JPH04242028A - Switch contact point acting time measuring device - Google Patents

Switch contact point acting time measuring device

Info

Publication number
JPH04242028A
JPH04242028A JP3003756A JP375691A JPH04242028A JP H04242028 A JPH04242028 A JP H04242028A JP 3003756 A JP3003756 A JP 3003756A JP 375691 A JP375691 A JP 375691A JP H04242028 A JPH04242028 A JP H04242028A
Authority
JP
Japan
Prior art keywords
current transformer
circuit
transformer
amplifier
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3003756A
Other languages
Japanese (ja)
Inventor
Seikichi Kashiwazaki
柏崎 清吉
Toshio Nakajima
俊雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3003756A priority Critical patent/JPH04242028A/en
Publication of JPH04242028A publication Critical patent/JPH04242028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

PURPOSE:To enhance accuracy of measurement even in the case where a lead wire can not be drawn outside from a make and break contact built in a metallic container filled with an insulating gas by directly measuring make and break time of the contact with ease and safety. CONSTITUTION:An end of a circuit breaker CB1 being a measured object contact point of a gas insulating switching device 1 is grounded via a grounding wire 18, a through type current transformer 21 is interposed in the grounding wire 18, and a high frequency exciting power source 22 is connected to a primary side of the transformer 21 via a resistor R1. A primary side of a dummy current transformer 23 is also connected in parallel to an output side of the exciting power source 22 via a resistor R2 while a variable capacitor 24 is connected to a secondary side of the transformer 23. Voltages across both ends of the resistors R1, R2 are input to a wave detecting amplifier 26 via a differential amplifier 25, and an output end of the amplifier 26 is built in a discharge circuit of a discharge recording device 27. While a disconnecting switch DS11 is opened, a disconnecting switch DS12 is closed, a grounding device ES1 is closed, and an opening state of the circuit breaker CB1 is set at a normal state prior to the measurement, make and break time of the breaker CB1 is measured on the basis of a capacity change between a conductor 6 and the earth.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、開閉器の動作時間測定
装置に係り、特に、ガス絶縁開閉装置(GIS)におけ
る遮断器などの開閉器の接点の開閉に要する動作時間を
測定する開閉器の接点動作時間測定装置に関する。
[Industrial Field of Application] The present invention relates to a switch operating time measuring device, and more particularly to a switch that measures the operating time required to open and close the contacts of a switch such as a circuit breaker in a gas insulated switchgear (GIS). This invention relates to a contact operating time measuring device.

【0003】0003

【従来の技術】従来、ガス絶縁方式を採用していない遮
断器などの開閉器においては、その開閉時間を測定する
装置として電磁オシログラフなどが好適である。
2. Description of the Related Art Conventionally, an electromagnetic oscillograph or the like is suitable as a device for measuring the opening/closing time of a switch such as a circuit breaker which does not employ a gas insulation system.

【0004】これに対し、ガス絶縁開閉装置中の開閉器
(遮断器など)のように、接地された金属製容器の内部
において開閉接点が絶縁ガスのSF6 ガスにより絶縁
された構造のものでは、接地側のみが接地装置を介して
リード線を接続できるだけであり、接点自体から測定用
のリード線を引き出すことができないため、測定回路を
形成できず、直接測定は不可能であった。
On the other hand, in a switch (such as a circuit breaker) in a gas-insulated switchgear, which has a structure in which the switching contacts are insulated by SF6 gas inside a grounded metal container, A lead wire can only be connected to the ground side through a grounding device, and a lead wire for measurement cannot be drawn out from the contact itself, so a measurement circuit cannot be formed and direct measurement is impossible.

【0005】そこで、係るガス絶縁の開閉器の動作時間
を知るには、従来は不本意ながら操作機構と機械的に連
動した補助開閉器の動作時間を測定し、この測定時間か
ら開閉器の動作時間を推定していた。
Therefore, in order to know the operating time of such a gas-insulated switch, conventionally the operating time of an auxiliary switch that is mechanically linked with the operating mechanism is measured, and the operating time of the switch is determined from this measured time. I was estimating the time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た測定手法は補助開閉器の動作時間から推定するもので
あったため、その測定推定値の誤差範囲を大きくみなけ
ればならず、測定値の信頼性が低いという問題があった
。さらにその場合、3相不揃の開閉であっても、その不
揃いの時間を個別に測定できなかった。
[Problems to be Solved by the Invention] However, since the above-mentioned measurement method is estimated from the operation time of the auxiliary switch, the error range of the estimated measurement value must be considered large, and the reliability of the measured value is There was a problem that the amount was low. Furthermore, in that case, even if the three phases were opened and closed in an irregular manner, it was not possible to individually measure the time of the irregularity.

【0007】本発明は、このような状況に鑑みてなされ
たもので、ガス絶縁された開閉器の開閉接点からリード
線を引き出せない場合でも、開閉器の開閉時間を容易に
直接測定でき、その測定精度の向上を図ることを目的と
する。 〔発明の構成〕
The present invention has been made in view of the above situation, and even when the lead wire cannot be drawn out from the switching contact of a gas-insulated switch, the switching time of the switch can be easily and directly measured, and the switching time of the switch can be easily and directly measured. The purpose is to improve measurement accuracy. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明は、金属製容器内に絶縁ガスの雰囲気中で内蔵
される開閉接点の一端側を接地線を介して接地せしめる
開閉器と、前記接地線に介在される貫通型電流変成器と
、前記開閉接点の開閉に伴う前記電流変成器の励磁電流
の変動を経時的に検出して記録する検出記録手段とを有
することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a switch that connects one end of a switching contact built in a metal container in an insulating gas atmosphere to ground via a grounding wire. , comprising a feed-through current transformer interposed in the grounding wire, and a detection and recording means for detecting and recording over time fluctuations in the excitation current of the current transformer as the switching contacts open and close. do.

【0009】[0009]

【作用】開閉器の接点が開または閉動作すると、貫通型
電流変成器の励磁電流が変動する。
[Operation] When the contacts of the switch open or close, the excitation current of the through-type current transformer fluctuates.

【0010】この励磁電流の変動は検出記録手段により
経時的に検出され、かつ記録される。
[0010] Fluctuations in the excitation current are detected and recorded over time by the detection and recording means.

【0011】したがって、この励磁電流の変動時間を検
出記録手段から読み込むことにより、従来著しく困難で
あった金属製容器内に内蔵の開閉接点の開閉動作時間を
容易かつ安全に測定することができる。
Therefore, by reading the fluctuation time of the excitation current from the detection and recording means, it is possible to easily and safely measure the opening/closing operation time of the switching contact built into the metal container, which has been extremely difficult in the past.

【0012】0012

【実施例】以下、本発明の一実施例を図1乃至図3に基
づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

【0013】図1において、符号1は供試用開閉器とし
ての遮断器CB1を含むガス絶縁開閉装置(GIS)を
示し、符号2は遮断器CB1の接点の開閉時間を測定す
る動作時間測定装置を示す。
In FIG. 1, reference numeral 1 indicates a gas insulated switchgear (GIS) including a circuit breaker CB1 as a test switch, and reference numeral 2 indicates an operating time measuring device for measuring the switching time of the contacts of the circuit breaker CB1. show.

【0014】この内、ガス絶縁開閉装置1は、図2に示
された単線結線図の内のNO.1回路(細線の部分)を
具体的に示す(但し、図を見易くするため、A、B、C
の3相の内のC相のみを単独に示す)ものである。図2
では、電源に接続された母線5から、負荷側に至る少な
くとも2系統の回路(回路NO.1、2)が各々分岐し
ている。回路NO.1の導体6には母線5側から断路器
DS11、遮断器CB1、断路器DS12が順に接続さ
れ、断路器DS12の負荷側の位置で導体6が接地装置
ES1を介してアースに接続されると共に、電圧変成器
PT1に接続されている。同様に、回路NO.2の導体
7には母線5側から断路器DS21、遮断器CB2、断
路器DS22が順に接続され、断路器DS22の負荷側
の位置で導体7が接地装置ES2を介してアースに接続
されると共に、電圧変成器PT2に接続されている。本
実施例では、回路NO.1の遮断器CB1を供試器に選
定し、その開閉接点の開閉時間を測定しようとするもの
で、断路器DS11を開放(オフ)、断路器DS12を
閉鎖(オン)、及び接地装置ES1を閉鎖(オン)にし
て係る測定を行う。このため、図2において回路NO.
2を含む太線部分が活線状態にある。
Of these, the gas insulated switchgear 1 is shown in the single line diagram shown in FIG. 1 circuit (thin line part) is shown in detail (However, to make the diagram easier to read, A, B, C
Of the three phases, only the C phase is shown separately). Figure 2
In this case, at least two circuits (circuit Nos. 1 and 2) are branched from the bus 5 connected to the power source to the load side. Circuit No. A disconnector DS11, a circuit breaker CB1, and a disconnector DS12 are sequentially connected to the conductor 6 of the bus bar 5 from the bus 5 side, and the conductor 6 is connected to the ground via the grounding device ES1 at the load side position of the disconnector DS12. , connected to voltage transformer PT1. Similarly, circuit no. A disconnector DS21, a circuit breaker CB2, and a disconnector DS22 are connected to the conductor 7 of No. 2 in this order from the bus bar 5 side, and at the load side position of the disconnector DS22, the conductor 7 is connected to the ground via a grounding device ES2. , connected to voltage transformer PT2. In this embodiment, circuit No. The circuit breaker CB1 of No. 1 is selected as the test device, and the opening/closing time of its switching contacts is to be measured. Carry out such measurements with the device closed (on). Therefore, in FIG. 2, circuit No.
The thick line portion including 2 is in the live line state.

【0015】図1に戻って、ガス絶縁開閉装置1は、接
地され且つSF6 ガスが封入された金属容器10と、
この容器10の中心位置において該容器10の長手方向
に沿って絶縁体から成るスペーサ11、…、17により
支持された導体6C(他のA相、B相の導体も同様)と
を有している。導体6Cには、上述した断路器DS11
、遮断器CB1、断路器DS12が電源側から負荷側に
向かって順に挿入されている。具体的には、電源側から
2番目と3番面のスペーサ12、13間に断路器DS1
1が設けられ、3番目と4番目のスペーサ13、14間
に遮断器CB1が設けられ、4番目と5番目のスペーサ
14、15間に断路器DS12が各々設けられている。 さらに、5番目と6番目のスペーサ15、16間の導体
6Cが分岐して電圧変成器PT1に至り、6番目と7番
目のスペーサ16、17間の導体6Cが分岐して接地装
置ES1に至り、接地装置ES1から延びる接地線18
が金属容器10外部に引き出されてアースに至る。
Returning to FIG. 1, the gas insulated switchgear 1 includes a metal container 10 that is grounded and filled with SF6 gas;
It has a conductor 6C (the other A-phase and B-phase conductors are similarly supported) supported by spacers 11, ..., 17 made of insulators along the longitudinal direction of the container 10 at the center position of the container 10. There is. The above-mentioned disconnector DS11 is connected to the conductor 6C.
, circuit breaker CB1, and disconnector DS12 are inserted in order from the power supply side toward the load side. Specifically, a disconnector DS1 is installed between the spacers 12 and 13 on the second and third sides from the power supply side.
1, a circuit breaker CB1 is provided between the third and fourth spacers 13 and 14, and a disconnector DS12 is provided between the fourth and fifth spacers 14 and 15, respectively. Furthermore, the conductor 6C between the fifth and sixth spacers 15 and 16 branches to the voltage transformer PT1, and the conductor 6C between the sixth and seventh spacers 16 and 17 branches to the grounding device ES1. , a grounding wire 18 extending from the grounding device ES1.
is drawn out of the metal container 10 and connected to the ground.

【0016】このため、導体6Cと金属容器10との間
には少なくとも図示の如く、集中定数で代表される静電
容量(浮遊容量)C1〜C6が存在している。つまり、
2番目及び3番目のスペーサ12、13間の導体6Cと
容器10との間に静電容量C1が、3番目のスペーサ1
3及び遮断器CB1間のそこに静電容量C2が、遮断器
CB1及び4番目のスペーサ14間のそこに静電容量C
3が、4番目及び5番目のスペーサ14、15間のそこ
に静電容量C4が、5番目及び6番目のスペーサ15、
16間のそこに静電容量C5が、並びに、6番目及び7
番目のスペーサ16、17間のそこに静電容量6Cが在
る。
Therefore, at least as shown in the figure, capacitances (stray capacitances) C1 to C6, represented by lumped constants, exist between the conductor 6C and the metal container 10. In other words,
A capacitance C1 exists between the conductor 6C between the second and third spacers 12 and 13 and the container 10,
There is a capacitance C2 between the circuit breaker CB1 and the fourth spacer CB1, and a capacitance C2 there between the circuit breaker CB1 and the fourth spacer 14.
3, there is a capacitance C4 between the fourth and fifth spacers 14 and 15, and the fifth and sixth spacers 15,
There is a capacitance C5 between 16 and 6th and 7th
There is a capacitance 6C between the th spacers 16 and 17.

【0017】なお、図1において符号19は遮断器CB
1の操作機構である。
Note that in FIG. 1, reference numeral 19 indicates circuit breaker CB.
This is the first operating mechanism.

【0018】一方、動作時間測定装置2は、前記接地線
18を2次回路とする、非接触検出器としての電流変成
器21と、この電流変成器21の一次側に設けられた励
振電源22と、この励振電源22の負荷側に電流変成器
21と並列に装備された、非接触ダミー検出器としての
ダミー電流変成器23と、このダミー電流変成器23の
2次側に設けられた可変コンデンサー24とを有する。 さらに、動作時間測定装置2は、励振電源22の負荷、
即ち電流変成器21、23の1次側に各々介挿された、
電圧・電流変換器としての検出抵抗R1、R2と、この
抵抗R1、R2の各両端を検出端としてその出力側に順
に設けられた差動増幅器25、検波増幅器26、及び記
録手段としての放電記録器27とを有している。
On the other hand, the operating time measuring device 2 includes a current transformer 21 as a non-contact detector, which uses the grounding wire 18 as a secondary circuit, and an excitation power source 22 provided on the primary side of the current transformer 21. A dummy current transformer 23 as a non-contact dummy detector is installed on the load side of this excitation power source 22 in parallel with the current transformer 21, and a variable current transformer 23 is installed on the secondary side of this dummy current transformer 23. It has a capacitor 24. Furthermore, the operating time measuring device 2 includes a load of the excitation power source 22,
That is, each of the transformers 21 and 23 is inserted into the primary side of the current transformers 21 and 23.
Detection resistors R1 and R2 as voltage/current converters, a differential amplifier 25 and a detection amplifier 26 provided in order on the output side with both ends of the resistors R1 and R2 as detection terminals, and a discharge recorder as a recording means. It has a container 27.

【0019】ここで、抵抗R1、電流変成器21及び励
振電源22が本発明の電圧検出手段を構成し、抵抗R2
、ダミー電流変成器23、励振電源22、及び可変コン
デンサー24が本発明の基準電圧検出手段を構成し、さ
らに、差動増幅器25及び検波増幅器26が比較手段を
構成している。
Here, the resistor R1, the current transformer 21, and the excitation power source 22 constitute the voltage detection means of the present invention, and the resistor R2
, the dummy current transformer 23, the excitation power source 22, and the variable capacitor 24 constitute the reference voltage detection means of the present invention, and the differential amplifier 25 and the detection amplifier 26 constitute the comparison means.

【0020】この内、電流変成器21及びダミー電流変
成器23は本実施例では共に分割可能な貫通形で成り、
電流変成器21は接地線18を貫通・交差させて非接触
の2次回路とし、ダミー電流変成器23は可変コンデン
サー24による閉回路を貫通・交差させて2次回路とし
ている。また、励振電源22は、高周波電源30と、こ
の電源30の出力側に順次設けた増幅器31、分岐2出
力の出力トランス32とを有している。出力トランス3
2の一方の出力端は検出抵抗R1を介して前記電流変成
器21の1次側巻線に接続されると共に、他方の出力端
はもう一方の検出抵抗R2を介してダミー電流変成器2
3の1次側巻線に接続されている。
Of these, the current transformer 21 and the dummy current transformer 23 are both divisible through type in this embodiment,
The current transformer 21 penetrates and crosses the grounding wire 18 to form a non-contact secondary circuit, and the dummy current transformer 23 penetrates and crosses the closed circuit formed by the variable capacitor 24 to form a secondary circuit. Further, the excitation power source 22 includes a high frequency power source 30, an amplifier 31 sequentially provided on the output side of the power source 30, and an output transformer 32 with two branched outputs. Output transformer 3
One output terminal of the dummy current transformer 2 is connected to the primary winding of the current transformer 21 via the detection resistor R1, and the other output terminal is connected to the dummy current transformer 2 via the other detection resistor R2.
It is connected to the primary winding of No.3.

【0021】上記一方の検出抵抗R1の両端は差動増幅
器25の一方の入力端に接続されると共に、その接続回
路中に、断路器DS11の電源側からの商用周波の誘導
電圧Eを消去するためのコンデンサーC11を介在させ
ている。他方の検出抵抗R2の両端も差動増幅器25の
他方の入力端に接続されると共に、その接続回路中に等
価回路とするためのコンデンサーC12を介在させてい
る。
Both ends of the one detection resistor R1 are connected to one input terminal of the differential amplifier 25, and the commercial frequency induced voltage E from the power supply side of the disconnector DS11 is eliminated in the connected circuit. A capacitor C11 is interposed for this purpose. Both ends of the other detection resistor R2 are also connected to the other input terminal of the differential amplifier 25, and a capacitor C12 is interposed in the connection circuit to form an equivalent circuit.

【0022】さらに、差動増幅器25は両抵抗R1、R
2の検出信号相互の差を演算し増幅するようになってい
る。検波増幅器26は差動増幅器25からの出力信号を
直流成分に変換する一方で、自己の出力インピーダンス
を該増幅器26への入力電圧の大小に反比例して変化さ
せるようになっている。
Furthermore, the differential amplifier 25 has both resistors R1 and R
The difference between the two detection signals is calculated and amplified. The detection amplifier 26 converts the output signal from the differential amplifier 25 into a DC component, while changing its own output impedance in inverse proportion to the magnitude of the input voltage to the amplifier 26.

【0023】検波増幅器26の出力端は次段の放電記録
器27の回路に組み込まれる。つまり、放電記録器27
は、図示しないモータに拠って回転電極34を回転させ
、記録紙35を図中矢印X方向に走行させる一方、直流
電源36のプラス側から回転電極34、放電記録紙35
、放電電極37(具体的には図示のように3相A、B、
C毎に装備されている)、及び前記検波増幅器26の出
力端を経由して直流電源36のマイナス側に戻る閉回路
が構成されている。そこで、放電電極37は検波増幅器
26の出力インピーダンスが所定値まで小さくなったと
きに記録紙35上面で放電し、その放電は記録紙35に
黒い放電痕跡となって残る構成になっている。
The output terminal of the detection amplifier 26 is incorporated into the circuit of the discharge recorder 27 at the next stage. In other words, the discharge recorder 27
The rotary electrode 34 is rotated by a motor (not shown), and the recording paper 35 is run in the direction of the arrow X in the figure, while the rotary electrode 34 and the discharge recording paper 35 are connected from the positive side of the DC power supply 36.
, discharge electrode 37 (specifically, three phases A, B,
A closed circuit is configured which returns to the negative side of the DC power supply 36 via the output terminal of the detection amplifier 26. Therefore, the discharge electrode 37 is configured to discharge on the upper surface of the recording paper 35 when the output impedance of the detection amplifier 26 becomes small to a predetermined value, and the discharge remains as a black discharge trace on the recording paper 35.

【0024】なお、上述した説明はC相についてであっ
たが、A相及びB相についても同一の構成になっており
、放電記録器27のA相及びB相に関する放電電極37
、37にも図示しない検波増幅器の出力回路が接続され
ている。
Although the above explanation has been made regarding the C phase, the A phase and B phase also have the same configuration, and the discharge electrode 37 for the A phase and B phase of the discharge recorder 27
, 37 are also connected to an output circuit of a detection amplifier (not shown).

【0025】次に、本実施例の動作を図3を用いて説明
する。
Next, the operation of this embodiment will be explained using FIG.

【0026】いま、図2に示すように断路器DS11が
開放、断路器DS12が閉鎖、接地装置ES1が閉鎖(
これにより遮断器CB1の片方の接点がアースされる)
であるとする。この状態で遮断器CB1の被測定接点が
開放の場合を測定前の定常状態とし、高周波電源30を
オンにすると、該電源30の高周波出力信号が増幅器3
1、出力トランス32を介して電流変成器21及びダミ
ー電流変成器23の1次回路が励振される。この定常状
態では、電流変成器21の2次回路、即ち導体6Cには
前述した静電容量(導体6C及びアース間の浮遊容量)
C3、C4、C5、C6が並列に接続され、その合成容
量「C3+C4+C5+C6」を負荷とする等価回路を
形成しているから、電流変成器21の1次回路にはその
合成容量に対応した励磁電流が流れ、この励磁電流に拠
って検出抵抗R1の両端に当該電流の大きさに比例した
電圧降下EA=E1が生じる。
Now, as shown in FIG. 2, the disconnector DS11 is open, the disconnector DS12 is closed, and the earthing device ES1 is closed (
This grounds one contact of circuit breaker CB1)
Suppose that In this state, when the contact to be measured of the circuit breaker CB1 is open, it is defined as a steady state before measurement, and when the high frequency power supply 30 is turned on, the high frequency output signal of the power supply 30 is transmitted to the amplifier 3.
1. The primary circuits of the current transformer 21 and the dummy current transformer 23 are excited via the output transformer 32. In this steady state, the secondary circuit of the current transformer 21, that is, the conductor 6C has the above-mentioned capacitance (stray capacitance between the conductor 6C and the ground).
Since C3, C4, C5, and C6 are connected in parallel to form an equivalent circuit whose load is their combined capacitance "C3+C4+C5+C6," the primary circuit of the current transformer 21 receives an exciting current corresponding to the combined capacitance. flows, and this exciting current causes a voltage drop EA=E1 across the detection resistor R1 proportional to the magnitude of the current.

【0027】これと同様にダミー電流変成器23の1次
回路にも可変コンデンサー24の容量に応じた励磁電流
が流れ、この励磁電流に拠って検出抵抗R2の両端に当
該電流の大きさに比例した電圧降下EBが生じる。そこ
で、いま、可変コンデンサー24の容量を調節してEA
=EBとなるように設定する。この設定は例えば放電記
録器27の記録状態を見ながら行う。また、予め定常状
態での合成静電容量の値を測定しておいて、可変コンデ
ンサー24をその値に設定しておくとしてもよい。
Similarly, an excitation current corresponding to the capacity of the variable capacitor 24 flows in the primary circuit of the dummy current transformer 23, and this excitation current causes a voltage across the detection resistor R2 to flow in proportion to the magnitude of the current. A voltage drop EB occurs. Therefore, we now adjust the capacitance of the variable capacitor 24 to
= EB. This setting is performed while checking the recording state of the discharge recorder 27, for example. Alternatively, the value of the combined capacitance in a steady state may be measured in advance and the variable capacitor 24 may be set to that value.

【0028】このため、差動増幅器25の2入力の高周
波電圧EA、EBは共に等しいから、その差動増幅器2
5の出力は殆ど零であり、検波増幅器26の直流出力分
も殆ど零となる。しかも検波増幅器26の入力電圧は殆
ど零であることにより、該検波増幅器26の出力インピ
ーダンスが著しく大きく、放電記録器27では放電が生
じない。つまり、遮断器CB1が開放(オフ)の場合は
、放電記録紙35上に図3の時刻t0以前の状態で示す
如く放電痕跡による線状の記録は残らない。
Therefore, since the two input high frequency voltages EA and EB of the differential amplifier 25 are equal, the differential amplifier 2
The output of the detection amplifier 26 is almost zero, and the DC output of the detection amplifier 26 is also almost zero. Moreover, since the input voltage of the detection amplifier 26 is almost zero, the output impedance of the detection amplifier 26 is extremely large, and no discharge occurs in the discharge recorder 27. That is, when the circuit breaker CB1 is open (off), no linear record of discharge traces remains on the discharge recording paper 35 as shown in the state before time t0 in FIG. 3.

【0029】次いで、遮断器CB1の接点を閉鎖させた
とする。これにより、電流変成器21の2次回路に接続
される静電容量は、前述したものにC1、C2が新たに
増えて、合成値で「C1+C2+C3+C4+C5+C
6」になる。このため、電流変成器21の1次回路にも
、増加した静電容量に対応した励磁電流が流れ、抵抗R
1両端の電圧降下EAもEA=E2に変化する。これに
対して、ダミー電流変成器23の可変コンデンサー24
の容量は変わっていないから、検出抵抗R2両端の電圧
降下EBはEB=E1のままである。
Next, assume that the contacts of the circuit breaker CB1 are closed. As a result, the capacitance connected to the secondary circuit of the current transformer 21 is newly increased by C1 and C2 in addition to the one described above, and the combined value is "C1 + C2 + C3 + C4 + C5 + C
6". Therefore, an exciting current corresponding to the increased capacitance also flows in the primary circuit of the current transformer 21, and the resistance R
The voltage drop EA across 1 also changes to EA=E2. On the other hand, the variable capacitor 24 of the dummy current transformer 23
Since the capacitance of is unchanged, the voltage drop EB across the detection resistor R2 remains EB=E1.

【0030】そこで、差動増幅器25の2入力に差が生
じ、これに対応して検波増幅器26の入力電圧が大きく
なるから、該検波増幅器26の直流出力も大きく且つそ
の出力インピーダンスが小さくなる。このため、放電記
録器27では検波増幅器26の出力インピーダンスが低
下した時点から放電が開始され、放電記録紙35上には
図3の時刻t1以降の状態で示すように各相A、B、C
毎に線状の放電痕跡による記録が残る。なお、図3にお
いて、Tは例えば0.01秒毎に自動的に記録されるタ
イミングパルス、A,B,Cは各相の接点閉鎖状態を個
別に示す放電痕跡、Sは遮断器CB1の動作コイルの励
磁点、即ち開放状態から閉鎖状態へ切り換えた時刻から
の時間軸(自動的に記録される放電痕跡)である。
Therefore, a difference occurs between the two inputs of the differential amplifier 25, and the input voltage of the detection amplifier 26 increases accordingly, so that the DC output of the detection amplifier 26 also increases and its output impedance decreases. Therefore, in the discharge recorder 27, the discharge starts from the moment when the output impedance of the detection amplifier 26 decreases, and the discharge record paper 35 displays each phase A, B, and C as shown in the state after time t1 in FIG.
A record of linear discharge remains in each case. In FIG. 3, T is a timing pulse that is automatically recorded every 0.01 seconds, A, B, and C are discharge traces that individually indicate the closed state of the contacts of each phase, and S is the operation of circuit breaker CB1. This is the time axis (automatically recorded discharge trace) from the excitation point of the coil, that is, the time when the open state was switched to the closed state.

【0031】つまり、図3の例で言えば、時刻t0で遮
断器CB1が開放状態から閉鎖状態に切り換えられ、時
刻t1で各相の閉鎖が完了した(実際には各相毎にばら
つきを生じることがある)ことが示されるから、その開
閉に要する動作時間は「t1−t0」ということになる
In other words, in the example of FIG. 3, the circuit breaker CB1 is switched from the open state to the closed state at time t0, and the closing of each phase is completed at time t1 (actually, there will be variations for each phase). Therefore, the operating time required for opening and closing is "t1-t0".

【0032】このように本実施例では、遮断器CB1が
開放状態か閉鎖状態かを判別する方法として、接地線1
8に非接触且つ磁気的に接続した検知部としての電流変
成器21の検知に係る、導体6及びアース間の静電容量
の変化を検出して行うようにしている。このため、遮断
器CB1からリード線を引き出す必要がなく、その開閉
接点の開閉時間を直接に測定することができ、従来の間
接測定に比べて格段に測定精度が向上し、その信頼性が
増す。また、本実施例では、活線状態にある回路からの
商用周波数の誘導電圧は差動増幅器25の前に介挿した
コンデンサーC11により消去されるから、その商用周
波信号がノイズにならないと共に、ガス絶縁開閉装置の
回路全体を停止させなくても部分回路毎に測定でき、保
守の際に便利である。一方、本実施例の放電記録器27
による記録は図3に示したように各相A、B、Cが並列
に表示されるから、各相毎の動作時間の不揃いも一目瞭
然に判読できる。
As described above, in this embodiment, as a method for determining whether the circuit breaker CB1 is in the open state or the closed state, the grounding wire 1
The current transformer 21, which serves as a detection unit and is magnetically connected to the conductor 6 in a non-contact manner, detects a change in capacitance between the conductor 6 and the ground. Therefore, there is no need to pull out the lead wire from circuit breaker CB1, and the opening/closing time of its switching contacts can be directly measured, significantly improving measurement accuracy and reliability compared to conventional indirect measurement. . In addition, in this embodiment, the commercial frequency induced voltage from the circuit in the live state is canceled by the capacitor C11 inserted before the differential amplifier 25, so that the commercial frequency signal does not become noise, and the commercial frequency signal does not become noise. It is convenient for maintenance because it can measure each partial circuit without stopping the entire circuit of the insulated switchgear. On the other hand, the discharge recorder 27 of this embodiment
In the recording, each phase A, B, and C is displayed in parallel as shown in FIG. 3, so that irregularities in the operating times of each phase can be clearly read at a glance.

【0033】なお、本発明の電圧検出手段の検知部は、
上記実施例では接地線18からの取り外しを考慮して、
分割可能な貫通形の電流変成器を用いるとしたが、必ず
しもそのような構成に限定される必要は無く、常時、接
地線18に装着しておく場合は非分割形でもよい。また
、本発明の電圧検出手段、基準電圧検出手段、比較手段
、及び記録手段の構成も前述したものに限定されるもの
ではない。さらに、本発明の測定対象である開閉器は遮
断器に限る必要はなく、接点開閉の構造を有する他の開
閉器、例えば断路器であってもよい。さらにまた、前記
実施例では測定前の定常状態を開閉器の開放状態として
、その開放状態から閉鎖する場合を測定するとしたが、
その順序は反対(定常状態が閉鎖状態)であってもよい
Note that the detection section of the voltage detection means of the present invention is as follows:
In the above embodiment, taking into consideration the removal from the grounding wire 18,
Although a splittable through-type current transformer is used, it is not necessarily limited to such a configuration, and a non-dividable type may be used if it is always attached to the grounding wire 18. Furthermore, the configurations of the voltage detection means, reference voltage detection means, comparison means, and recording means of the present invention are not limited to those described above. Further, the switch to be measured in the present invention is not limited to a circuit breaker, and may be another switch having a contact opening/closing structure, for example, a disconnector. Furthermore, in the above embodiment, the steady state before the measurement is assumed to be the open state of the switch, and the measurement is performed when the switch is closed from the open state.
The order may be reversed (steady state being closed state).

【0034】[0034]

【発明の効果】以上説明したように、本発明では、ガス
絶縁開閉装置内の遮断器などの開閉器について、その開
閉接点の片側に導体を介して接続される既存の接地線に
貫通型電流変成器を介在し、開閉接点の開閉に伴って変
動する電流変成器の励磁電流の変動を、検出記録手段に
より経時的に検出し記録するので、開閉接点からリード
線を引き出すことができない場合でも、安全且つ容易に
開閉接点の開閉時間を容易かつ安全に直接測定でき、従
来のように推定値に頼る場合に比べて高精度な測定値を
得ることができ、その結果、測定の信頼性が格段に向上
するという効果が得られる。
As explained above, in the present invention, for a switch such as a circuit breaker in a gas-insulated switchgear, a through-type current can be applied to an existing grounding wire connected to one side of the switching contact via a conductor. The detection and recording means detects and records over time fluctuations in the excitation current of the current transformer, which changes with the opening and closing of the switching contacts, through the transformer, so even when it is not possible to pull out the lead wire from the switching contacts. , it is possible to directly measure the opening and closing times of switching contacts easily and safely, and it is possible to obtain more accurate measurement values than when relying on estimated values as in the past, and as a result, the reliability of the measurement is improved. This results in a significant improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の一実施例を示す一部ブロック化
及び単線化した構成図。
FIG. 1 is a partial block and single line configuration diagram showing an embodiment of the present invention.

【図2】図2は図1のガス絶縁開閉装置の位置付けを示
す全体回路図。
FIG. 2 is an overall circuit diagram showing the positioning of the gas insulated switchgear shown in FIG. 1;

【図3】図3は放電記録器に係る測定例を示すタイミン
グチャート(放電記録オシログラム)。
FIG. 3 is a timing chart (discharge recording oscillogram) showing a measurement example related to a discharge recorder.

【符号の説明】[Explanation of symbols]

1  ガス絶縁開閉装置 2  開閉器の動作時間測定装置 6  導体 6C  導体 10  金属容器 18  接地線 21  電流変成器 22  励振電源 23  ダミー電流変成器 24  可変コンデンサー 25  差動増幅器 26  検波増幅器 27  放電記録器 C1〜C6  静電容量(浮遊容量) R1、R2  抵抗 CB1  遮断器 1 Gas insulated switchgear 2 Switch operating time measuring device 6 Conductor 6C conductor 10 Metal container 18 Ground wire 21 Current transformer 22 Excitation power supply 23 Dummy current transformer 24 Variable capacitor 25 Differential amplifier 26 Detection amplifier 27 Discharge recorder C1 to C6 Capacitance (stray capacitance) R1, R2 resistance CB1 Breaker

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  金属製容器内に絶縁ガスの雰囲気中で
内蔵される開閉接点の一端側を接地線を介して接地せし
める開閉器と、前記接地線に介在される貫通型電流変成
器と、前記開閉接点の開閉に伴う前記電流変成器の励磁
電流の変動を経時的に検出して記録する検出記録手段と
を有することを特徴とする開閉器の接点動作時間測定装
置。
1. A switch that grounds one end of a switching contact built in a metal container in an insulating gas atmosphere through a grounding wire, and a through-type current transformer interposed in the grounding wire. A contact operation time measuring device for a switch, comprising: a detection and recording means for detecting and recording over time fluctuations in the excitation current of the current transformer as the switching contacts open and close.
JP3003756A 1991-01-17 1991-01-17 Switch contact point acting time measuring device Pending JPH04242028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3003756A JPH04242028A (en) 1991-01-17 1991-01-17 Switch contact point acting time measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3003756A JPH04242028A (en) 1991-01-17 1991-01-17 Switch contact point acting time measuring device

Publications (1)

Publication Number Publication Date
JPH04242028A true JPH04242028A (en) 1992-08-28

Family

ID=11566029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3003756A Pending JPH04242028A (en) 1991-01-17 1991-01-17 Switch contact point acting time measuring device

Country Status (1)

Country Link
JP (1) JPH04242028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868187B2 (en) * 2000-05-12 2005-03-15 Fuji Photo Film Co., Ltd. Image transformation method and apparatus, and storage medium
KR100780264B1 (en) * 2006-07-14 2007-12-03 한빛이디에스(주) Gis cb operation timing difference measurment system using the capacitance of power cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868187B2 (en) * 2000-05-12 2005-03-15 Fuji Photo Film Co., Ltd. Image transformation method and apparatus, and storage medium
US7289678B2 (en) 2000-05-12 2007-10-30 Fujifilm Corporation Image transformation method and apparatus, and storage medium
KR100780264B1 (en) * 2006-07-14 2007-12-03 한빛이디에스(주) Gis cb operation timing difference measurment system using the capacitance of power cable

Similar Documents

Publication Publication Date Title
US7638999B2 (en) Protective relay device, system and methods for Rogowski coil sensors
EP1295133A1 (en) Capacitor coupled voltage transformers
US20020190705A1 (en) Current transformer based high voltage measurement method
KR102502715B1 (en) Apparatus for detecting voltage and current
Leibfried et al. On-line monitoring of transformers by means of the transfer function method
US4866393A (en) Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis
JP2002311061A (en) Processor for electric power
JPH04242028A (en) Switch contact point acting time measuring device
WO1999042845A1 (en) Method and apparatus for monitoring ac circuits
JP3146472B2 (en) Failure detection device for gas insulated electrical equipment
RU2028634C1 (en) Method of and device for insulation resistance measurement in alternating-current lines incorporating static converters
JPH043524Y2 (en)
JPS63186512A (en) Grounding device for compact switchgear
Kim et al. Studies on Non-contact Voltage Measurement in a Spacer of GISs
JPH0428065Y2 (en)
JPH0587837A (en) Transformer for optical application measuring equipment
JPH0650330B2 (en) Deterioration diagnosis method for zinc oxide type arrester
AU740932B2 (en) Method and apparatus for monitoring AC circuits
JPH06201755A (en) Partial discharge detecting device
Nishida et al. A new algorithm of digital protection for shunt reactors
Weber et al. Field Measurements of Partial Discharges in Potential Transformers
JP2697480B2 (en) Main circuit abnormality detection device of hermetic switchgear
JP2975716B2 (en) Operating time measurement device for power switchgear
Mercure Development of a novel measuring device: the dynamic current transducer
KR19980064732U (en) Voltage detection device of power switch