JPH0424574B2 - - Google Patents

Info

Publication number
JPH0424574B2
JPH0424574B2 JP59055283A JP5528384A JPH0424574B2 JP H0424574 B2 JPH0424574 B2 JP H0424574B2 JP 59055283 A JP59055283 A JP 59055283A JP 5528384 A JP5528384 A JP 5528384A JP H0424574 B2 JPH0424574 B2 JP H0424574B2
Authority
JP
Japan
Prior art keywords
bearing
spherical roller
annular portion
cage
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59055283A
Other languages
Japanese (ja)
Other versions
JPS60201113A (en
Inventor
Nozomi Morinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP59055283A priority Critical patent/JPS60201113A/en
Publication of JPS60201113A publication Critical patent/JPS60201113A/en
Publication of JPH0424574B2 publication Critical patent/JPH0424574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/48Cages for rollers or needles for multiple rows of rollers or needles
    • F16C33/485Cages for rollers or needles for multiple rows of rollers or needles with two or more juxtaposed cages joined together or interacting with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • F16C33/494Massive or moulded comb cages
    • F16C33/495Massive or moulded comb cages formed as one piece cages, i.e. monoblock comb cages
    • F16C33/498Massive or moulded comb cages formed as one piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】 この発明は球面ころのスキユーを防止する複列
自動調心ころ軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a double-row spherical roller bearing that prevents skew of spherical rollers.

従来の複列自動調心ころ軸受は第1図に示すよ
うに、球面の外輪軌道1を有する外輪3と複列の
内輪軌道5,7を有する内輪9との間に合成樹脂
製の一方の保持器11と合成樹脂製の他方の保持
器13とを配設している。前記一方の保持器11
と他方の保持器13とはいずれも第2図に示すよ
うに環状部15と、環状部の軸受外側の側面17
から軸受外側へ突出し、かつ円周方向に離れて位
置する複数の柱19と、柱19の軸受外側の端部
に一体に連結された輪状部21とを有している。
前記隣り合う二つの柱19の間のポケツト23に
球面ころ25を配設し、この球面ころの荷重の方
向と軸受の中心軸に垂直な平面とのなす接触角α
は定まつているので球面ころ25の内輪9に対す
る軸方向の位置が定まつている。前記一方の保持
器の軸受内側の側面27と他方の保持器の軸受内
側の側面29とは軸方向に距離を隔てて対向し、
また環状部と輪状部との間の距離Aは球面ころの
軸方向の幅寸法Bより長いので一方の保持器11
および他方の保持器13はいずれも球面ころ25
に対して軸方向に僅かに往復動する。従つて、球
面ころ25は環状部15および輪状部21に対し
て傾きやすいので球面ころ25には第2図に想像
線で示すようにスキユーが生じ、軸受が発熱す
る。
As shown in Fig. 1, a conventional double-row self-aligning roller bearing has one side made of synthetic resin between an outer ring 3 having a spherical outer ring raceway 1 and an inner ring 9 having double-row inner ring raceways 5 and 7. A cage 11 and the other cage 13 made of synthetic resin are provided. Said one retainer 11
and the other retainer 13, as shown in FIG.
It has a plurality of columns 19 that protrude outward from the bearing and are spaced apart from each other in the circumferential direction, and an annular portion 21 that is integrally connected to the end of the column 19 on the outside of the bearing.
A spherical roller 25 is disposed in the pocket 23 between the two adjacent columns 19, and the contact angle α between the direction of the load on the spherical roller and the plane perpendicular to the central axis of the bearing is
is fixed, so the axial position of the spherical roller 25 with respect to the inner ring 9 is fixed. The bearing inner side surface 27 of the one cage and the bearing inner side surface 29 of the other cage face each other at a distance in the axial direction,
In addition, since the distance A between the annular parts is longer than the axial width dimension B of the spherical roller, one of the cages 11
and the other cage 13 are both spherical rollers 25
It reciprocates slightly in the axial direction. Therefore, since the spherical roller 25 tends to be inclined with respect to the annular portion 15 and the annular portion 21, a skew occurs in the spherical roller 25 as shown by the imaginary line in FIG. 2, and the bearing generates heat.

