JPH04240817A - Optical element - Google Patents

Optical element

Info

Publication number
JPH04240817A
JPH04240817A JP761291A JP761291A JPH04240817A JP H04240817 A JPH04240817 A JP H04240817A JP 761291 A JP761291 A JP 761291A JP 761291 A JP761291 A JP 761291A JP H04240817 A JPH04240817 A JP H04240817A
Authority
JP
Japan
Prior art keywords
liquid crystal
spatial light
light modulator
crystal spatial
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP761291A
Other languages
Japanese (ja)
Inventor
Atsushi Amako
淳 尼子
Hirotsuna Miura
弘綱 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP761291A priority Critical patent/JPH04240817A/en
Priority to EP91105263A priority patent/EP0451681B1/en
Priority to DE69128103T priority patent/DE69128103T2/en
Publication of JPH04240817A publication Critical patent/JPH04240817A/en
Priority to US08/359,713 priority patent/US5497254A/en
Priority to US08/571,417 priority patent/US5682214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multifunction type variable focus lens having a real time characteristic. CONSTITUTION:A lens transmission function is recorded as a heteroamplitude distribution on a liquid crystal spatial light modulator 101 having plural picture elements. Namely, the transmission function of a spherical lens is recorded as a phase type Fresnel zone plate 103 on the liquid crystal spatial light modulator 101. The phase zone plate 103 is recorded by inputting a voltage signal so as to apply the phase corresponding to the spatial coordinates there to each of picture elements at this time. An incident laser beam 100 on the liquid crystal space optical modulator 101 is condensed to a point F1 on the optical axis by the effect of the phase type zone plate 103. The condensing position is moved from the point F1 to the point F2 by recording the phase type zone plates of different focal lengths by varying the information to be inputted to the liquid crystal spatial light modulator 101.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液晶空間光変調器を利
用した光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element using a liquid crystal spatial light modulator.

【0002】0002

【従来の技術】可変焦点機能を有する光学素子としては
、過去に、セラミック材料と透明電極を組み合わせたズ
ームレンズに関する報告がある。(1989年春季応用
物理学講演会予稿、1p−PB−17)。
2. Description of the Related Art As an optical element having a variable focus function, there have been reports in the past regarding a zoom lens that combines a ceramic material and a transparent electrode. (1989 Spring Applied Physics Lecture Proceedings, 1p-PB-17).

【0003】0003

【発明が解決しようとする課題】しかし、セラミック材
料を用いた従来の技術には、以下の問題点があった。
[Problems to be Solved by the Invention] However, conventional techniques using ceramic materials have the following problems.

【0004】(1)キロボルトオーダーの駆動電圧を必
要とする。
(1) A drive voltage on the order of kilovolts is required.

【0005】(2)画素電極の間隔が広いために、良好
な結像特性が得られない。
(2) Good imaging characteristics cannot be obtained because the distance between the pixel electrodes is wide.

【0006】本発明はこのような問題点を解決するもの
であって、その目的は、実時間性のある多機能型可変焦
点レンズを提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a multifunctional variable focus lens that can be used in real time.

【0007】[0007]

【課題を解決するための手段】本発明の第1の光学素子
は、複数画素を有する液晶空間光変調器へ、レンズ伝達
関数が複素振幅分布として記録されて成ることを特徴と
する。
A first optical element of the present invention is characterized in that a lens transfer function is recorded as a complex amplitude distribution in a liquid crystal spatial light modulator having a plurality of pixels.

【0008】本発明の第2の光学素子は、前記第1の光
学素子において、複数のレンズ伝達関数が互いに重なら
ないように記録されて成ることを特徴とする。
A second optical element of the present invention is characterized in that a plurality of lens transfer functions are recorded in the first optical element so as not to overlap with each other.

【0009】本発明の第3の光学素子は、前記第1の光
学素子において、複数のレンズ伝達関数が少なくとも一
部分が重なるように記録されて成ることを特徴とする。
A third optical element of the present invention is characterized in that a plurality of lens transfer functions are recorded in the first optical element so that at least a portion thereof overlaps with each other.

【0010】本発明の第4の光学素子は、前記第1ない
し第3の光学素子において、液晶空間光変調器が、TN
モードの液晶空間光変調器とECBモードの液晶空間変
調器がアフォーカル光学系で共役に接続されて成ること
を特徴とする。
[0010] A fourth optical element of the present invention is such that in the first to third optical elements, the liquid crystal spatial light modulator is a TN
A mode liquid crystal spatial light modulator and an ECB mode liquid crystal spatial light modulator are conjugately connected by an afocal optical system.

【0011】本発明の第5の光学素子は、前記第1ない
し第3の光学素子において、液晶空間光変調器が、EC
Bモードの液晶空間光変調器であることを特徴とする。
[0011] A fifth optical element of the present invention is such that in the first to third optical elements, the liquid crystal spatial light modulator is an EC
It is characterized by being a B-mode liquid crystal spatial light modulator.

【0012】0012

【実施例】以下では実施例にもとづき、本発明の内容に
ついて詳しく説明する。
[Examples] The contents of the present invention will be explained in detail below based on Examples.

【0013】(実施例1)図1(a)は、ECBモード
の液晶空間光変調器101へ記録された球面レンズであ
る。球面レンズの伝達関数を位相型フレネルゾーンプレ
ート103として記録した。表示エリア102には、3
20×220の画素が格子状に配列されている。液晶空
間光変調器101の光波変調特性を図4に示す。印加電
圧に対して、液晶空間光変調器を通過する位相は0〜2
πの間で連続的に変化する。他方、光波の振幅は一定の
ままで変わらない。この特性を利用して、画素毎にそこ
の空間座標に対応する位相を与えるように電圧信号を入
力することによって、位相型ゾーンプレートを記録する
。この位相型ゾーンプレートによるレーザビームの集光
の様子を図1(b)に示す。液晶空間光変調器101に
入射したレーザビーム100は、位相型ゾーンプレート
103の作用により、光軸上の点F1 へ集光する。液
晶空間光変調器101へ入力する情報を変えて焦点距離
の異なる位相型ゾーンプレートを記録することにより、
集光位置を点F1から点F2へ動かすことができる。こ
こでは、球面レンズを例にあげたがこの他にも、円筒レ
ンズや非球面レンズを位相型ゾーンプレートとして液晶
空間光変調器へ記録することができる。
(Embodiment 1) FIG. 1(a) shows a spherical lens recorded on an ECB mode liquid crystal spatial light modulator 101. The transfer function of the spherical lens was recorded as a phase type Fresnel zone plate 103. In the display area 102, 3
20×220 pixels are arranged in a grid. FIG. 4 shows the light wave modulation characteristics of the liquid crystal spatial light modulator 101. For the applied voltage, the phase passing through the liquid crystal spatial light modulator is between 0 and 2.
Continuously changes between π. On the other hand, the amplitude of the light wave remains constant and does not change. Utilizing this characteristic, a phase type zone plate is recorded by inputting a voltage signal to each pixel so as to give a phase corresponding to its spatial coordinates. FIG. 1(b) shows how a laser beam is focused by this phase type zone plate. The laser beam 100 incident on the liquid crystal spatial light modulator 101 is focused to a point F1 on the optical axis by the action of the phase zone plate 103. By changing the information input to the liquid crystal spatial light modulator 101 and recording phase zone plates with different focal lengths,
The light focusing position can be moved from point F1 to point F2. Here, a spherical lens is taken as an example, but in addition to this, a cylindrical lens or an aspherical lens can be used as a phase zone plate to be recorded on the liquid crystal spatial light modulator.

【0014】(実施例2)図2(a)は、ECBモード
の液晶空間光変調器101へ記録されたレンズアレー2
01である。個々のレンズは、焦点距離が同じ球面レン
ズであり、実施例1と同様に、位相型ゾーンプレートと
して記録されている。図2(a)のレンズアレー201
を用いると、一本のレーザビームから、強度の等しい1
2個のスポットを得ることができる。図2(b)は、焦
点距離が異なる4個の球面レンズを組み合わせて記録し
た複合レンズ202の例である。この複合レンズを用い
ると、液晶空間光変調器からながめて奥ゆきの異なる位
置に、4個のスポットを得ることができる。これらの実
施例では、複数のレンズ伝達関数が互いに重ならないよ
うに配置されているので、レンズ伝達関数を位相分布と
して記録することができる。なお、このように複数のレ
ンズを記録する場合でも、本実施例でとりあげた球面レ
ンズの他に、円筒レンズや非球面レンズを組み合わせて
記録することができる。
(Embodiment 2) FIG. 2(a) shows a lens array 2 recorded on an ECB mode liquid crystal spatial light modulator 101.
It is 01. The individual lenses are spherical lenses with the same focal length, and are recorded as phase type zone plates as in Example 1. Lens array 201 in FIG. 2(a)
When using , one laser beam with equal intensity
You can get 2 spots. FIG. 2(b) is an example of a compound lens 202 recorded by combining four spherical lenses with different focal lengths. When this compound lens is used, four spots can be obtained at different depth positions when viewed from the liquid crystal spatial light modulator. In these examples, since the plurality of lens transfer functions are arranged so as not to overlap with each other, the lens transfer functions can be recorded as a phase distribution. Note that even when recording with a plurality of lenses in this way, in addition to the spherical lens taken up in this embodiment, a cylindrical lens or an aspherical lens can be used in combination for recording.

【0015】(実施例3)図3(a)は、焦点距離が異
なるふたつの球面レンズが少なくとも一部が重なるよう
にして記録された、複合レンズである。レンズA301
の伝達関数をφA、レンズB302の伝達関数をφBと
すると、液晶空間光変調器へ記録されるべき複合レンズ
の伝達関数は次式で与えられる。 1/2{e×P(φA)e×P(φB)}この伝達関数
は、振幅が0から1まで連続的に変化する複素数である
。これを記録するためには、光波の振幅と位相の両方を
同時にかつ独立に制御することのできる液晶空間光変調
器が必要になる。このために、図3(c)に示すように
、位相変調が可能なECBモードの液晶空間光変調器3
03と振幅変調が可能なTNモードの液晶空間光変調器
306が1対の平板マイクロレンズアレーで共役に接続
された液晶空間光変調器を構成した。ECBモードおよ
びTNモードの液晶空間光変調器の光波変調特性をそれ
ぞれ図4、図5に示す。レーザビーム300は、まず、
TNモードの液晶空間光変調器303へ入射し、ここで
振幅変調をうける。液晶空間光変調器303の光学配置
は、2枚の偏光子が直交ニコルの関係にありかつ入射側
偏光子の透過軸方位が入射側液晶分子ディレクタと直交
するようにした。こうすることにより、図5に示すよう
に光波の位相変化を実用上問題のない程度に小さくする
ことができる。つぎに、レーザビームは、アフォーカル
に配置された1対の平板マイクロレンズアレー304、
305により、ECBモードの液晶空間光変調器306
へ導かれ、ここで位相変調をうける。これらの結果、1
本のレーザビームから、点F1と点F2の2箇所に集光
スポットが得られる。以上の様子を図3(b)に示す。 本実施例では2個の球面レンズから成る複合レンズをと
りあげたが、さらにレンズの数を増やして重ねて記録す
ることも可能である。
(Embodiment 3) FIG. 3(a) shows a compound lens in which two spherical lenses having different focal lengths are recorded so that at least a portion thereof overlaps. Lens A301
When the transfer function of the lens B302 is φA and the transfer function of the lens B302 is φB, the transfer function of the complex lens to be recorded on the liquid crystal spatial light modulator is given by the following equation. 1/2 {e×P(φA) e×P(φB)} This transfer function is a complex number whose amplitude continuously changes from 0 to 1. To record this, a liquid crystal spatial light modulator is required that can simultaneously and independently control both the amplitude and phase of the light wave. For this purpose, as shown in FIG. 3(c), an ECB mode liquid crystal spatial light modulator 3 capable of phase modulation is used.
03 and a TN mode liquid crystal spatial light modulator 306 capable of amplitude modulation constitute a liquid crystal spatial light modulator in which a pair of flat plate microlens arrays are conjugately connected. The light wave modulation characteristics of ECB mode and TN mode liquid crystal spatial light modulators are shown in FIGS. 4 and 5, respectively. The laser beam 300 first
The light enters a TN mode liquid crystal spatial light modulator 303, where it undergoes amplitude modulation. The optical arrangement of the liquid crystal spatial light modulator 303 is such that the two polarizers are in a crossed Nicol relationship and the transmission axis direction of the incident side polarizer is orthogonal to the incident side liquid crystal molecule director. By doing so, as shown in FIG. 5, the phase change of the light wave can be made small enough to cause no practical problems. Next, the laser beam is transmitted through a pair of flat microlens arrays 304 arranged afocal,
305, an ECB mode liquid crystal spatial light modulator 306
, where it undergoes phase modulation. These results, 1
From the laser beam of the book, focused spots are obtained at two points, point F1 and point F2. The above situation is shown in FIG. 3(b). In this embodiment, a compound lens consisting of two spherical lenses is used, but it is also possible to increase the number of lenses and perform overlapping recording.

【0016】[0016]

【発明の効果】本発明によれば、液晶空間光変調器を記
録媒体にして、可変焦点機能を有する任意のレンズ形態
を実現できる。さらに、記録すべきレンズ伝達関数を高
速で書き換えることにより、三次元空間におけるビーム
走査を行なうことも可能である。
According to the present invention, an arbitrary lens shape having a variable focus function can be realized by using a liquid crystal spatial light modulator as a recording medium. Furthermore, by rewriting the lens transfer function to be recorded at high speed, it is also possible to perform beam scanning in three-dimensional space.

【0017】本発明の多機能型可変焦点レンズは、光コ
ンピューティングにおける光接続素子として、あるいは
、汎用性のある三次元ビーム位置制御素子として使用で
きる。
The multifunctional variable focus lens of the present invention can be used as an optical connection element in optical computing or as a versatile three-dimensional beam position control element.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光学素子を示す平面図(a)と、その
可変焦点機能を示す説明図(b)である。
FIG. 1 is a plan view (a) showing an optical element of the present invention, and an explanatory view (b) showing its variable focus function.

【図2】本発明の第2の光学素子を示す平面図(a)と
、第3の光学素子を示す平面図(b)である。
FIG. 2 is a plan view (a) showing a second optical element of the present invention, and a plan view (b) showing a third optical element of the invention.

【図3】本発明の第4の光学素子を示す平面図(a)と
、その機能を示す説明図(b)と、液晶空間光変調器の
構成を示す断面図(c)である。
FIG. 3 is a plan view (a) showing a fourth optical element of the present invention, an explanatory view (b) showing its function, and a cross-sectional view (c) showing the configuration of a liquid crystal spatial light modulator.

【図4】本発明の光学素子の記録媒体であるECBモー
ドの液晶空間光変調器の光波変調特性を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the light wave modulation characteristics of an ECB mode liquid crystal spatial light modulator that is a recording medium of the optical element of the present invention.

【図5】本発明の光学素子の記録媒体であるTNモード
の液晶空間光変調器の光波変調特性を示す説明図である
FIG. 5 is an explanatory diagram showing the light wave modulation characteristics of a TN mode liquid crystal spatial light modulator which is a recording medium of the optical element of the present invention.

【符号の説明】[Explanation of symbols]

100  レーザ 101  液晶空間光変調器 102  表示領域 103  フレネルレンズ 201  レンズアレー 202  複合レンズ 300  レーザ 301  レンズA 302  レンズB 303  TNモード液晶空間光変調器304  マイ
クロレンズアレー 305  マイクロレンズアレー
100 Laser 101 Liquid crystal spatial light modulator 102 Display area 103 Fresnel lens 201 Lens array 202 Complex lens 300 Laser 301 Lens A 302 Lens B 303 TN mode liquid crystal spatial light modulator 304 Microlens array 305 Microlens array

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数画素を有する液晶空間光変調器へ、レ
ンズ伝達関数が複素振幅分布として記録されて成ること
を特徴とする光学素子。
1. An optical element characterized in that a lens transfer function is recorded as a complex amplitude distribution in a liquid crystal spatial light modulator having a plurality of pixels.
【請求項2】請求項1記載の光学素子において、複数の
レンズ伝達関数が互いに重ならないように記録されて成
ることを特徴とする光学素子。
2. The optical element according to claim 1, wherein a plurality of lens transfer functions are recorded so as not to overlap with each other.
【請求項3】請求項1記載の光学素子において、複数の
レンズ伝達関数が少なくとも一部分が重なるように記録
されて成ることを特徴とする光学素子。
3. The optical element according to claim 1, wherein a plurality of lens transfer functions are recorded so that at least a portion thereof overlaps.
【請求項4】前記液晶空間光変調器が、TN(ねじれた
ネマティック)モードの液晶空間光変調器と、ECB(
電界制御複屈折率)モードの液晶空間光変調器が、アフ
ォーカル光学系で共役に接続されて成ることを特徴とす
る請求項1ないし3に記載の光学素子。
4. The liquid crystal spatial light modulator includes a TN (twisted nematic) mode liquid crystal spatial light modulator and an ECB (twisted nematic) mode liquid crystal spatial light modulator.
4. The optical element according to claim 1, wherein the liquid crystal spatial light modulator of electric field controlled birefringence mode is conjugately connected with an afocal optical system.
【請求項5】前記液晶空間光変調器が、ECBモードの
液晶空間光変調器であることを特徴とする請求項1ない
し3に記載の光学素子。
5. The optical element according to claim 1, wherein the liquid crystal spatial light modulator is an ECB mode liquid crystal spatial light modulator.
JP761291A 1990-04-05 1991-01-25 Optical element Pending JPH04240817A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP761291A JPH04240817A (en) 1991-01-25 1991-01-25 Optical element
EP91105263A EP0451681B1 (en) 1990-04-05 1991-04-03 Optical apparatus
DE69128103T DE69128103T2 (en) 1990-04-05 1991-04-03 Optical device
US08/359,713 US5497254A (en) 1990-04-05 1994-12-20 Optical apparatus including a liquid crystal modulator
US08/571,417 US5682214A (en) 1990-04-05 1995-12-13 Optical apparatus for controlling the wavefront of a coherent light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP761291A JPH04240817A (en) 1991-01-25 1991-01-25 Optical element

Publications (1)

Publication Number Publication Date
JPH04240817A true JPH04240817A (en) 1992-08-28

Family

ID=11670636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP761291A Pending JPH04240817A (en) 1990-04-05 1991-01-25 Optical element

Country Status (1)

Country Link
JP (1) JPH04240817A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023329A1 (en) * 1993-03-31 1994-10-13 Citizen Watch Co., Ltd. Optical device
WO1998033607A1 (en) * 1997-01-30 1998-08-06 Kurita Water Industries Ltd. Method of decomposing dioxins
US6191881B1 (en) 1998-06-22 2001-02-20 Citizen Watch Co., Ltd. Variable focal length lens panel and fabricating the same
JP2001133918A (en) * 1999-11-09 2001-05-18 Nippon Hoso Kyokai <Nhk> Three-dimensional display device
US6512563B1 (en) 1999-09-27 2003-01-28 Citizen Watch Co., Ltd. Method for producing ultrahigh resolution optical device panel
FR2862389A1 (en) * 2003-11-17 2005-05-20 Centre Nat Etd Spatiales Fresnel lens for observation telescope, has modification unit that adjusts alteration of opaque and translucent zones formed on disk, and has liquid crystals whose orientation is adjusted via electrodes arranged on lens surface
WO2006080474A1 (en) * 2005-01-25 2006-08-03 Fujifilm Corporation Exposure system and device
WO2007007242A3 (en) * 2005-07-08 2007-03-29 Koninkl Philips Electronics Nv Device for controlling the shape and direction of light
JP2008529064A (en) * 2005-01-21 2008-07-31 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Electroactive adaptive lens with variable focal length
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023329A1 (en) * 1993-03-31 1994-10-13 Citizen Watch Co., Ltd. Optical device
US5815233A (en) * 1993-03-31 1998-09-29 Citizen Watch Co., Ltd. Optical device containing a liquid crystal element for changing optical characteristics of a lens element
WO1998033607A1 (en) * 1997-01-30 1998-08-06 Kurita Water Industries Ltd. Method of decomposing dioxins
US6191881B1 (en) 1998-06-22 2001-02-20 Citizen Watch Co., Ltd. Variable focal length lens panel and fabricating the same
US6512563B1 (en) 1999-09-27 2003-01-28 Citizen Watch Co., Ltd. Method for producing ultrahigh resolution optical device panel
JP2001133918A (en) * 1999-11-09 2001-05-18 Nippon Hoso Kyokai <Nhk> Three-dimensional display device
FR2862389A1 (en) * 2003-11-17 2005-05-20 Centre Nat Etd Spatiales Fresnel lens for observation telescope, has modification unit that adjusts alteration of opaque and translucent zones formed on disk, and has liquid crystals whose orientation is adjusted via electrodes arranged on lens surface
JP2008529064A (en) * 2005-01-21 2008-07-31 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Electroactive adaptive lens with variable focal length
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
WO2006080474A1 (en) * 2005-01-25 2006-08-03 Fujifilm Corporation Exposure system and device
WO2007007242A3 (en) * 2005-07-08 2007-03-29 Koninkl Philips Electronics Nv Device for controlling the shape and direction of light
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Similar Documents

Publication Publication Date Title
JPH04240817A (en) Optical element
US5231432A (en) Projector utilizing liquid crystal light-valve and color selection by diffraction
US5815233A (en) Optical device containing a liquid crystal element for changing optical characteristics of a lens element
JP3184409B2 (en) Three-dimensional imaging device, camera, and microscope
US4614408A (en) Electrooptic device for scanning and information modulating a plurality of light beams
JP4057597B2 (en) Optical element
US7218430B2 (en) Combinatorial optical processor
JPH10311975A (en) Polarization independent light phase modulator
JPS628770B2 (en)
JPH0317620A (en) Reading element for charge image information
JP3158016B2 (en) Variable focus lens element
JPH05119341A (en) Optical device
JPH0593895A (en) Focus variablke optical device
JP3947067B2 (en) Optical path shift element
JPH0566377A (en) Optical device
Klaus et al. Efficient liquid crystal wavefront modulator
JPH08211423A (en) Deflector and image shift type image pickup device formed by using the same
JPH0233126A (en) Holographic electro-optical device
JP2613701B2 (en) Spatial light modulator
JP2005024917A (en) Optical element with variable function and optical device using the same
JPS62194221A (en) Image shifting device
JPH0695162A (en) Optical modulation element
JPH03196111A (en) Method and device for inputting electromagnetic radiation information to electromagnetic radiation converter
WO1994027181A1 (en) Spatial light modulators
JPH0220823A (en) Method and device for optical space phase modulation