25原子%)粉末1部と一次粒子の
平均粒径0.01μmのファーネスブラック0.05部
とをアセトニトリル中を分散媒として混合、乾燥したも
のを電極粉末として用い、(化5)で示されるカチオン
性界面活性剤をアセトニトリルに溶解した10%のカチ
オン界面活性剤溶液と、平均粒径が8μmのγーりん酸
ジルコニウム粉末と、
Example 3 Amorphous Al-C with an average particle size of 12 μm pulverized in air
1 part of u-alloy (Cu content: 25 at%) powder and 0.05 part of furnace black with an average primary particle diameter of 0.01 μm were mixed in acetonitrile as a dispersion medium, dried, and used as an electrode powder. A 10% cationic surfactant solution prepared by dissolving a cationic surfactant represented by chemical formula 5) in acetonitrile, and γ-zirconium phosphate powder with an average particle size of 8 μm,

【0028】[0028]

【化5】[C5]

【0029】イオン性物質として過塩素酸リチウム(L
iClO4)を用い、さらに、イオン伝導性固体電解質
としてLi3NとLiIとB2O3からなるリチウム化
合物を固形分重量として5%混合した以外は実施例1と
同様にして大きさが80x80mm、厚さが135μm
のシート状電極組成物と、厚さが65μmのシート状電
解質を作製した。
Lithium perchlorate (L
iClO4) was used, and a lithium compound consisting of Li3N, LiI, and B2O3 was further mixed as an ion-conductive solid electrolyte at a solid content of 5%.
A sheet-like electrode composition and a sheet-like electrolyte having a thickness of 65 μm were prepared.

【0030】(比較例)LiCF3SO3をエチレンオ
キサイド1分子当り8分の1個溶解した平均分子量が4
80万のポリエチレンオキサイドよりなる高分子固体電
解質と、実施例2と同様の電極粉末とを混合・乾燥して
厚さ305μmのシート状の電極組成物を作製した。ま
た、厚さ115μmのシート状電解質を作製した。 電極組成物の特性評価 実施例1〜3と比較例で得られた電極組成物を直径10
mmの円板に打ち抜き、特性試験用の試料とした。また
、各々の実施例で作製したシート状電解質を直径10m
mに打ち抜き電解セル構成用に用いた。電解質円板2枚
を、その間に参照電極用の線径が50μmの銀線を挟ん
で重ね電解質層を形成し、電解質層の片面に直径10m
m、暑さ1mmの金属リチウム円板を置き、もう一方の
面に電極円板を配置し、さらにその上下に白金円板を配
置した後、全体を50kg/cm2の圧力で上下から加
圧した状態で、水分が2ppm以下のアルゴンガス雰囲
気中で80℃で3時間加熱し試験セルA(実施例1)、
試験セルB(実施例2)、試験セルC(実施例3)、試
験セルD(比較例)を組み立てた。電極円板を動作極、
金属リチウム極を対極、銀線を参照極として試験セルを
0Vを中心に±1.5Vの範囲で、電位を0→−1.5
→0V→+1.5→0Vと直線的に掃引速度5mV/秒
で繰り返し変化さた。±0.6〜±1.1V付近に電流
のピークが現れ、ピーク電流値は充放電サイクルの進行
と共に変化した。20、50、100、200サイクル
後の還元電流のピークの電位と電流値を(表1)に示す
(Comparative Example) The average molecular weight of LiCF3SO3 dissolved in one eighth of each molecule of ethylene oxide is 4.
A polymer solid electrolyte made of 800,000% polyethylene oxide and the same electrode powder as in Example 2 were mixed and dried to prepare a sheet-like electrode composition with a thickness of 305 μm. Further, a sheet-like electrolyte having a thickness of 115 μm was produced. Characteristic Evaluation of Electrode Compositions The electrode compositions obtained in Examples 1 to 3 and Comparative Examples were
A disk of mm was punched out and used as a sample for characteristic testing. In addition, the sheet-shaped electrolyte produced in each example was 10 m in diameter.
It was punched out and used for constructing an electrolytic cell. Two electrolyte disks are stacked with a silver wire with a wire diameter of 50 μm for a reference electrode sandwiched between them to form an electrolyte layer, and a diameter of 10 m is placed on one side of the electrolyte layer.
A metal lithium disk with a thickness of 1 mm was placed, an electrode disk was placed on the other side, and platinum disks were placed above and below it, and the whole was pressurized from above and below at a pressure of 50 kg/cm2. Test cell A (Example 1) was heated at 80°C for 3 hours in an argon gas atmosphere with moisture content of 2 ppm or less.
Test cell B (Example 2), test cell C (Example 3), and test cell D (Comparative example) were assembled. The electrode disk is the operating pole,
Using the metal lithium electrode as the counter electrode and the silver wire as the reference electrode, the potential of the test cell was changed from 0 to -1.5 in the range of ±1.5V around 0V.
→ 0 V → +1.5 → 0 V was repeatedly changed linearly at a sweep rate of 5 mV/sec. A current peak appeared around ±0.6 to ±1.1 V, and the peak current value changed as the charge/discharge cycle progressed. The peak potential and current value of the reduction current after 20, 50, 100, and 200 cycles are shown in (Table 1).