この発明は球面ころのスキユーを防止する複列
自動調心ころ軸受を提供することを目的とする。
An object of the present invention is to provide a double-row self-aligning roller bearing that prevents skew of spherical rollers.

この発明の基本的な構成は、一方の保持器の軸
受内側の側面と他方の保持器の軸受内側の側面と
が接し、球面ころの軸受外側の端面と環状部との
間の距離は球面ころの軸方向の幅寸法以下である
ことにある。
The basic configuration of this invention is that the bearing inner side surface of one cage and the bearing inner side surface of the other cage are in contact, and the distance between the bearing outer end surface of the spherical roller and the annular portion is The width dimension in the axial direction of the

次にこの発明の実施例を図面に基いて説明す
る。第3図は第一の実施例であるが、球面の外輪
軌道31を有する外輪33と複列の内輪軌道3
5,37を有する内輪39との間に合成樹脂製の
一方の保持器41と合成樹脂製の他方の保持器4
3とをそれぞれ配設している。前記複列の内輪軌
道35,37は軸受の中心軸に垂直な平面に対し
て対称であり、また一方の保持器41と他方の保
持器43とは軸受の中心軸に垂直な平面に対して
対称である。前記一方の保持器41および他方の
保持器43はいずれも第4図に示すように環状部
45と、環状部の軸受外側の側面47から軸受外
側へ突出し、かつ円周方向に等間隔に離れて位置
する複数の柱49と、柱49の軸受外側の端部に
一体に連結された輪状部51とをそれぞれ有して
いる。前記隣り合う二つの柱49の間のポケツト
53に球面ころ55をそれぞれ配設し、この球面
ころの荷重の方向と軸受の中心軸に垂直な平面と
のなす接触角βが定まつているので球面ころ55
の内輪39に対する軸方向の位置が定まつてい
る。前記一方の保持器の軸受内側の側面57と他
方の保持器の軸受内側の側面59とが接し、また
球面ころの軸受外側の端面と環状部との間の距離
Cは球面ころの軸方向の幅寸法D以下である。前
記球面ころの軸受外側の端面と環状部との間の距
離Cを球面ころの軸方向の幅寸法D以下にする
と、環状部の軸受外側の側面47は球面ころ55
に押圧されて微小量弾性変形し、また球面ころの
軸受内側の端面61は円周方向の両端部63,6
5が環状部の軸受外側の側面47に接するので環
状部の軸受外側の側面47と平行である。従つ
て、球面ころ55にはスキユーが生じにくい。前
記ポケツト53を形成する柱の側面67は図示さ
れてはいないが球面ころ55の転動面に則した曲
率の円弧を軸方向および半径方向にそれぞれ有す
る凹曲面であり、また輪状部51は輪状部の柱へ
の接続部の内周端部69より半径方向の内方に内
方の輪状部分71を有している。前記内方の輪状
部分71の球面ころ55側の側面は球面ころの軸
受外側の端面73に対して傾斜し、内方の輪状部
分71は球面ころの軸受外側の端面73と接しな
いように半径方向の内方に向かうほど球面ころの
軸受外側の端面73から遠ざかる。そして、内方
の輪状部分71の内周面は内輪39に案内される
保持器の案内面となつている。
Next, embodiments of the present invention will be described based on the drawings. FIG. 3 shows the first embodiment, an outer ring 33 having a spherical outer ring raceway 31 and a double-row inner ring raceway 3.
5, 37, one cage 41 made of synthetic resin and the other cage 4 made of synthetic resin.
3 are arranged respectively. The double-row inner ring raceways 35 and 37 are symmetrical with respect to a plane perpendicular to the central axis of the bearing, and one retainer 41 and the other retainer 43 are symmetrical with respect to a plane perpendicular to the central axis of the bearing. It is symmetrical. As shown in FIG. 4, both of the one retainer 41 and the other retainer 43 protrude outward from the annular portion 45 and the side surface 47 of the annular portion on the outside of the bearing, and are spaced apart at equal intervals in the circumferential direction. Each of the pillars 49 has a plurality of pillars 49 located at the same position, and a ring-shaped portion 51 that is integrally connected to the end of the pillar 49 on the outside of the bearing. Spherical rollers 55 are disposed in the pockets 53 between the two adjacent columns 49, and the contact angle β between the direction of the load on the spherical rollers and the plane perpendicular to the central axis of the bearing is fixed. Spherical roller 55
The axial position of the inner ring 39 is determined. The bearing inner side surface 57 of the one cage and the bearing inner side surface 59 of the other cage are in contact, and the distance C between the bearing outer end surface of the spherical roller and the annular portion is equal to the distance C in the axial direction of the spherical roller. The width dimension is D or less. When the distance C between the end surface of the spherical roller on the outside of the bearing and the annular portion is made equal to or less than the width dimension D in the axial direction of the spherical roller, the side surface 47 of the annular portion on the outside of the bearing becomes the spherical roller 55.
The inner end surface 61 of the bearing of the spherical roller is pressed against the circumferential ends 63, 6.
5 is in contact with the side surface 47 of the annular portion on the outside of the bearing, so it is parallel to the side surface 47 of the annular portion on the outside of the bearing. Therefore, skew is less likely to occur in the spherical rollers 55. Although not shown, the side surface 67 of the column forming the pocket 53 is a concave curved surface having arcs of curvature in accordance with the rolling surface of the spherical roller 55 in the axial and radial directions, and the annular portion 51 has an annular shape. It has an inner annular portion 71 radially inward from the inner circumferential end 69 of the connection portion to the column. The side surface of the inner annular portion 71 on the spherical roller 55 side is inclined with respect to the end surface 73 on the outer side of the spherical roller bearing, and the inner annular portion 71 has a radius such that it does not contact the end surface 73 on the outer side of the spherical roller bearing. The further inward in the direction, the further away from the outer end surface 73 of the bearing of the spherical roller. The inner circumferential surface of the inner annular portion 71 serves as a guide surface for the retainer guided by the inner ring 39.

第5図はこの発明の第二の実施例であるが、複
列の内輪軌道35,37の間に配設した合成樹脂
製の浮き案内輪75は内輪39に嵌合して内輪3
9に案内される。また、球面ころの軸受外側の端
面と浮き案内輪との間の距離Eは第6図に示すよ
うに球面ころの軸方向の幅寸法D以下である。前
記球面ころの軸受外側の端面と浮き案内輪との間
の距離Eを球面ころの軸方向の幅寸法Dより小さ
くすると、浮き案内輪75の側面は球面ころ55
に押圧されて微小量弾性変形し、また球面ころの
軸受内側の端面61は円周方向の両側の端部7
7,73が浮き案内輪75に接するので浮き案内
輪75と平行であり、球面ころ55にはスキユー
が生じにくい。また、浮き案内輪75は一方の保
持器41と他方の保持器43とを案内する。な
お、図示の実施例の他の個所は第一の実施例とほ
ぼ同様に構成されている。従つて、浮き案内輪7
5と一方の保持器41と他方の保持器43とはい
ずれも球面ころ55のスキユーを防止する。
FIG. 5 shows a second embodiment of the present invention, in which a floating guide ring 75 made of synthetic resin disposed between the double-row inner ring raceways 35 and 37 is fitted into the inner ring 39 and
You will be guided to 9. Further, the distance E between the outer end surface of the bearing of the spherical roller and the floating guide ring is less than or equal to the axial width dimension D of the spherical roller, as shown in FIG. When the distance E between the bearing outer end surface of the spherical roller and the floating guide ring is made smaller than the axial width dimension D of the spherical roller, the side surface of the floating guide ring 75 becomes smaller than the spherical roller 55.
The inner end surface 61 of the spherical roller bearing is pressed against the inner end surface 61 of the spherical roller and the ends 7 on both sides in the circumferential direction
Since rollers 7 and 73 are in contact with the floating guide ring 75, they are parallel to the floating guide ring 75, and skew does not easily occur in the spherical rollers 55. Furthermore, the floating guide ring 75 guides the cage 41 on one side and the cage 43 on the other side. Note that the other parts of the illustrated embodiment are constructed almost the same as the first embodiment. Therefore, the floating guide ring 7
5, one retainer 41, and the other retainer 43 prevent the spherical rollers 55 from skewing.

第7図はこの発明の第三の実施例であるが、一
方の保持器41と他方の保持器43とは軸受の中
心軸に垂直な平面に対して対称であり、また一方
の保持器41と他方の保持器43とはいずれも第
8図に示すように環状部45と、環状部の軸受外
側の側面47から軸受外側へ突出し、かつ円周方
向に等間隔に離れて位置する複数の柱49とをそ
れぞれ有している。そして、柱49の軸受外側の
端部には第一の実施例に示した輪状部51が接続
されていない。前記隣り合う二つの柱49の間の
ポケツト53に球面ころ55をそれぞれ配設し、
また一方の保持器の軸受内側の側面57と他方の
保持器の軸受内側の側面59とが接している。前
記球面ころの軸受外側の端面と環状部との間の距
離Cは球面ころの軸方向の幅寸法D以下である。
前記球面ころの軸受外側の端面と環状部との間の
距離Cを球面ころの軸方向の幅寸法Dより小さく
すると、環状部の軸受外側の側面47は球面ころ
55に押圧されて微小量弾性変形し、球面ころの
軸受内側の端面61は円周方向の両端部63,6
5が環状部の軸受外側の側面47に接するので環
状部の軸受外側の側面47と平行である。従つ
て、球面ころ55にはスキユーが生じにくい。前
記ポケツト53を形成する柱の側面67は図示さ
れてはいないが球面ころ55の転動面に則した曲
率の円弧を軸方向および半径方向にそれぞれ有す
る凹曲面であり、また環状部45は環状部の柱へ
の接続部の内周端部81より半径方向の内方に内
方の環状部分83を有している。前記内方の環状
部分83の球面ころ55側の側面は球面ころの軸
受内側の端面61に対して傾斜し、内方の環状部
分83は球面ころの軸受内側の端面61に接しな
いように半径方向の内方に向かうほど球面ころの
軸受内側の端面61から遠ざかる。そして、内方
の環状部分83の内周面は内輪39に案内される
保持器の案内面となつている。
FIG. 7 shows a third embodiment of the present invention, in which one cage 41 and the other cage 43 are symmetrical with respect to a plane perpendicular to the central axis of the bearing, and one cage 41 is symmetrical with respect to a plane perpendicular to the central axis of the bearing. and the other retainer 43, as shown in FIG. and a pillar 49, respectively. The annular portion 51 shown in the first embodiment is not connected to the end of the pillar 49 on the outside of the bearing. A spherical roller 55 is disposed in each pocket 53 between the two adjacent columns 49,
Further, the side surface 57 of one cage on the inner side of the bearing is in contact with the side surface 59 of the other cage on the inner side of the bearing. The distance C between the bearing outer end surface of the spherical roller and the annular portion is less than or equal to the axial width dimension D of the spherical roller.
When the distance C between the end surface of the spherical roller on the outside of the bearing and the annular portion is made smaller than the axial width dimension D of the spherical roller, the side surface 47 of the annular portion on the outside of the bearing is pressed by the spherical roller 55 and has a small amount of elasticity. Deformed, the inner end surface 61 of the spherical roller bearing has both ends 63, 6 in the circumferential direction.
5 is in contact with the side surface 47 of the annular portion on the outside of the bearing, so it is parallel to the side surface 47 of the annular portion on the outside of the bearing. Therefore, skew is less likely to occur in the spherical rollers 55. Although not shown, the side surface 67 of the column forming the pocket 53 is a concave curved surface having arcs of curvature in the axial and radial directions, respectively, in accordance with the rolling surface of the spherical roller 55, and the annular portion 45 has an annular shape. It has an inner annular portion 83 radially inward from the inner circumferential end 81 of the connection portion to the column. The side surface of the inner annular portion 83 on the spherical roller 55 side is inclined with respect to the end surface 61 inside the bearing of the spherical roller, and the inner annular portion 83 has a radius such that it does not touch the end surface 61 inside the bearing of the spherical roller. The further inward in the direction, the further away from the end surface 61 of the spherical roller inside the bearing. The inner circumferential surface of the inner annular portion 83 serves as a guide surface for the retainer guided by the inner ring 39.

なお、第一の実施例ないし第三の実施例におい
ては、球面ころの軸受外側の端面と環状部との間
の距離Cを球面ころの軸方向の幅寸法Dとほぼ等
しくしても良い。この場合は、一方の保持器の軸
受内側の側面57と他方の保持器の軸受内側の側
面59とが接し、また球面ころの軸受内側の端面
61は円周方向の両端部63,65が環状部の軸
受内側の側面47に接するので環状部の軸受内側
の側面47と平行である。従つて、球面ころ55
にはスキユーが生じにくい。なお、球面ころの軸
受外側の端面と環状部との間の距離Cを球面ころ
の軸方向の幅寸法Dとほぼ等しく設計すると、加
工誤差等によつて一方の保持器の軸受内側の側面
57と他方の保持器の軸受内側の側面59とが常
には接触しない可能性、および球面ころの軸受内
側の端面61と環状部の軸受外側の側面47とが
常には接触しない可能性がある。この場合は、球
面ころの軸受内側の端面の円周方向の一方の端部
63,65が環状部の軸受外側の側面47に接す
ると、球面ころの軸受内側の端面の円周方向の一
方の端部63,65が環状部の軸受外側の側面4
7から反力を受けるので球面ころ55にはスキユ
ーが生じにくい。従つて、この場合も、この発明
と同様の目的、構成、作用、および効果をそれぞ
れ有するのでこの発明の技術的範囲内に属する。
In the first to third embodiments, the distance C between the bearing outer end surface of the spherical roller and the annular portion may be approximately equal to the axial width dimension D of the spherical roller. In this case, the side surface 57 inside the bearing of one cage is in contact with the side surface 59 inside the bearing of the other cage, and the end surface 61 inside the bearing of the spherical roller has both circumferential ends 63 and 65 annular. Since it is in contact with the side surface 47 inside the bearing of the annular portion, it is parallel to the side surface 47 inside the bearing of the annular portion. Therefore, the spherical roller 55
skew is less likely to occur. Note that if the distance C between the outer end surface of the bearing of the spherical roller and the annular portion is designed to be approximately equal to the axial width dimension D of the spherical roller, the inner side surface 57 of the bearing of one cage may There is a possibility that the inner side surface 59 of the bearing of the other cage does not always come into contact with each other, and there is a possibility that the end surface 61 of the spherical roller inside the bearing and the side surface 47 of the annular portion outside the bearing do not always come into contact with each other. In this case, when one end 63, 65 in the circumferential direction of the inner end face of the spherical roller comes into contact with the outer side surface 47 of the annular portion, one of the circumferential ends 63, 65 of the inner end face of the spherical roller Ends 63 and 65 are annular bearing outer side surfaces 4
Since the spherical roller 55 receives a reaction force from the roller 7, skew is less likely to occur on the spherical roller 55. Therefore, this case also falls within the technical scope of the present invention since it has the same objects, configurations, functions, and effects as the present invention.

また、球面ころの軸受外側の端面と浮き案内輪
との間の距離Eを球面ころの軸方向の幅寸法Dと
ほぼ等しくしても良い。この場合も、球面ころの
軸受内側の端面61は円周方向の両側の端部7
7,79が浮き案内輪75に接するので球面ころ
55にはスキユーが生じにくい。
Further, the distance E between the outer end surface of the bearing of the spherical roller and the floating guide ring may be approximately equal to the axial width dimension D of the spherical roller. In this case as well, the end face 61 of the spherical roller inside the bearing is the end face 7 on both sides in the circumferential direction.
Since the rollers 7 and 79 are in contact with the floating guide ring 75, the spherical roller 55 is unlikely to be skewed.

さらに、一方の保持器の軸受内側の側面57と
他方の保持器の軸受内側の側面59とを接着剤等
によつて接着し、一方の保持器41と他方の保持
器43とを一体化しても良い。
Furthermore, the bearing inner side surface 57 of one cage and the bearing inner side surface 59 of the other cage are bonded with adhesive or the like to integrate one cage 41 and the other cage 43. Also good.

第9図はこの発明の第一の応用例であるが、一
方の保持器41と他方の保持器43とは円周方向
に位相がずれている。前記一方の保持器41と他
方の保持器43とは一体になつて一つの部材の保
持器85となつており、一つの部材の保持器85
が射出成形によつて成形されている。なお、図示
の応用例の他の個所は第一の実施例とほぼ同様に
構成されている。従つて、球面ころ55のスキユ
ーが防止される。なお、複列の内輪軌道35,3
7の間に第二の実施例に示した浮き案内輪75と
同様の浮き案内輪を配設しても良い。この場合
は、浮き案内輪と一つの部材の保持器85とがい
ずれも球面ころ55のスキユーを防止する。
FIG. 9 shows a first application example of the present invention, in which one cage 41 and the other cage 43 are out of phase in the circumferential direction. The one retainer 41 and the other retainer 43 are integrated into a retainer 85 of one member, and the retainer 85 of one member is
is molded by injection molding. Note that the other parts of the illustrated application example are constructed almost the same as in the first embodiment. Therefore, skew of the spherical rollers 55 is prevented. In addition, the double-row inner ring raceway 35, 3
7, a floating guide ring similar to the floating guide ring 75 shown in the second embodiment may be provided. In this case, both the floating guide ring and the one-piece retainer 85 prevent the spherical rollers 55 from skewing.

第10図はこの発明の第二の応用例であるが、
一方の保持器41と他方の保持器43とは円周方
向に位相がずれている。前記一方の保持器41と
他方の保持器43とは一体になつて一つの部材の
保持器85となつており、一つの部材の保持器8
5が射出成形によつて成形されている。なお、図
示の応用例の他の個所は第三の実施例とほぼ同様
に構成されている。従つて、球面ころ55のスキ
ユーが防止される。
Figure 10 shows the second application example of this invention.
One retainer 41 and the other retainer 43 are out of phase in the circumferential direction. The one retainer 41 and the other retainer 43 are integrated into a retainer 85 that is one member, and the retainer 85 is one member.
5 is molded by injection molding. Note that the other parts of the illustrated application example are constructed almost the same as the third embodiment. Therefore, skew of the spherical rollers 55 is prevented.

第11図はこの発明の第三の応用例であるが、
一方の保持器41と他方の保持器43とは円周方
向に位相がずれている。前記一方の保持器41と
他方の保持器43とは一体になつて一つの部材の
保持器85となつており、一つの部材の保持器8
5が射出成形によつて成形されている。また、球
面ころの軸受内側の端面と輪状部との間の距離F
は第12図に示すように球面ころの軸方向の幅寸
法D以下である。従つて、球面ころの軸受外端の
端面73は円周方向の両端部87,89が輪状部
の軸受内側の側面91に接するので輪状部の軸受
内側の側面91と平行であり、球面ころ55には
スキユーが生じにくい。なお、図示の応用例の他
の個所は第一の実施例とほぼ同様に構成されてい
る。
Figure 11 shows the third application example of this invention.
One retainer 41 and the other retainer 43 are out of phase in the circumferential direction. The one retainer 41 and the other retainer 43 are integrated into a retainer 85 that is one member, and the retainer 85 is one member.
5 is molded by injection molding. Also, the distance F between the inner end face of the spherical roller bearing and the annular part
is less than the axial width dimension D of the spherical roller, as shown in FIG. Therefore, the end surface 73 of the bearing outer end of the spherical roller is parallel to the bearing inner side surface 91 of the annular portion because both ends 87 and 89 in the circumferential direction touch the bearing inner side surface 91 of the annular portion, and the spherical roller 55 skew is less likely to occur. Note that the other parts of the illustrated application example are constructed almost the same as in the first embodiment.

この発明の複列自動調心ころ軸受によると、一
方の環状部の軸受内側の側面57と他方の環状部
の軸受内側の側面59とが接し、球面ころの軸受
外側の端面と環状部との間の距離Cは球面ころの
軸方向の幅寸法D以下なので、球面ころの軸受内
側の端面の円周方向の両端部63,65は環状部
の軸受外側の側面47に接し、球面ころの軸受内
側の端面61は環状部の軸受外側の側面47と平
行なので球面ころ55にはスキユーが生じにくい
という効果を有する。
According to the double-row self-aligning roller bearing of the present invention, the inner side surface 57 of one annular portion and the inner side surface 59 of the other annular portion are in contact with each other, and the outer end surface of the spherical roller and the annular portion are in contact with each other. Since the distance C between them is less than or equal to the axial width dimension D of the spherical roller, both ends 63 and 65 in the circumferential direction of the inner end face of the spherical roller are in contact with the outer side surface 47 of the annular part, and the bearing of the spherical roller is Since the inner end surface 61 is parallel to the bearing outer side surface 47 of the annular portion, it has the effect that skew does not easily occur in the spherical roller 55.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の複列自動調心ころ軸受の断面
図、第2図は第1図の一方の保持器と球面ころと
の−線断面図、第3図はこの発明の一実施例
を示す複列自動調心ころ軸受の断面図、第4図は
第3図の一方の保持器と球面ころとの−線断
面図、第5図および第7図はこの発明の他の実施
例を示す複列自動調心ころ軸受の断面図、第6図
は第5図の浮き案内輪と球面ころとの−線断
面図、第8図は第7図の一方の保持器と球面ころ
との−線断面図、第9図ないし第11図はこ
の発明の応用例を示す複列自動調心ころ軸受の断
面図、第12図は第11図の保持器と球面ころと
の−線断面図である。 図中、31は外輪軌道、33は外輪、35,3
7は内輪軌道、39は内輪、41は一方の保持
器、43は他方の保持器、45は環状部、47は
環状部の軸受外側の側面、49は柱、53はポケ
ツト、55は球面ころ、57は一方の保持器の軸
受内側の側面、59は他方の保持器の軸受内側の
側面、Cは球面ころの軸受外側の端面と環状部と
の間の距離、Dは球面ころの軸方向の幅寸法であ
る。
Fig. 1 is a cross-sectional view of a conventional double-row self-aligning roller bearing, Fig. 2 is a cross-sectional view taken along the - line of one of the cages and spherical rollers in Fig. 1, and Fig. 3 is a cross-sectional view of one embodiment of the present invention. FIG. 4 is a sectional view taken along the line -1 of one cage and spherical roller in FIG. 3, and FIGS. 5 and 7 show other embodiments of the present invention. 6 is a cross-sectional view of the floating guide ring and spherical roller shown in FIG. 5, and FIG. 9 to 11 are cross-sectional views of a double-row self-aligning roller bearing showing an application example of the present invention. FIG. 12 is a sectional view of the cage and spherical rollers shown in FIG. 11. It is. In the figure, 31 is the outer ring raceway, 33 is the outer ring, 35, 3
7 is an inner ring raceway, 39 is an inner ring, 41 is one cage, 43 is another cage, 45 is an annular portion, 47 is a side surface of the annular portion on the outside of the bearing, 49 is a column, 53 is a pocket, and 55 is a spherical roller. , 57 is the bearing inner side surface of one cage, 59 is the bearing inner side surface of the other cage, C is the distance between the bearing outer end surface of the spherical roller and the annular part, and D is the axial direction of the spherical roller. is the width dimension of

Claims (1)

【特許請求の範囲】[Claims] 1 球面の外輪軌道31を有する外輪33と複列
の内輪軌道35,37を有する内輪39との間に
合成樹脂製の一方の保持器41と合成樹脂製の他
方の保持器43とを配設し、該一方の保持器41
と他方の保持器43とはいずれも環状部45と、
環状部の軸受外側の側面47から軸受外側へ突出
し、かつ円周方向に離れて位置する複数の柱49
とを有し、該隣り合う二つの柱49の間のポケツ
ト53に球面ころ55を配設した複列自動調心こ
ろ軸受において、前記一方の保持器の軸受内側の
側面57と他方の保持器の軸受内側の側面59と
が接し、前記球面ころの軸受外側の端面と環状部
との間の距離Cは球面ころの軸方向の幅寸法D以
下であることを特徴とする複列自動調心ころ軸
受。
1. One cage 41 made of synthetic resin and the other cage 43 made of synthetic resin are arranged between an outer ring 33 having a spherical outer ring raceway 31 and an inner ring 39 having double row inner ring races 35 and 37. and the one retainer 41
and the other retainer 43 both have an annular portion 45;
A plurality of pillars 49 protrude from the side surface 47 of the annular portion on the outside of the bearing and are spaced apart in the circumferential direction.
and a double row self-aligning roller bearing in which spherical rollers 55 are disposed in pockets 53 between the two adjacent columns 49, wherein a side surface 57 inside the bearing of one of the cages and a side surface 57 of the other cage. is in contact with the inner side surface 59 of the bearing, and the distance C between the outer end surface of the bearing and the annular portion is less than or equal to the axial width dimension D of the spherical roller. roller bearings.
JP59055283A 1984-03-24 1984-03-24 Double-row self-aligning roller bearing Granted JPS60201113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055283A JPS60201113A (en) 1984-03-24 1984-03-24 Double-row self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055283A JPS60201113A (en) 1984-03-24 1984-03-24 Double-row self-aligning roller bearing

Publications (2)

Publication Number Publication Date
JPS60201113A JPS60201113A (en) 1985-10-11
JPH0424574B2 true JPH0424574B2 (en) 1992-04-27

Family

ID=12994258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055283A Granted JPS60201113A (en) 1984-03-24 1984-03-24 Double-row self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JPS60201113A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816362A4 (en) 2004-11-24 2009-05-06 Nsk Ltd Self-aligning roller bearing with retainer and method of manufacturing the retainer for the self-aligning roller bearing
JP4803031B2 (en) * 2004-11-24 2011-10-26 日本精工株式会社 Method for manufacturing cage for spherical roller bearing
JP7073214B2 (en) * 2018-07-10 2022-05-23 Ntn株式会社 Double row roller bearing

Also Published As

Publication number Publication date
JPS60201113A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US4722617A (en) Ball bearing assembly
US3652141A (en) Combined three-sectional axial-radial roller turning connection
US5033878A (en) Cage for spherical roller bearing
US4572678A (en) Cage for ball bearing, in particular a plastic cage for a four-point contact bearing
JP4219093B2 (en) Double row radial bearing
JPS6249015A (en) Radial roller bearing
JPS6347930B2 (en)
US9062715B2 (en) Spherical roller bearing cage with cylindrical guidance contact surfaces
US20030021506A1 (en) Angular contact ball-bearing cage with lubricant pockets
US4838712A (en) Ball bearing and the retainer thereof
US3306687A (en) Single row spherical bearing
US3424507A (en) Water pump bearing
KR20100084154A (en) Radial rolling bearing especially double-row angular contact ball bearing
US20100254645A1 (en) Rolling bearing cage, and inner ring, cage and rolling element assembly, outer ring, cage and rolling element assembly and rolling bearing that are provided with rolling bearing cage
JPS6350567B2 (en)
US20210102576A1 (en) Self-aligning roller bearing
JP7485948B2 (en) Cage for spherical roller bearing
US1224346A (en) Roller-bearing.
JPH0424574B2 (en)
US3004809A (en) Thrust roller bearings
JPH074439A (en) High speed angular ball bearing
US4336972A (en) Unitized bearing assembly
JPH043128Y2 (en)
US11209050B1 (en) Contamination-resistant bearing assembly
JPH0313619Y2 (en)