JPH04248238A - Device and method of ion beam irradiating device - Google Patents

Device and method of ion beam irradiating device

Info

Publication number
JPH04248238A
JPH04248238A JP3007425A JP742591A JPH04248238A JP H04248238 A JPH04248238 A JP H04248238A JP 3007425 A JP3007425 A JP 3007425A JP 742591 A JP742591 A JP 742591A JP H04248238 A JPH04248238 A JP H04248238A
Authority
JP
Japan
Prior art keywords
ion beam
irradiated
mounting section
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3007425A
Other languages
Japanese (ja)
Inventor
Haruhisa Mori
森 治久
Takashi Igarashi
崇 五十嵐
Masataka Kase
正隆 加勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3007425A priority Critical patent/JPH04248238A/en
Publication of JPH04248238A publication Critical patent/JPH04248238A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase usable current by hermetically sealing a space with a flexible sealing member interposed between a mounting section and an irradiated object, and thereby irradiating the object with ion beams while the irradiated object is being cooled down to a temperature less than a specified level with gas having equilibrium vapor pressure equal to or more than a specified value. CONSTITUTION:An object 15 to be irradiated is rested on the surface of a mounting section 2 in a vacuum chamber 1, a support section 3 on the periphery of which the mounting section 2 is disposed is rotated, and the rotating shaft 3a of the support section 3 or an ion beam generator 5 is moved. Ion beams emitted out of the generator 5 are then irradiated onto the object 15 while the object 15 is being cooled down to temperature, for example, less than 0 deg.C via the mounting section 2. In this case, a flexible seal member 2a is provided on the surface of the mounting section 2 in order to hermetically seal a space between the mounting section 2 and the object 15, so that gas having equilibrium vapor pressure, for example, equal to or more than 1Torr, is cooled down to temperature less than 0 deg.C in point of the cooling set temperature of the object 15 by means of a pressure holding mechanism 8. In this case, a space interspaced with the object is hermetically sealed with the flexible sealing member provided on the surface of the mounting section 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、イオンビーム照射中の
被照射物の冷却方法を改良したイオンビーム照射装置及
びイオンビーム照射方法に関するものである。近年の半
導体装置の製造工程においては、半導体ウエーハへ不純
物を導入する場合、主としてイオン注入法が用いられて
いる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion beam irradiation apparatus and an ion beam irradiation method that improve the method of cooling an object to be irradiated during ion beam irradiation. In recent semiconductor device manufacturing processes, ion implantation is mainly used to introduce impurities into semiconductor wafers.

【0002】しかし、半導体装置内の個々の素子の微細
化、構造の複雑化に伴い不純物の熱拡散を抑えることが
必要になり、イオン注入時に同時に導入される欠陥をア
ニールにより除去する場合のアニール熱処理温度を低温
化し、熱処理時間を短縮化する傾向にある。この結果、
イオン注入時に導入された欠陥に起因し、熱処理過程に
おいて形成される二次, 三次の複合欠陥が除去され難
くなり、P−N接合部におけるリーク電流の増加等の悪
影響が表れている。
However, as the individual elements in semiconductor devices become smaller and their structures become more complex, it becomes necessary to suppress the thermal diffusion of impurities. There is a trend to lower the heat treatment temperature and shorten the heat treatment time. As a result,
Due to defects introduced during ion implantation, secondary and tertiary compound defects formed during heat treatment become difficult to remove, resulting in adverse effects such as increased leakage current at the P-N junction.

【0003】以上のような状況から、イオン注入時に導
入される欠陥が熱処理過程で除去しやすいものとなるよ
うなイオンビーム照射装置が要望されており、これはイ
オン注入中に半導体ウエーハを低温に保つことで実現さ
れる。
[0003] Under the above circumstances, there is a need for an ion beam irradiation system that can easily remove defects introduced during ion implantation during the heat treatment process. This is achieved by keeping it.

【0004】0004

【従来の技術】従来のイオンビーム照射装置について図
3〜図5により詳細に説明する。図3は従来の低温度の
被照射物へのイオンビーム照射装置の概略構造を示す図
である。従来のこのようなイオンビーム照射装置におい
ては、図に示すように真空チャンバ21内の被照射物1
5、例えば半導体ウエーハを搭載する支持部22の構造
を、図示のような液体窒素の導入口22aと空気抜き口
22b と収容部22c を有する構造にし、この収容
部22c に液体窒素を注入することにより被照射物1
5を冷却した状態でイオンビーム発生器23から出たイ
オンビームを被照射物15に照射して不純物を注入して
いる。
2. Description of the Related Art A conventional ion beam irradiation apparatus will be explained in detail with reference to FIGS. 3 to 5. FIG. 3 is a diagram showing a schematic structure of a conventional ion beam irradiation apparatus for a low-temperature irradiation object. In such a conventional ion beam irradiation apparatus, as shown in the figure, an object 1 to be irradiated in a vacuum chamber 21 is
5. For example, by changing the structure of the support section 22 on which a semiconductor wafer is mounted to include a liquid nitrogen inlet 22a, an air vent 22b, and a housing section 22c as shown in the figure, and injecting liquid nitrogen into this housing section 22c. Irradiated object 1
The object 15 to be irradiated is irradiated with an ion beam emitted from the ion beam generator 23 while the object 5 is cooled, thereby implanting impurities.

【0005】図4は従来の常温における水冷方式のイオ
ンビーム照射装置の概略構造を示す図である。図に示す
ように被照射物15を真空チャンバ31内の搭載部32
の表面に載置し、この搭載部32と一体の支持部33を
回転軸33a を中心として軸受け及びシール部34で
支持して回転させながら回転軸33a 又はイオンビー
ム発生器35を移動し、イオンビーム発生器35より出
されたイオンビームをこの被照射物15に照射している
FIG. 4 is a diagram showing a schematic structure of a conventional water-cooled ion beam irradiation apparatus at room temperature. As shown in the figure, the object 15 to be irradiated is placed in the mounting section 32 in the vacuum chamber 31.
The supporting part 33, which is integrated with the mounting part 32, is supported and rotated by the bearing and seal part 34 around the rotating shaft 33a, while the rotating shaft 33a or the ion beam generator 35 is moved. This object 15 is irradiated with an ion beam emitted from a beam generator 35 .

【0006】このような構造の搭載部32と支持部33
との間には冷却水供給口36から供給され、冷却水排出
口37から排出される冷却水が循環して供給されており
、この冷却水によって搭載部32全体が冷却されている
。被照射物15は弾力性の高いシリコンシート32a 
を介して搭載部32と接触しており、このシリコンシー
ト32a を介して搭載部32により冷却されている。
[0006] The mounting part 32 and the support part 33 having such a structure
Cooling water that is supplied from a cooling water supply port 36 and discharged from a cooling water discharge port 37 is circulated between the cooling water supply port 36 and the cooling water discharge port 37, and the entire mounting portion 32 is cooled by this cooling water. The irradiated object 15 is a highly elastic silicone sheet 32a.
It is in contact with the mounting section 32 via the silicon sheet 32a, and is cooled by the mounting section 32 via the silicon sheet 32a.

【0007】図5は従来の常温における空冷方式のイオ
ンビーム照射装置の概略構造を示す図である。図に示す
ように被照射物15を真空チャンバ41内の搭載部42
の表面に載置し、この搭載部42と一体の支持部43を
回転軸43a を中心として軸受け及びシール部44で
支持して回転させながら回転軸43a 又はイオンビー
ム発生器45を移動し、イオンビーム発生器45より出
されたイオンビームをこの被照射物15に照射している
FIG. 5 is a diagram showing a schematic structure of a conventional air-cooled ion beam irradiation apparatus at room temperature. As shown in the figure, the object 15 to be irradiated is placed in the mounting section 42 in the vacuum chamber 41.
The supporting part 43, which is integrated with the mounting part 42, is supported by the bearing and the seal part 44 and rotated about the rotating shaft 43a, while the rotating shaft 43a or the ion beam generator 45 is moved. The object 15 to be irradiated is irradiated with an ion beam emitted from a beam generator 45.

【0008】このような構造の搭載部42と支持部43
との間には冷却水供給口46から供給され、冷却水排出
口47から排出される冷却水が循環して供給されており
、搭載部42の中には冷却ガスとして窒素ガスが冷却ガ
ス供給口48から導入されており、この冷却水によって
この窒素ガスが冷却されている。被照射物15は弾力性
の高いシリコンOリング42a を介して搭載部42と
接触しており、このシリコンOリング42aによって窒
素ガスが密封され、この窒素ガスにより被照射物15が
冷却されている。
[0008] The mounting part 42 and the support part 43 having such a structure
Cooling water is supplied from a cooling water supply port 46 and discharged from a cooling water discharge port 47 in a circulating manner, and nitrogen gas is supplied as cooling gas into the mounting section 42. The nitrogen gas is introduced from the port 48 and is cooled by this cooling water. The object 15 to be irradiated is in contact with the mounting part 42 via a highly elastic silicon O-ring 42a, nitrogen gas is sealed by this silicon O-ring 42a, and the object 15 to be irradiated is cooled by this nitrogen gas. .

【0009】[0009]

【発明が解決しようとする課題】以上説明した従来の低
温度の被照射物へのイオンビーム照射装置は実験的装置
の域を出ず、被照射物と支持部との間の熱伝導について
は特に考慮されておらず、従来の常温における水冷方式
や空冷方式のイオンビーム照射装置においては、常温に
おいては弾力性の高いシリコンゴム等を介して被照射物
を冷却しているが、冷却温度を低温にするとシリコンゴ
ムの弾力性が失われ、熱伝導改善効果が失われ、その結
果、被照射物と搭載部との間の熱伝導率は5mW/cm
2 ℃程度以下になり、搭載部に対する被照射物の温度
上昇を数°K以下に抑えるためには注入時のイオンビー
ムによるエネルギー密度を10mW/cm2 程度に制
限しなければならない。このエネルギー密度でAs+ 
50kev 1E16cm−2の注入を行おうとすると
、ビーム電流密度を0.2 μA/cm2 まで落とさ
なければならず、注入時間は2.2 時間に及んでしま
うという問題点がある。
[Problems to be Solved by the Invention] The conventional ion beam irradiation equipment for low-temperature objects to be irradiated as described above is no more than an experimental device, and the heat conduction between the object to be irradiated and the supporting part is not clear. In conventional water-cooled or air-cooled ion beam irradiation equipment at room temperature, the object to be irradiated is cooled through silicone rubber, etc., which has high elasticity at room temperature. At low temperatures, silicone rubber loses its elasticity and loses its heat conduction improvement effect, resulting in a thermal conductivity of 5 mW/cm between the irradiated object and the mounting section.
The energy density of the ion beam during implantation must be limited to about 10 mW/cm2 in order to suppress the temperature rise of the irradiated object relative to the mounting part to below several degrees K. At this energy density As+
If an attempt is made to implant 50 keV 1E16 cm-2, the beam current density must be reduced to 0.2 μA/cm 2 and the implantation time will be 2.2 hours.

【0010】本発明は以上のような状況から、1Tor
r以上の平衡蒸気圧を有する気体を用いて液体窒素温度
付近での熱伝導を改善し、イオン注入に使用可能なビー
ム電流を増大させることができるイオンビーム照射装置
及びイオンビーム照射方法の提供を目的としたものであ
る。
[0010] The present invention has been developed under the above circumstances.
The present invention provides an ion beam irradiation device and an ion beam irradiation method that can improve heat conduction near liquid nitrogen temperature by using a gas having an equilibrium vapor pressure of r or more, and increase beam current usable for ion implantation. This is the purpose.

【0011】[0011]

【課題を解決するための手段】本発明のイオンビーム照
射装置は、真空チャンバ内の搭載部の表面に被照射物を
載置し、この搭載部を周辺に配設した支持部を回転軸を
中心として軸受け及びシール部で支持して回転させなが
ら回転軸又はイオンビーム発生器を移動し、この搭載部
を介してこの被照射物を0℃以下に冷却しながら、イオ
ンビーム発生器より出されたイオンビームをこの被照射
物に照射するイオンビーム照射装置であって、この支持
部と熱的に隔離された搭載部とこの被照射物との間を気
密にするこの搭載部の表面に設けた柔軟なシール材と、
被照射物の冷却設定温度において1Torr以上の平衡
蒸気圧を有する気体の圧力を所定の圧力に保持する機構
と、該気体の温度を0℃以下に冷却する冷却ガス供給機
構とを具備するように構成し、本発明のイオンビーム照
射方法は、上記のイオンビーム照射装置を用いるイオン
ビーム照射方法であって、冷却媒体として用いるこの気
体が水素及びヘリウム以外の気体で、この被照射物の冷
却設定温度において1Torr以上の平衡蒸気圧を有す
る気体であるように構成する。
[Means for Solving the Problems] The ion beam irradiation apparatus of the present invention places an object to be irradiated on the surface of a mounting part in a vacuum chamber, and a support part arranged around the mounting part is rotated around a rotation axis. The rotating shaft or ion beam generator is moved while being supported and rotated by a bearing and a seal part as the center, and the object to be irradiated is cooled to below 0 degrees Celsius through this mounting part while being taken out from the ion beam generator. This is an ion beam irradiation device that irradiates the irradiated object with an ion beam, which is provided on the surface of the mount part to make airtight between the mount part, which is thermally isolated from the support part, and the irradiated object. flexible sealing material,
A mechanism for maintaining the pressure of a gas having an equilibrium vapor pressure of 1 Torr or more at a predetermined pressure at a set cooling temperature of the irradiated object, and a cooling gas supply mechanism for cooling the temperature of the gas to 0° C. or less. The ion beam irradiation method of the present invention is an ion beam irradiation method using the above-mentioned ion beam irradiation device, wherein the gas used as a cooling medium is a gas other than hydrogen and helium, and the cooling setting of the irradiated object is The gas is configured to have an equilibrium vapor pressure of 1 Torr or more at the temperature.

【0012】0012

【作用】即ち本発明においては、被照射物を真空チャン
バ内の搭載部の表面に載置し、この搭載部を周辺に配設
した支持部を回転させ、この支持部の回転軸又はイオン
ビーム発生器を移動し、この搭載部を介してこの被照射
物を0℃以下に冷却しながら、イオンビーム発生器より
出されたイオンビームをこの被照射物に照射するが、こ
の搭載部の表面に柔軟なシール材を設け、この搭載部と
被照射物との間を気密にし、この被照射物の冷却設定温
度において1Torr以上の平衡蒸気圧を有する気体を
圧力保持機構を用いて所定の圧力に保持し、この気体の
温度を冷却ガス供給機構を用いて0℃以下に冷却するの
で、0℃以下において1Torr以上の平衡蒸気圧を有
する気体を搭載部に導入し、搭載部の表面に設けた柔軟
なシール材により、被照射物と搭載部との間の熱伝導率
は1桁以上改善され、この搭載部と被照射物との間を気
密にしてこの気体により被照射物を冷却しながらイオン
ビームを照射することが可能となる。
[Operation] That is, in the present invention, an object to be irradiated is placed on the surface of a mounting part in a vacuum chamber, a support part disposed around this mounting part is rotated, and the rotation axis of this support part or the ion beam is The object is irradiated with the ion beam emitted from the ion beam generator while the generator is moved and the object is cooled to below 0°C via the mounting section. A flexible sealing material is provided on the irradiation target to make the space between the mounting part and the irradiation object airtight, and a pressure holding mechanism is used to maintain the gas having an equilibrium vapor pressure of 1 Torr or more at a predetermined cooling temperature of the irradiation object. Since the temperature of this gas is kept at 0°C or less using a cooling gas supply mechanism, a gas having an equilibrium vapor pressure of 1 Torr or more at 0°C or less is introduced into the mounting part, and the gas is provided on the surface of the mounting part. The flexible sealing material improves the thermal conductivity between the irradiated object and the mounting part by more than an order of magnitude, and the space between the mount part and the irradiated object is made airtight, and the irradiated object is cooled by this gas. It becomes possible to irradiate the ion beam while

【0013】[0013]

【実施例】以下図1〜図2により本発明の一実施例のイ
オンビーム照射装置及びイオンビーム照射方法について
詳細に説明する。図1は本発明による一実施例のイオン
ビーム照射装置の概略構造を示す図である。図に示すよ
うに被照射物15を真空チャンバ1内の搭載部2の表面
に載置し、この搭載部2を熱的に隔離して周辺に配設し
た支持部3を回転軸3aを中心として軸受け及びシール
部4で支持して回転させながら回転軸3aを移動し、イ
オンビーム発生器5より出されたイオンビームをこの被
照射物15に照射している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ion beam irradiation apparatus and an ion beam irradiation method according to an embodiment of the present invention will be explained in detail below with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing a schematic structure of an ion beam irradiation apparatus according to an embodiment of the present invention. As shown in the figure, the object 15 to be irradiated is placed on the surface of the mounting part 2 in the vacuum chamber 1, and the mounting part 2 is thermally isolated and the supporting part 3 disposed around the rotating shaft 3a is centered. The rotating shaft 3a is moved while being supported and rotated by a bearing and a seal portion 4, and the ion beam emitted from the ion beam generator 5 is irradiated onto the object 15 to be irradiated.

【0014】この搭載部2の表面に柔軟なシール材2a
を設け、この搭載部2と被照射物15との間を気密にし
、本実施例では熱伝導ガスとしてメタンを用い、圧力保
持機構を用いて5Torrに保持し、冷却ガス供給口1
3から冷却ガスを供給し、冷却ガス排出口から冷却ガス
を排出してこのメタンの温度を80°Kに冷却している
。この圧力保持機構は、図に示すようにコンプレッサ6
, タンク7, 圧力調整弁8, バルブ9, 流量調
整弁10, バルブ11及び圧力計12からなり、コン
プレッサ6によって加圧されたメタンはタンク7内に蓄
えられ、圧力調整弁8により調圧されたメタンはバルブ
9を経て流量調整弁10によって流量が調節される。
A flexible sealing material 2a is provided on the surface of this mounting portion 2.
In this embodiment, methane is used as the heat conductive gas, the pressure is maintained at 5 Torr using a pressure holding mechanism, and the cooling gas supply port 1 is
Cooling gas is supplied from No. 3, and the cooling gas is discharged from the cooling gas outlet to cool the methane to a temperature of 80°K. This pressure holding mechanism is applied to the compressor 6 as shown in the figure.
, a tank 7, a pressure regulating valve 8, a valve 9, a flow regulating valve 10, a valve 11, and a pressure gauge 12. Methane pressurized by the compressor 6 is stored in the tank 7, and the pressure is regulated by the pressure regulating valve 8. The flow rate of the methane passed through the valve 9 is adjusted by the flow rate regulating valve 10.

【0015】バルブ11を開くことによりこのサイクル
内を循環するメタンを支持部3に接続されているパイプ
内に導入し、圧力計12の指示が5Torrになるよう
流量調整弁10を調節する。図2に示すように、水素,
 ヘリウム以外で80°Kにおいて1Torr以上の平
衡蒸気圧を有する気体は、ネオン,窒素,一酸化炭素,
アルゴン,酸素,メタン,クリプトンであるが、本実施
例においてはメタンを用いている。
By opening the valve 11, the methane circulating in this cycle is introduced into the pipe connected to the support section 3, and the flow rate regulating valve 10 is adjusted so that the pressure gauge 12 indicates 5 Torr. As shown in Figure 2, hydrogen,
Gases other than helium that have an equilibrium vapor pressure of 1 Torr or more at 80°K include neon, nitrogen, carbon monoxide,
These include argon, oxygen, methane, and krypton, and in this example, methane is used.

【0016】図示しない冷却装置で生成された高圧で常
温の窒素を冷却ガス供給口13から導入し、支持部3内
で断熱膨張させて搭載部2を冷却し、排気を冷却ガス排
出口14から排出する。このように窒素を冷却ガスとし
てメタンを冷却し、この冷却されたメタンを搭載部2の
表面のシール材2aと被照射物15とで囲まれた空間に
導入して搭載部2のみを冷却すると、被照射物15を8
0°Kに冷却しながらイオンビームを照射することが可
能となり、従来例と同様にエネルギー密度でAs+ 5
0kev 1E16cm−2のイオン注入を行う場合に
、ビーム電流密度を2μA/cm2 にしても搭載部2
に対する被照射物15の温度上昇は数°K以内に収まり
、注入時間は13分で終了した。
High-pressure, room-temperature nitrogen generated by a cooling device (not shown) is introduced from the cooling gas supply port 13 and adiabatically expanded within the support portion 3 to cool the mounting portion 2, and the exhaust gas is discharged from the cooling gas discharge port 14. Discharge. In this way, methane is cooled using nitrogen as a cooling gas, and the cooled methane is introduced into the space surrounded by the sealing material 2a on the surface of the mounting section 2 and the irradiated object 15 to cool only the mounting section 2. , the irradiated object 15 is 8
It is now possible to irradiate the ion beam while cooling it to 0°K, and as with the conventional example, the energy density is As + 5.
When performing ion implantation of 0kev 1E16cm-2, even if the beam current density is 2μA/cm2, the mounting part 2
The temperature rise of the irradiated object 15 was within several degrees K, and the injection time was completed in 13 minutes.

【0017】[0017]

【発明の効果】以上の説明から明らかなように本発明に
よれば、搭載部と被照射物との間に柔軟なシール材を介
在させて気密を保持し、0℃以下において1Torr以
上の平衡蒸気圧を有する気体により被照射物を冷却しな
がらイオンビームを照射することが可能となるので、イ
オンビーム照射時に導入される欠陥を次の熱処理工程で
容易に除去でき、後工程において生じる複合欠陥の除去
が可能となり、pn接合部におけるリーク電流の増大等
の悪影響を防止することが可能となり、使用可能ビーム
電流を増大させて生産性を高くすることが可能となる等
の利点があり、著しい経済的及び、信頼性向上の効果が
期待できるイオンビーム照射装置及びイオンビーム照射
方法の提供が可能となる。
Effects of the Invention As is clear from the above description, according to the present invention, a flexible sealing material is interposed between the mounting part and the irradiated object to maintain airtightness, and an equilibrium of 1 Torr or more at 0° C. or lower is achieved. Since it is possible to irradiate the ion beam while cooling the irradiated object with a gas having vapor pressure, defects introduced during ion beam irradiation can be easily removed in the next heat treatment process, and complex defects that occur in the subsequent process can be removed. This has significant advantages, such as making it possible to eliminate negative effects such as an increase in leakage current at the p-n junction, and increasing productivity by increasing usable beam current. It is possible to provide an ion beam irradiation device and an ion beam irradiation method that can be expected to be economical and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明による一実施例のイオンビーム照射
装置の概略構造を示す図、
FIG. 1 is a diagram showing a schematic structure of an ion beam irradiation device according to an embodiment of the present invention;

【図2】  各種の気体の平衡蒸気圧曲線、[Figure 2] Equilibrium vapor pressure curves of various gases,

【図3】 
 従来の低温度の被照射物へのイオンビーム照射装置の
概略構造を示す図、
[Figure 3]
A diagram showing the schematic structure of a conventional ion beam irradiation device for a low-temperature irradiation object,

【図4】  従来の常温における水冷方式のイオンビー
ム照射装置の概略構造を示す図、
[Figure 4] A diagram showing the schematic structure of a conventional water-cooled ion beam irradiation device at room temperature.

【図5】  従来の常温における空冷方式のイオンビー
ム照射装置の概略構造を示す図、である。
FIG. 5 is a diagram showing a schematic structure of a conventional air-cooled ion beam irradiation device at room temperature.

【符号の説明】[Explanation of symbols]

1は真空チャンバ、 2は搭載部、 2aはシール材、 3は支持部、 3aは回転軸、 4は軸受け及びシール部、 5はイオンビーム発生器、 6はコンプレッサ、 7はタンク、 8は圧力調整弁、 9はバルブ、 10は流量調整弁、 11はバルブ、 12は圧力計、 13は冷却ガス供給口、 14は冷却ガス排出口、 15は被照射物、 1 is a vacuum chamber, 2 is the loading section, 2a is a sealing material, 3 is a support part, 3a is the rotation axis, 4 is the bearing and seal part, 5 is an ion beam generator; 6 is a compressor, 7 is a tank, 8 is a pressure regulating valve; 9 is a valve, 10 is a flow rate adjustment valve; 11 is a valve, 12 is a pressure gauge; 13 is a cooling gas supply port; 14 is a cooling gas outlet; 15 is the irradiated object,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  真空チャンバ(1) 内の搭載部(2
) の表面に被照射物(15)を載置し、該搭載部(2
) を周辺に配設した支持部(3) を回転軸(3a)
を中心として軸受け及びシール部(4) で支持して回
転させ、該搭載部(2) を介して前記被照射物(15
)を0℃以下に冷却しながら、イオンビーム発生器(5
) より出されたイオンビームを前記被照射物(15)
に照射するイオンビーム照射装置であって、前記搭載部
(2) と前記被照射物(15)との間を気密にする前
記搭載部(2) の表面に設けた柔軟なシール材(2a
)と、前記被照射物(15)の冷却設定温度において1
Torr以上の平衡蒸気圧を有する気体の圧力を所定の
圧力に保持する機構(6,7,8,9,10,11,1
2)と、該気体の温度を0℃以下に冷却する冷却ガス供
給口(13)と冷却ガス排出口(14)とを具備するこ
とを特徴とするイオンビーム照射装置。
[Claim 1] A mounting section (2) in a vacuum chamber (1).
) The object to be irradiated (15) is placed on the surface of the mounting part (2
) around the support part (3) is the rotating shaft (3a)
The object to be irradiated (15) is supported by a bearing and a seal part (4) and rotated around the irradiated object (15) through the mounting part (2).
) while cooling the ion beam generator (5°C) to below 0°C.
) The ion beam emitted from the object (15)
The ion beam irradiation device irradiates the target object with a flexible sealing material (2a) provided on the surface of the mounting section (2) to make the gap between the mounting section (2) and the irradiated object (15) airtight.
) and 1 at the cooling set temperature of the irradiated object (15).
A mechanism (6, 7, 8, 9, 10, 11, 1
2), a cooling gas supply port (13) and a cooling gas discharge port (14) for cooling the temperature of the gas to 0° C. or lower.
【請求項2】  請求項1記載のイオンビーム照射装置
を用いるイオンビーム照射方法であって、冷却媒体とし
て用いる前記気体が水素及びヘリウム以外の気体で、前
記被照射物(15)の冷却設定温度において1Torr
以上の平衡蒸気圧を有する気体であることを特徴とする
イオンビーム照射方法。
2. An ion beam irradiation method using the ion beam irradiation apparatus according to claim 1, wherein the gas used as a cooling medium is a gas other than hydrogen and helium, and the cooling set temperature of the irradiation object (15) is at 1 Torr
An ion beam irradiation method characterized in that the gas has an equilibrium vapor pressure of or above.
【請求項3】  請求項2記載のイオンビーム照射方法
において冷却媒体として用いる気体が、ネオン,窒素,
一酸化炭素,アルゴン,酸素,メタン,クリプトンのい
ずれかであることを特徴とするイオンビーム照射方法。
3. In the ion beam irradiation method according to claim 2, the gas used as the cooling medium is neon, nitrogen,
An ion beam irradiation method characterized by using carbon monoxide, argon, oxygen, methane, or krypton.
JP3007425A 1991-01-25 1991-01-25 Device and method of ion beam irradiating device Withdrawn JPH04248238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007425A JPH04248238A (en) 1991-01-25 1991-01-25 Device and method of ion beam irradiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007425A JPH04248238A (en) 1991-01-25 1991-01-25 Device and method of ion beam irradiating device

Publications (1)

Publication Number Publication Date
JPH04248238A true JPH04248238A (en) 1992-09-03

Family

ID=11665514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007425A Withdrawn JPH04248238A (en) 1991-01-25 1991-01-25 Device and method of ion beam irradiating device

Country Status (1)

Country Link
JP (1) JPH04248238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513092A (en) * 2008-12-19 2012-06-07 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Condensable gas cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513092A (en) * 2008-12-19 2012-06-07 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Condensable gas cooling system

Similar Documents

Publication Publication Date Title
US4261762A (en) Method for conducting heat to or from an article being treated under vacuum
US4749436A (en) Equipment for thermal stabilization process of photoresist pattern on semiconductor wafer
US4514636A (en) Ion treatment apparatus
JPH0232535A (en) Manufacture of silicon substrate for semiconductor device
JPH04248238A (en) Device and method of ion beam irradiating device
WO2020223317A1 (en) Hydrogen assisted atmospheric radical oxidation
JPH03108716A (en) Heat treating method for semiconductor integrated circuit device
JPH04246822A (en) Device and method for ion beam irradiation
US20210310739A1 (en) Cleaning method and heat treatment apparatus
JPH07102372A (en) Vacuum treatment of material and device therefor
JP3084751B2 (en) Ion beam irradiation equipment
JPH03249936A (en) Sealing device
JPH0536617A (en) Ion beam irradiation method and equipment
JP2001156011A (en) Heat treatment equipment for semiconductor wafer
JPH03134153A (en) Method and device for forming oxide film
JPS59145519A (en) Vapor phase chemical treatment equipment
KR20230168269A (en) Substrate processing method and substrate processing apparatus
KR100547938B1 (en) Wafer cooling apparatus used in an ion implantation process
JP2849772B2 (en) Sealing device and sealing method
JPH01239846A (en) Reactive gas etching
JPH07153748A (en) Ashing treatment device
JPH09306816A (en) Method and device for ashing of semiconductor device
JPH034528A (en) Plasma etching device
JPS6047414A (en) Method and device for growing thin film
TW202407850A (en) Substrate processing device, method for manufacturing semiconductor device, and program

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514