【0031】[0031]

【表1】[Table 1]

【0032】(表1)に示した結果から明らかなように
、本発明の電極組成物によれば、比較例の電極組成物に
較べ大きなピーク電流値が得られ、分極が小さい。また
、充放電サイクルの進行によるピーク電流値の低下も小
さい。また、電極組成物の機械強度を、長さ40mm幅
5mmの成形体を半径が50mmの曲面に沿って1秒間
に2回の割合で繰り返し折り曲げた際、破断するまでの
回数で評価したところ、800回の折り曲げ試験後でも
破断することなく元の形状を保っていて、優れた機械強
度を有していることがわかる。
As is clear from the results shown in Table 1, the electrode composition of the present invention provides a larger peak current value and smaller polarization than the electrode composition of the comparative example. Further, the decrease in peak current value due to progress of charge/discharge cycles is also small. In addition, the mechanical strength of the electrode composition was evaluated by the number of times it took to break when a molded body with a length of 40 mm and a width of 5 mm was repeatedly bent at a rate of 2 times per second along a curved surface with a radius of 50 mm. It can be seen that even after 800 bending tests, the original shape was maintained without breaking, indicating that it had excellent mechanical strength.

【0033】[0033]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明によれば、エチレンオキサイド鎖および、また
はプロピレンオキサイド鎖を有するカチオン界面活性剤
の作用により電極材料粉末が均一に分散された電極面積
が大きくかつ均質な電極組成物を提供できる。このカチ
オン界面活性剤は、イオン交換性の層状化合物と複合体
を形成し、層状化合物の結晶の層間あるいは表面に高濃
度に保持されイオン伝導に有利な経路を形成し、電極組
成物内にあって電池反応の円滑な進行に必要なイオン伝
導の経路を提供する。本発明の電極組成物では、電子お
よびイオンの伝導経路が均一に形成され、その結果とし
て、分極の小さい電極組成物が得られる。
Effects of the Invention As is clear from the description of the examples above, according to the present invention, the electrode material powder was uniformly dispersed by the action of the cationic surfactant having an ethylene oxide chain and/or a propylene oxide chain. It is possible to provide a homogeneous electrode composition with a large electrode area. This cationic surfactant forms a complex with the ion-exchangeable layered compound, is held at a high concentration between the layers or on the surface of the layered compound's crystals, and forms an advantageous path for ion conduction, and is present in the electrode composition. This provides the ionic conduction path necessary for the smooth progression of battery reactions. In the electrode composition of the present invention, electron and ion conduction paths are uniformly formed, and as a result, an electrode composition with low polarization can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素粉末と、金属アルミニウムまたはその
合金粉末と、エチレンオキサイド鎖またはプロピレンオ
キサイド鎖のいずれかを有するカチオン界面活性剤、あ
るいはエチレンオキサイド鎖およびプロピレンオキサイ
ド鎖を有するカチオン界面活性剤と、イオン交換性の層
状化合物と、式MXで表されるイオン性物質(ただし、
Mは電界の作用で固形電解質組成物内を移動する金属イ
オン、プロトン、アンモニウムイオンであり、Xは強酸
のアニオンである)を少なくとも含有する固形電極組成
物。
1. Carbon powder, metallic aluminum or its alloy powder, and a cationic surfactant having either an ethylene oxide chain or a propylene oxide chain, or a cationic surfactant having an ethylene oxide chain and a propylene oxide chain; An ion exchange layered compound and an ionic substance represented by the formula MX (however,
M is a metal ion, proton, or ammonium ion that moves within the solid electrolyte composition under the action of an electric field, and X is an anion of a strong acid.
JP3007501A 1991-01-25 1991-01-25 Solid electrode composition Expired - Fee Related JP2929726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007501A JP2929726B2 (en) 1991-01-25 1991-01-25 Solid electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007501A JP2929726B2 (en) 1991-01-25 1991-01-25 Solid electrode composition

Publications (2)

Publication Number Publication Date
JPH04248257A true JPH04248257A (en) 1992-09-03
JP2929726B2 JP2929726B2 (en) 1999-08-03

Family

ID=11667531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007501A Expired - Fee Related JP2929726B2 (en) 1991-01-25 1991-01-25 Solid electrode composition

Country Status (1)

Country Link
JP (1) JP2929726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170366A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Polyether polymer composition and sheet
WO2017170367A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Polyether polymer composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170366A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Polyether polymer composition and sheet
WO2017170367A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Polyether polymer composition
CN108884311A (en) * 2016-03-31 2018-11-23 日本瑞翁株式会社 Polyethers based polymer composition and sheet material
CN108884310A (en) * 2016-03-31 2018-11-23 日本瑞翁株式会社 Polyethers based polymer composition
JPWO2017170366A1 (en) * 2016-03-31 2019-02-07 日本ゼオン株式会社 Polyether polymer composition and sheet
JPWO2017170367A1 (en) * 2016-03-31 2019-02-07 日本ゼオン株式会社 Polyether polymer composition
US10851203B2 (en) 2016-03-31 2020-12-01 Zeon Corporation Polyether polymer composition
US10907041B2 (en) 2016-03-31 2021-02-02 Zeon Corporation Polyether polymer composition and sheet

Also Published As

Publication number Publication date
JP2929726B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
Chen et al. Recent advances in lithium–sulfur batteries
KR100332080B1 (en) Solid electrolyte and battery
JP6452814B2 (en) Material for positive electrode, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6607959B2 (en) Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
Zhou et al. Nano-embedded microstructured FeS 2@ C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte
Novikova et al. Electrical conductivity and electrochemical characteristics of Na 3 V 2 (PO 4) 3-based NASICON-type materials
Geaney et al. Electrochemical investigation of the role of MnO 2 nanorod catalysts in water containing and anhydrous electrolytes for Li–O 2 battery applications
Liu et al. Synthesis and electrochemical properties of Na-doped LiTi2 (PO4) 3@ carbon composite as anode for aqueous lithium ion batteries
EP4080618A1 (en) Positive electrode active material and positive electrode plate for all-solid lithium secondary battery, all-solid lithium secondary battery, and device
Gu et al. Outstanding electrochemical performance of sodium vanadium phosphate cathode co-modified by carbon-coating and titanium-doping for Na-ion batteries
JP2940181B2 (en) Solid electrode composition
Dimri et al. ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
Kebede et al. The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5–25P2O5 glass as a promising anode material for lithium ion battery
Shen et al. Inducing rapid polysulfide transformation through enhanced interfacial electronic interaction for lithium–sulfur batteries
Piffet et al. Aqueous processing of flexible, free-standing Li4Ti5O12 electrodes for Li-ion batteries
Mauger et al. Tribute to John B. Goodenough: from magnetism to rechargeable batteries
Liang et al. High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO
US20100239916A1 (en) Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
Song et al. Effect of Nanoparticles in LiFePO4 Cathode Material Using Organic/Inorganic Composite Solid Electrolyte for All-Solid-State Batteries
JPH04248258A (en) Solid electrode composition
JPH04248257A (en) Solid electrode composition
JPH04248256A (en) Solid electrode composition
Wang et al. A particle–carbon matrix architecture for long-term cycle stability of ZnFe 2 O 4 anode
JP3038945B2 (en) Lithium secondary battery
JPH04267056A (en) Solid electrode composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees