JPH04247429A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPH04247429A
JPH04247429A JP3031391A JP3139191A JPH04247429A JP H04247429 A JPH04247429 A JP H04247429A JP 3031391 A JP3031391 A JP 3031391A JP 3139191 A JP3139191 A JP 3139191A JP H04247429 A JPH04247429 A JP H04247429A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
rubbing
regions
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3031391A
Other languages
Japanese (ja)
Other versions
JP2775528B2 (en
Inventor
Shinjiro Okada
伸二郎 岡田
Osamu Taniguchi
修 谷口
Sukenobu Mizuno
祐信 水野
Yutaka Inaba
豊 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3031391A priority Critical patent/JP2775528B2/en
Publication of JPH04247429A publication Critical patent/JPH04247429A/en
Application granted granted Critical
Publication of JP2775528B2 publication Critical patent/JP2775528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To suppress the movement of liquid crystal molecules within a liquid crystal cell at the time of driving liquid crystals and to improve display quality by setting plural regions having the rubbing directions in parallel and opposite directions on substrates at the time of constituting the cell. CONSTITUTION:The substrates 60, 61 are divided to 5 regions and are subjected to a rubbing treatment in respectively opposite directions so that the rubbing directions are paralleled in the corresponding regions when the substrates are superposed. Namely, the movement of the molecules depends on the angle (pretilt angle) formed by the major axis of the molecules with the boundary between the substrates. The moving quantity of the liquid crystals is controlled by allowing the regions where the pretilt angle arises in the opposite directions to coexist in the direction where the liquid crystal molecules parallel with the smectic layers flow within the cell plane.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は強誘電液晶を用いた表示
素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display element using ferroelectric liquid crystal.

【0002】0002

【従来の技術】強誘電液晶を用いた表示素子に関しては
特開昭61−94023号公報などに示されているよう
に1ミクロンから3ミクロン位のセルギャップを保って
2枚の内面に透明電極を形成し配向処理を施したガラス
基板を向かい合わせて構成した液晶セルに、強誘電液晶
を注入したものが知られている。
[Prior Art] Regarding display elements using ferroelectric liquid crystals, as shown in Japanese Patent Application Laid-Open No. 61-94023, transparent electrodes are formed on two inner surfaces while maintaining a cell gap of about 1 to 3 microns. There is a known liquid crystal cell in which ferroelectric liquid crystal is injected into a liquid crystal cell formed by facing glass substrates on which a ferroelectric liquid crystal has been formed and subjected to an alignment treatment.

【0003】強誘電液晶を用いた上記表示素子の特徴は
強誘電液晶が自発分極を持つことにより、外部電界と自
発分極の結合力をスイッチングに使えることと強誘電液
晶分子の長軸方向が自発分極の分極方向と1対1に対応
しているため外部電界の極性によってスイッチングでき
ることである。
The characteristics of the above-mentioned display element using ferroelectric liquid crystal are that the ferroelectric liquid crystal has spontaneous polarization, so the coupling force between an external electric field and the spontaneous polarization can be used for switching, and that the long axis direction of the ferroelectric liquid crystal molecules is spontaneously polarized. Since there is a one-to-one correspondence with the polarization direction, switching can be performed depending on the polarity of an external electric field.

【0004】強誘電液晶は一般にカイラル・スメクチッ
ク液晶(SmC*.SmH*)を用いるので、バルク状
態では液晶分子長軸がねじれた配向を示すが上述の1ミ
クロンから3ミクロン位のセルギャップのセルにいれる
ことによって液晶分子長軸のねじれを解消することがで
きる。(P213−P234  N.A.LLARKe
tal,MCLC  1983,Vol  94)。
Since ferroelectric liquid crystals generally use chiral smectic liquid crystals (SmC*.SmH*), the long axes of liquid crystal molecules exhibit a twisted orientation in the bulk state. The twist of the long axes of the liquid crystal molecules can be resolved by introducing the liquid crystal molecules into the liquid crystal molecules. (P213-P234 N.A.LLARKe
tal, MCLC 1983, Vol 94).

【0005】実際の強誘電液晶セルの構成は図6に示す
ように単純マトリックス基板を用いていた。
The actual structure of a ferroelectric liquid crystal cell uses a simple matrix substrate as shown in FIG.

【0006】強誘電液晶は以下FLCという。[0006] Ferroelectric liquid crystal is hereinafter referred to as FLC.

【0007】[0007]

【発明が解決しようとする課題】従来のセル構成を用い
た場合には、液晶セルの耐久性に次のような問題点があ
った。
[Problems to be Solved by the Invention] When a conventional cell structure is used, the following problems arise in the durability of the liquid crystal cell.

【0008】FLC分子はマトリックス駆動時の非選択
信号によってもある程度動くことが知られている。これ
は非選択信号を印加した画素の光学応答を取ると、印加
パルスと同期して光量に変動を生じていることなどから
も明らかである。いわゆる、スプレイ配向(上下基板間
で分子長軸の角度に大きくねじれのある配向)ではこの
ような分子のゆらぎは、それによって分子の安定位置が
変化(スイッチング)することがなければ表示内容を保
持できるので若干のコントラストの低下以外には問題と
はならなかった。ところが、上下基板間での分子長軸方
向の角度の変化の比較的少ない配向(以下ユニホーム配
向)のセルにおいては、液晶分子が電圧(例えば非選択
信号)の印加によって層内を移動するという現象が見ら
れる。この現象を図2を用いて詳しく説明する。
[0008] It is known that FLC molecules move to some extent even in response to non-selective signals during matrix drive. This is clear from the fact that when the optical response of a pixel to which a non-selection signal is applied is taken, the amount of light changes in synchronization with the applied pulse. In so-called splay orientation (an orientation with a large twist in the angle of the long axes of molecules between the upper and lower substrates), such fluctuations in molecules will maintain the displayed content unless the stable position of the molecules changes (switching). There was no problem other than a slight decrease in contrast. However, in cells with an orientation in which there is relatively little change in the angle of the long axis direction of molecules between the upper and lower substrates (hereinafter referred to as uniform orientation), a phenomenon occurs in which liquid crystal molecules move within the layer due to the application of a voltage (for example, a non-selective signal). can be seen. This phenomenon will be explained in detail using FIG. 2.

【0009】図2(a)は電圧印加前のセル状態、(b
)は電圧印加後のセル状態である。FLC36はシール
部材35内に封入されている。配向層としてはポリイミ
ド薄膜を用いてラビング方向は(a)、(b)共に下か
ら上に向かって上下基板共平行に行なっている。このよ
うな処理を行なうと、図2(c)に示すようにスメクチ
ック層はラビング方向と直交した方向に生成される。
FIG. 2(a) shows the state of the cell before voltage application, and (b)
) is the cell state after voltage application. The FLC 36 is enclosed within the seal member 35. A polyimide thin film is used as the alignment layer, and the rubbing direction in both (a) and (b) is parallel to the upper and lower substrates from the bottom to the top. When such processing is performed, a smectic layer is generated in a direction perpendicular to the rubbing direction, as shown in FIG. 2(c).

【0010】セル厚をらせんピッチを解除できる位に十
分に薄くした場合においてFLC分子は2つの安定状態
を取り得るが、その内の1つの状態にセル内の全分子の
方向を揃えておく。
[0010] When the cell thickness is made thin enough to release the helical pitch, the FLC molecules can assume two stable states, and the orientation of all molecules within the cell is aligned in one of these states.

【0011】この状態を+θの状態(図2(D))とす
ると、層法線に対してほぼ対称に−θの位置に他の安定
状態が存在する。
If this state is defined as a +θ state (FIG. 2(D)), another stable state exists at a −θ position approximately symmetrically with respect to the layer normal.

【0012】この状態(+θ)下でセル全面に電界(例
えば、10Hz、±8Vの矩形波)を印加すると液晶分
子は+θの層法線に対する傾きを保ったまま図2(a)
中の点Aから点Bの方向へ層内を移動し始める。
When an electric field (for example, 10 Hz, ±8 V rectangular wave) is applied to the entire surface of the cell under this state (+θ), the liquid crystal molecules maintain their tilt with respect to the +θ layer normal as shown in FIG. 2(a).
It begins to move within the layer from point A to point B.

【0013】その結果電圧印加を長時間続けると図2(
b)に示すようにA端には液晶のない部分Eを生じセル
厚はB部の方がA部より厚くなる。このような現象は、
液晶分子が−θの状態にある場合にはB端からA端へ向
って層内を液晶が移動してE部のような液晶のない空隙
部がB端に生じる。
As a result, if voltage application is continued for a long time, as shown in FIG.
As shown in b), a portion E without liquid crystal is formed at the A end, and the cell thickness in the B portion is thicker than in the A portion. Such a phenomenon is
When the liquid crystal molecules are in the -θ state, the liquid crystal moves within the layer from the B end to the A end, and a gap like E part where there is no liquid crystal is created at the B end.

【0014】このような現象は20時間〜50時間とい
う比較的短い時間に生じる。E部のような電気光学的に
コントロールのできない部分の存在が表示品質上望まし
くないのはもちろんのこと、A部とB部のセル厚が時間
によって変化するのでは液晶パネル全体の駆動制御が難
しくFLCを用いた光学素子としては大きな問題となっ
ていた。
[0014] Such a phenomenon occurs in a relatively short time of 20 to 50 hours. Not only is the presence of a portion that cannot be controlled electro-optically, such as E section, undesirable in terms of display quality, but it is also difficult to control the drive of the entire liquid crystal panel if the cell thickness of A section and B section changes over time. This has been a major problem for optical elements using FLC.

【0015】本発明は上記従来技術の欠点に鑑みなされ
たものであって、液晶駆動時のセル内での液晶分子の移
動を抑え表示品質を向上させた強誘電液晶素子の提供を
目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a ferroelectric liquid crystal element that improves display quality by suppressing the movement of liquid crystal molecules within a cell during liquid crystal driving. .

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
本発明によれば液晶セルを構成する際に少なくとも片側
の基板上にラビング方向が平行かつ反対方向になる複数
の領域を設定する。
In order to achieve the above object, according to the present invention, when constructing a liquid crystal cell, a plurality of regions whose rubbing directions are parallel and opposite are set on at least one side of the substrate.

【0017】[0017]

【作用】液晶分子の層内移動を減少させて表示品質を著
るしく改善する。
[Operation] Display quality is significantly improved by reducing intralayer movement of liquid crystal molecules.

【0018】さらに詳しく述べると先に説明した分子の
移動は基板界面に対する液晶分子長軸のなす角度(プレ
チルト角)に深く依存している。
To explain in more detail, the above-described movement of molecules is deeply dependent on the angle (pretilt angle) formed by the long axis of the liquid crystal molecules with respect to the substrate interface.

【0019】ラビング方向は12°位、方向が交叉して
いても、スメクチック層法線は2つのラビング方向の中
間に生成する。
The rubbing direction is approximately 12°, and even if the directions intersect, the smectic layer normal is generated midway between the two rubbing directions.

【0020】したがって、液晶移動の方向の決定はスメ
クチック層内でプレチルト角が基板に対してどちら向き
に発生しているかで決定される。再び図2を例にとって
説明すると、(a)のようにラビングをした場合には上
下基板界面共に液晶分子のプレチルトはラビング方向に
対して浮き上がるように生じる(図3(a))。
Therefore, the direction of liquid crystal movement is determined by which direction the pretilt angle occurs in the smectic layer with respect to the substrate. Taking FIG. 2 as an example again, when rubbing is performed as shown in (a), the pretilt of the liquid crystal molecules at both the upper and lower substrate interfaces occurs so as to rise with respect to the rubbing direction (FIG. 3 (a)).

【0021】このような場合に+θの位置に液晶分子を
置いて電界を印加した場合に液晶がA点の方角からB点
の方角に向って流れることは既に述べたがプレチルト角
が逆方向に生じていた場合(図3(b))には液晶分子
は逆方向(B点からA点への方角)に流れる。又、液晶
分子の流れは、プレチルト角が大きい程激しい。図3は
ガラス基板50上に配向膜51を設け、ラビングを施し
た場合の液晶分子52のプレチルト53の方向を説明す
る図である。
In such a case, when the liquid crystal molecules are placed at the +θ position and an electric field is applied, the liquid crystal will flow from the direction of point A to the direction of point B. However, if the pretilt angle is in the opposite direction. If this occurs (FIG. 3(b)), the liquid crystal molecules flow in the opposite direction (from point B to point A). Further, the flow of liquid crystal molecules becomes more intense as the pretilt angle becomes larger. FIG. 3 is a diagram illustrating the direction of pretilt 53 of liquid crystal molecules 52 when an alignment film 51 is provided on a glass substrate 50 and rubbed.

【0022】このような現象からから考えると、セル面
内でスメクチック層と平行な方向(液晶分子の流れる方
向)で、プレチルト角が逆方向に生じている領域(図3
(a)と(b)の領域)を混在させることにより液晶の
移動量をコントロールできることがわかる。
Considering this phenomenon, it can be seen that there is a region in which the pretilt angle occurs in the opposite direction in the direction parallel to the smectic layer (direction in which liquid crystal molecules flow) within the cell plane (Fig. 3).
It can be seen that by mixing the regions (a) and (b), the amount of movement of the liquid crystal can be controlled.

【0023】プレチルトの方向が逆であっても、液晶分
子長軸の基板面への投影角は等しいので表示内容には影
響がなく、むしろ視野特性を平均化させて向上させるこ
とができる。
Even if the pretilt direction is reversed, since the projection angles of the long axes of the liquid crystal molecules onto the substrate surface are the same, there is no effect on the display content, but rather the viewing characteristics can be averaged and improved.

【0024】[0024]

【実施例】図1に本発明の実施例のセル構成を示す。図
1(a)および(b)は対向して配置される電極基板6
0,61のラビング方向の処理を示したもので、基板を
5つの領域に分けて、それぞれ逆方向にラビング処理を
施してある。2つの基板を重ね合わせたときに対応する
領域でラビング方向が上下平行になるように構成してあ
る。具体的な選択的ラビング処理の手法としてはラビン
グ時にガラス基板側に厚さ100μmのステンレス板で
構成されたハード・マスクをかぶせる方法で行なうこと
ができる。
Embodiment FIG. 1 shows a cell configuration of an embodiment of the present invention. FIGS. 1(a) and 1(b) show electrode substrates 6 disposed facing each other.
0 and 61, in which the substrate is divided into five areas and the rubbing process is applied to each area in the opposite direction. The structure is such that when the two substrates are superimposed, the rubbing directions are vertically parallel in corresponding areas. A specific selective rubbing process can be carried out by covering the glass substrate side with a hard mask made of a stainless steel plate with a thickness of 100 μm during rubbing.

【0025】ステンレス板に選択的に穴を開け、穴の開
いた部分のみがラビング処理される。
[0025] Holes are selectively made in the stainless steel plate, and only the portions where the holes are made are rubbed.

【0026】これらの基板60,61は1辺が75mm
のガラス基板上にITO膜を約1000オングストロー
ムスパッタ形成して(200Ω□)、その上にTa2O
5 膜を約600オングストロームスパッタ形成した電
極基板であり、配向膜としては日立化成社製のポリイミ
ド系配向膜LQ−1802を約400オングストローム
、塗布、焼成して形成したものである。
Each side of these substrates 60 and 61 is 75 mm.
An ITO film of about 1000 angstroms was sputtered on a glass substrate (200Ω□), and Ta2O was deposited on it.
5 is an electrode substrate on which a film of about 600 angstroms is sputtered, and the alignment film is formed by coating and baking a polyimide alignment film LQ-1802 manufactured by Hitachi Chemical Co., Ltd. in a thickness of about 400 angstroms.

【0027】使用した強誘電性液晶は次に示す特性を有
するものを使用した。
The ferroelectric liquid crystal used had the following characteristics.

【0028】[0028]

【表1】 Temp     30℃ Ps         5.8nC/cm2Θチルト角
   14.3° ΔE            〜0
[Table 1] Temp 30℃ Ps 5.8nC/cm2ΘTilt angle 14.3° ΔE ~0

【0029】[0029]

【表2】       82.3℃      76.6 ℃  
     54.8 ℃        −20.9 
℃        →          →    
        →              → 
 Iso          Ch         
  SmA           SmC*     
      Cryst         ←    
      ←            ←     
         ←      81.8℃    
  77.3 ℃                 
      −2.5 ℃図1(c)は交互に反対方向
にラビング処理したガラス基板(a)、(b)をセル状
態に重ねたものを示す。
[Table 2] 82.3℃ 76.6℃
54.8℃ -20.9
℃ → →
→ →
Iso Ch
SmA SmC*
Cryst ←
← ←
← 81.8℃
77.3℃
−2.5° C. FIG. 1(c) shows glass substrates (a) and (b) that have been alternately rubbed in opposite directions and stacked in a cell state.

【0030】このようなラビング処理の異なる複数の領
域で表示部を構成した場合に領域の境界(例えば図1(
c)のB)において実験によると境界では幅1〜3μm
の欠陥線がラビング方向に沿ってセルの端から端へ生じ
るのみで周囲への悪影響はなかった。
When a display section is constructed from a plurality of regions subjected to different rubbing processes, the boundaries of the regions (for example, as shown in FIG.
According to experiments in B) of c), the width at the boundary is 1 to 3 μm.
A defect line was generated from one end of the cell along the rubbing direction, and there was no adverse effect on the surrounding area.

【0031】図1(c)に示したセルはセル厚が約1.
32μmにコントロールされていて同様のセルに全面均
一に上下基板共同一方向にラビング処理を行なったもの
との液晶移動の差異を次のように調べた。
The cell shown in FIG. 1(c) has a cell thickness of about 1.
The difference in liquid crystal movement between a similar cell whose thickness was controlled to 32 μm and which was uniformly rubbed in one direction on both the upper and lower substrates over the entire surface was investigated as follows.

【0032】セル内に図2(a)に示すような層方向に
離れた2点A,Bを取り±8V,10Hzの矩形波を2
3時間室温で印加する前後のセル厚の差を測定して合わ
せて図2(b)のE部の存在の有無を調べた。
Two points A and B separated in the layer direction as shown in FIG.
The presence or absence of part E in FIG. 2(b) was also investigated by measuring the difference in cell thickness before and after applying the voltage at room temperature for 3 hours.

【0033】[0033]

【表3】   表1によってわかる通り従来例ではA点からB点の
方向に液晶が移動し、かつ、E部のような空隙部が発生
しているのに対し本発明においてはほとんど液晶の流れ
は生じていなくて又、E部のような空隙部も発生してい
なかった。
[Table 3] As can be seen from Table 1, in the conventional example, the liquid crystal moves in the direction from point A to point B, and a gap like the part E is generated, whereas in the present invention, the liquid crystal almost flows. No voids were formed, and no voids such as those in section E were formed.

【0034】図1(a)に示した同一ラビング処理の領
域長さAはガラスの厚さ等にも依存する量であるが実験
的にはセル厚が約1.5μmでガラス基板厚が1.1m
mのセルでは20.0mm位で十分効果があった。
Although the area length A of the same rubbing process shown in FIG. 1(a) depends on the thickness of the glass, etc., it has been experimentally determined that the cell thickness is approximately 1.5 μm and the glass substrate thickness is 1 μm. .1m
In the case of a cell of 20.0 mm, the effect was sufficient.

【0035】他の実施例を図4,図5に示す。図4の実
施例では、片側基板(a)は実施例1と同様であるがこ
れと対向する(b)の基板は単一方向にラビングを施し
てある。
Other embodiments are shown in FIGS. 4 and 5. In the embodiment of FIG. 4, one side of the substrate (a) is similar to that of the first embodiment, but the opposing substrate (b) is rubbed in a single direction.

【0036】このような基板を用いると図4(c)に示
すように上下のラビング方向が異なる領域と一致する領
域とが交互に形成される。
When such a substrate is used, regions in which the upper and lower rubbing directions are different and regions in which the upper and lower rubbing directions match are alternately formed as shown in FIG. 4(c).

【0037】このような場合でも領域境界の欠陥線は1
〜3μm位のもので、他に悪影響を及ぼすことはなかっ
た。又セル厚の変化を同じように調べてみても従来例の
変化に比べてほとんど変化がなかった。
Even in this case, the defect line at the area boundary is 1
It was about ~3 μm and had no adverse effect on others. Also, when the change in cell thickness was investigated in the same way, there was almost no change compared to the change in the conventional example.

【0038】唯、上下平行な部分のチルト角は〜12.
0°に対し上下反平行な部分ではチルト角が約12.2
°と広がっていたが偏光子の吸収軸をその中間に合わせ
ることで領域差のない表示ができた。
However, the tilt angle of the vertically parallel portion is ~12.
The tilt angle is approximately 12.2 in the part vertically antiparallel to 0°.
It was possible to display images without area differences by aligning the absorption axis of the polarizer to the middle of the range.

【0039】次に図5に示した実施例においては基板(
a)、(b)の構成は実施例1と同様だがセルを作成す
るときに若干ずらして構成した。
Next, in the embodiment shown in FIG.
The configurations of a) and (b) are the same as in Example 1, but were slightly shifted when creating the cells.

【0040】この場合セル内にはプレチルトの違いで4
種類の配向領域が形成されたが境界での欠陥は実施例1
,2と同様問題なくまた液晶の流れも抑制された。
In this case, there are 4 cells in the cell due to the difference in pretilt.
Example 1
, 2, there were no problems and the flow of the liquid crystal was also suppressed.

【0041】[0041]

【発明の効果】以上説明したように、液晶セル内でのラ
ビング方向を変えることにより、プレチルト方向を制御
して(クロスラビングの場合もあてはまる)液晶分子の
流れによる耐久不良の問題を解決し、表示品質の向上が
図られる。
[Effects of the Invention] As explained above, by changing the rubbing direction within the liquid crystal cell, the pretilt direction can be controlled (this also applies to the case of cross rubbing), and the problem of poor durability caused by the flow of liquid crystal molecules can be solved. Display quality can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)(b)(c)は各々本発明実施例の説明
図である。
FIGS. 1A, 1B, and 1C are explanatory diagrams of embodiments of the present invention, respectively.

【図2】(a)(b)は各々従来技術の説明図である。FIGS. 2(a) and 2(b) are explanatory diagrams of conventional techniques, respectively.

【図3】(a)(b)は各々プレチルトの説明図である
FIGS. 3A and 3B are explanatory diagrams of pretilt.

【図4】(a)(b)(c)は各々本発明の別の実施例
の説明図である。
FIGS. 4(a), 4(b), and 4(c) are explanatory diagrams of other embodiments of the present invention, respectively.

【図5】(a)(b)(c)は各々本発明のさらに別の
実施例の説明図である。
FIGS. 5(a), 5(b), and 5(c) are explanatory diagrams of still other embodiments of the present invention.

【図6】(a)(b)は各々従来の液晶素子構造の説明
図である。
FIGS. 6(a) and 6(b) are explanatory diagrams of conventional liquid crystal element structures, respectively.

【符号の説明】[Explanation of symbols]

35  シール部材 36  FLC 60,61  電極基板 35 Seal member 36 FLC 60, 61 Electrode substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  対向する上下一対のラビング処理を施
した電極基板間に強誘電液晶を封止した液晶表示素子に
おいて、少なくとも一方の前記電極基板は、ラビング方
向の異なる複数の帯状領域を並列して有することを特徴
とする強誘電液晶素子。
1. A liquid crystal display element in which a ferroelectric liquid crystal is sealed between a pair of opposing upper and lower electrode substrates that have been subjected to a rubbing process, in which at least one of the electrode substrates has a plurality of strip-shaped regions arranged in parallel in different rubbing directions. A ferroelectric liquid crystal element characterized by having:
【請求項2】  前記ラビング方向は、各帯状領域の長
手方向に沿って各隣接領域が交互に逆方向になるように
構成されたことを特徴とする請求項1に記載した強誘電
液晶素子。
2. The ferroelectric liquid crystal device according to claim 1, wherein the rubbing direction is configured such that the rubbing directions are alternately opposite to each other along the longitudinal direction of each strip-shaped region.
【請求項3】  上下の両基板がともに同一幅の前記帯
状領域に分割され、同じラビング方向の領域同士が対面
するように上下基板を対向配置したことを特徴とする請
求項1に記載した強誘電液晶素子。
3. The method according to claim 1, wherein both the upper and lower substrates are divided into the strip-shaped regions having the same width, and the upper and lower substrates are arranged to face each other so that the regions in the same rubbing direction face each other. Dielectric liquid crystal element.
【請求項4】  一方の基板のみが前記複数の帯状領域
に分割され、他方の基板は全面が同一方向にラビング処
理されたことを特徴とする請求項1に記載した強誘電液
晶素子。
4. The ferroelectric liquid crystal device according to claim 1, wherein only one substrate is divided into the plurality of band-shaped regions, and the entire surface of the other substrate is rubbed in the same direction.
【請求項5】  上下の両基板がともに同一幅の前記帯
状領域に分割され、上下の各領域が幅方向にずれて対面
するように上下基板を対向配置したことを特徴とする請
求項1に記載した強誘電液晶素子。
5. The device according to claim 1, wherein both the upper and lower substrates are divided into the strip-shaped regions having the same width, and the upper and lower substrates are arranged to face each other so that the upper and lower regions are offset in the width direction and face each other. The described ferroelectric liquid crystal element.
JP3031391A 1991-02-01 1991-02-01 Chiral smectic liquid crystal device Expired - Fee Related JP2775528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031391A JP2775528B2 (en) 1991-02-01 1991-02-01 Chiral smectic liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031391A JP2775528B2 (en) 1991-02-01 1991-02-01 Chiral smectic liquid crystal device

Publications (2)

Publication Number Publication Date
JPH04247429A true JPH04247429A (en) 1992-09-03
JP2775528B2 JP2775528B2 (en) 1998-07-16

Family

ID=12329966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031391A Expired - Fee Related JP2775528B2 (en) 1991-02-01 1991-02-01 Chiral smectic liquid crystal device

Country Status (1)

Country Link
JP (1) JP2775528B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647873A2 (en) * 1993-10-08 1995-04-12 Canon Kabushiki Kaisha Liquid crystal device
US5633740A (en) * 1993-05-10 1997-05-27 Canon Kabushiki Kaisha Chiral smectic liquid crystal device having at least one orientation film divided into regions with different uniaxial aligning treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151125A (en) * 1984-08-20 1986-03-13 Matsushita Electric Ind Co Ltd Liquid-crystal display device
JPS63106624A (en) * 1986-10-22 1988-05-11 Fujitsu Ltd Liquid crystal display panel
JPS63199320A (en) * 1987-02-13 1988-08-17 Fujitsu Ltd Liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151125A (en) * 1984-08-20 1986-03-13 Matsushita Electric Ind Co Ltd Liquid-crystal display device
JPS63106624A (en) * 1986-10-22 1988-05-11 Fujitsu Ltd Liquid crystal display panel
JPS63199320A (en) * 1987-02-13 1988-08-17 Fujitsu Ltd Liquid crystal display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633740A (en) * 1993-05-10 1997-05-27 Canon Kabushiki Kaisha Chiral smectic liquid crystal device having at least one orientation film divided into regions with different uniaxial aligning treatment
EP0647873A2 (en) * 1993-10-08 1995-04-12 Canon Kabushiki Kaisha Liquid crystal device
EP0647873A3 (en) * 1993-10-08 1995-11-02 Canon Kk Liquid crystal device.
US5568295A (en) * 1993-10-08 1996-10-22 Canon Kabushiki Kaisha Chiral smetic LCD with small pretilt angle, substrate rubbed in two opposing directions, and no cholesteric phase or tilt angle > the pretilt plus inclination angles

Also Published As

Publication number Publication date
JP2775528B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JPH04258924A (en) Ferroelectric liquid crystal element
JP2612503B2 (en) Liquid crystal element
EP0496628B1 (en) Ferroelectric liquid crystal display device
JP2775527B2 (en) Chiral smectic liquid crystal device
US5276542A (en) Ferroelectric liquid crystal apparatus having temperature compensation control circuit
US5844652A (en) Liquid crystal display using a liquid crystal showing a ferroelectric property or an anti-ferroelectric property
GB2274519A (en) Liquid crystal devices
JPH03209440A (en) Liquid crystal display element
EP0361472B1 (en) Ferroelectric liquid crystal apparatus
EP0504911B1 (en) Liquid crystal device
JPH04247429A (en) Ferroelectric liquid crystal element
JP3086992B2 (en) Ferroelectric liquid crystal device
US5016989A (en) Liquid crystal element with improved contrast and brightness
US5936601A (en) Chevron-type liquid crystal device having effective display and pattern display regions
KR100433412B1 (en) Method of producing FLCD
KR0161377B1 (en) Ferroelectric liquid crystal display element
KR100802306B1 (en) Liquid Crystal Display Device and Method of Fabricating the same
JPH05203933A (en) Ferroelectric liquid crystal element
JPH07333619A (en) Liquid crystal display element
JP2614347B2 (en) Liquid crystal element and liquid crystal display
JP2880807B2 (en) Liquid crystal display
JPH0829788A (en) Liquid crystal display element
JPH0588154A (en) Ferroelectric liquid crystal element
JPH11174451A (en) Liquid crystal display device
JPH05100219A (en) Ferroelectric liquid crystal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees