JPH04240115A - Production of oxide superconducting bulk material - Google Patents

Production of oxide superconducting bulk material

Info

Publication number
JPH04240115A
JPH04240115A JP3007034A JP703491A JPH04240115A JP H04240115 A JPH04240115 A JP H04240115A JP 3007034 A JP3007034 A JP 3007034A JP 703491 A JP703491 A JP 703491A JP H04240115 A JPH04240115 A JP H04240115A
Authority
JP
Japan
Prior art keywords
powder
phase
oxide
current density
basno3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3007034A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Miyamoto
宮本 勝良
Kiyoshi Sawano
沢野 清志
Masamoto Tanaka
将元 田中
Mitsuru Morita
充 森田
Keiichi Kimura
圭一 木村
Kiyonori Takebayashi
聖記 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3007034A priority Critical patent/JPH04240115A/en
Publication of JPH04240115A publication Critical patent/JPH04240115A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To use a fine powder of oxide having thermal stability to get high current density of yttrium based oxide superconducting bulk material as a pinning site except yttrium oxide. CONSTITUTION:A BaCu oxide powder which is previously prepared by melting, quenching and grinding is mixed with Y2O3 and <=10mum fine powder of oxide such as BaSnO3 which is also previously prepared and a molding body is made from the powder obtained as a starting materiel. The fine powder of such as BaSnO3 is uniformly dispersed with grain of Y2BaCuO5 into YBa2Cu3O7-x, superconducting material, by heat-treating the molding body. It is possible to get high current density in high magnetic field by introducing the powder of electric conducting material such as BaSnO3 to trap magnetic flux.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は高い臨界電流密度およ
び磁場特性を有するY−Ba−Cu−O系酸化物超電導
バルク材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for producing a Y--Ba--Cu--O based oxide superconducting bulk material having high critical current density and magnetic field characteristics.

【0002】酸化物超電導体は種々の形態のバルクに成
形され、超電導ベアリング、超電導磁石、磁気遮蔽など
に用いられる。
[0002] Oxide superconductors are formed into various bulk shapes and used in superconducting bearings, superconducting magnets, magnetic shields, and the like.

【0003】0003

【従来の技術】超電導の応用にとって、臨界温度が高い
というのは大きな利点となる。特に、液体窒素温度を超
えるYBaCuOやBi系、Tl系酸化物超電導体の発
見は、冷却コストの低下およびヘリウムと比べて資源的
に豊富な窒素の利用ができるなどの点で超電導の利用分
野を大きく拡大する可能性を与えている。
BACKGROUND OF THE INVENTION A high critical temperature is a great advantage for superconducting applications. In particular, the discovery of YBaCuO, Bi-based, and Tl-based oxide superconductors that exceed liquid nitrogen temperatures has opened up new fields of application for superconductors in terms of lower cooling costs and the ability to utilize nitrogen, which is more abundant as a resource than helium. It offers great potential for expansion.

【0004】しかし、超電導の応用にとっては、臨界温
度よりはむしろ使用温度における臨界電流の大きさが重
要となる。液体窒素での応用を目指すためには、この温
度での臨界電流密度の改善が必須となる。臨界電流密度
は材料固有の特性ではなく、材料の組織を変えることに
よって向上させることが可能となる。たとえば、溶融法
によって結晶配向させることで、超電導電流の妨げとな
る欠陥を除去でき、焼結法などで作製した材料に比べて
高い臨界電流密度が達成される。溶融法として、QMG
法(新日鐵),MPMG法(ISTEC)あるいはMT
G法(AT&T)などがある。QMG法は、溶融−急冷
、部分溶融−徐冷工程からなっている。MPMG法は、
溶融−急冷−粉砕−成型、部分溶融−徐冷工程からなっ
ている。また、MTG法は成型−溶融−徐冷工程からな
っている。
However, for superconducting applications, the magnitude of the critical current at the operating temperature is more important than the critical temperature. In order to aim for application in liquid nitrogen, it is essential to improve the critical current density at this temperature. The critical current density is not an inherent property of the material, but can be improved by changing the structure of the material. For example, crystal orientation using a melting method can remove defects that impede superconducting current, and achieve a higher critical current density than materials produced using sintering methods or the like. As a melting method, QMG
Law (Nippon Steel), MPMG Law (ISTEC) or MT
There are methods such as G method (AT&T). The QMG method consists of melting-quenching and partial melting-slow cooling steps. The MPMG method is
It consists of melting-quenching-pulverization-molding and partial melting-slow cooling steps. Moreover, the MTG method consists of a molding-melting-slow cooling process.

【0005】しかし、臨界電流密度そのものは実用レベ
ルよりもまだ低い(T=77K,He=数Tで104 
A/cm2 程度まで特性の向上が必要である)。これ
は、高い臨界電流密度を得るためには超電導電流の妨げ
となる欠陥の除去だけではなく、磁束の運動を抑えるピ
ン止め点の導入が必要であるためである。単に溶融法で
作製した場合、このようなピン止めを自然に導入される
点欠陥や転位などに頼らざるを得ないため高い臨界電流
密度が得られない。この磁束の運動を抑えるために、Y
−Ba−Cu−O系では非超電導相であるY2 BaC
uO5 相(211相)を超電導相であるYBa2 C
u3 O7−x 相(123相)内に微細に分散させる
ようにしている。
However, the critical current density itself is still lower than the practical level (T=77K, He=104
It is necessary to improve the characteristics to about A/cm2). This is because in order to obtain a high critical current density, it is necessary not only to remove defects that impede superconducting current, but also to introduce pinning points that suppress the movement of magnetic flux. When fabricated simply by a melting method, a high critical current density cannot be obtained because such pinning must rely on naturally introduced point defects or dislocations. In order to suppress the movement of this magnetic flux, Y
-Y2 BaC which is a non-superconducting phase in the Ba-Cu-O system
uO5 phase (211 phase) is superconducting phase YBa2C
It is made to be finely dispersed within the u3O7-x phase (123 phase).

【0006】[0006]

【発明が解決しようとする課題】前記QMG法およびM
TG法では、出発原料としてYBa2 Cu3 O7−
x 粉を使用し溶融を行う。溶融されるとイットリュー
ム酸化物が溶融したBaCu中に生成する。このイット
リューム酸化物が粗大化するとともに、凝集する。Y2
 BaCuO5 相はこの酸化物を核として生成するた
めに粗大な、あるいは凝集したイットリューム酸化物か
らY2 BaCuO5 相およびその他の相の微細粒子
をYBa2 Cu3 O7−x相中に均一に分散するこ
とが困難である。また、MPMG法(ISTEC)およ
びMTG法では、部分溶融処理条件が高温長時間になる
ために常電導相が粗大化したものと考えられる。この結
果、Y2 BaCuO5 相およびその他の相の微細粒
子による磁束のピン止め効果が十分でなく、またYBa
2 Cu3 O7−x 相に割れが発生し、高磁場にお
いて液体窒素温度で実用に耐える臨界電流密度が得られ
ないという問題があった。
[Problem to be solved by the invention] The QMG method and M
In the TG method, YBa2 Cu3 O7- is used as a starting material.
x Perform melting using powder. Upon melting, yttrium oxide forms in the molten BaCu. This yttrium oxide becomes coarse and aggregates. Y2
Since the BaCuO5 phase is generated using this oxide as a nucleus, it is difficult to uniformly disperse fine particles of the Y2 BaCuO5 phase and other phases from coarse or aggregated yttrium oxide into the YBa2 Cu3 O7-x phase. It is. Further, in the MPMG method (ISTEC) and the MTG method, it is thought that the normal conductive phase becomes coarse because the partial melting treatment conditions are high temperature and long time. As a result, the magnetic flux pinning effect by the fine particles of the Y2 BaCuO5 phase and other phases is not sufficient, and the
There was a problem in that cracks occurred in the 2Cu3O7-x phase, and a critical current density that could withstand practical use at liquid nitrogen temperatures in a high magnetic field could not be obtained.

【0007】そこで、この発明はYBa2 Cu3 O
7−x 相中にY2 BaCuO5 相およびその他の
相の粒子を微細かつ均一に分散し、高い臨界電流密度を
得ることができる酸化物超電導バルク材の製造方法を提
供しようとするものである。
[0007] Therefore, the present invention is based on YBa2 Cu3 O
The object of the present invention is to provide a method for producing an oxide superconducting bulk material in which particles of the Y2 BaCuO5 phase and other phases are finely and uniformly dispersed in the 7-x phase and a high critical current density can be obtained.

【0008】[0008]

【課題を解決するための手段】この発明の酸化物超電導
バルク材の製造方法は、BaCO3 粉末とCuO粉末
との混合粉末を溶融し、急冷し、粉砕してBa2 Cu
3 Ox 粉末を作製する。ついで、上記Ba2 Cu
3 Ox 粉末にY2 O3 とモル比で5%から20
%までのAg,Bax Pty Oz ,SiBaO3
 ,GeBaO3 ,SnBaO3 ,PbBaO3 
,BaTiO3 およびBaZrO3 のうちの少くと
も一つとからなる混合粉末を添加して混練し、成型する
。そして、上記成型体を部分溶融熱処理し、引き続き結
晶成長熱処理し、酸素量調整熱処理する。
[Means for Solving the Problems] The method for producing an oxide superconducting bulk material of the present invention involves melting a mixed powder of BaCO3 powder and CuO powder, rapidly cooling it, and pulverizing it to form Ba2 Cu powder.
3 Ox powder is prepared. Then, the above Ba2Cu
3 Ox powder and Y2 O3 in molar ratio from 5% to 20
up to % Ag, Bax Pty Oz, SiBaO3
, GeBaO3 , SnBaO3 , PbBaO3
, BaTiO3, and BaZrO3 are added, kneaded, and molded. Then, the molded body is subjected to partial melting heat treatment, followed by crystal growth heat treatment, and oxygen content adjustment heat treatment.

【0009】図1および図2に従って、この発明を詳細
に説明する。BaCO3 粉末およびCuO粉末の混合
比は、Ba:Cu=(1.5〜2.5):(2.5〜3
.5)程度が好ましい。混合粉末の溶融加熱温度は11
00℃以上であり、加熱保持時間は3〜30min 程
度である。BaCO3 粉末とCuO粉末との混合粉末
を溶融、急冷することによって、凝固した塊状のBa2
 Cu3 Ox が得られる。なお、混合粉末の溶融に
より、BaCO3 中のCO3 は消失する。BaとC
uとの分離を避けるために、急冷速度は10℃/sec
 以上であることが望ましい。また、Ba2 Cu3 
Ox を粉砕して得た粉末の粒径は200μm以下であ
ることが好ましい。上記Ba2 Cu3 Ox 粉末に
Y2 O3 とAg,SnBaO3 ,SiBaO3 
その他とからなる混合粉末を添加する量は、作製された
超電導バルク材がYBa2 Cu3 O7−x 組成ま
たはこの組成にYBa2 Cu3 O7−x を50 
mol%まで含む組成となる量である。
The present invention will be explained in detail with reference to FIGS. 1 and 2. The mixing ratio of BaCO3 powder and CuO powder is Ba:Cu=(1.5-2.5):(2.5-3
.. 5) is preferable. The melting and heating temperature of the mixed powder is 11
The temperature is 00°C or higher, and the heating holding time is about 3 to 30 minutes. By melting and rapidly cooling a mixed powder of BaCO3 powder and CuO powder, solidified lumps of Ba2
Cu3Ox is obtained. Note that CO3 in BaCO3 disappears by melting the mixed powder. Ba and C
The quenching rate was 10°C/sec to avoid separation from u.
The above is desirable. Also, Ba2 Cu3
The particle size of the powder obtained by pulverizing Ox is preferably 200 μm or less. Y2 O3 and Ag, SnBaO3, SiBaO3 are added to the above Ba2 Cu3 Ox powder.
The amount of the mixed powder to be added is such that the produced superconducting bulk material has a composition of YBa2 Cu3 O7-x or 50% of YBa2 Cu3 O7-x is added to this composition.
This is the amount that results in a composition containing up to mol%.

【0010】成型体の部分溶融熱処理では、成型体を1
000〜1350℃に加熱し、0.1〜2hr程度保持
する。成型体の加熱温度が1000℃未満では、部分溶
融はするが量的に少なく臨界電流密は向上しない。逆に
、成型体の加熱温度が1350℃を超えると、微細なY
2 BaCuO5 相が得られない。また、成型体が完
全に溶融して原型をとどめない状態となり、所要の形状
のバルク材が得られない。ついで、1050〜1000
℃まで比較的高い冷却速度(たとえば、50〜1℃/h
r)で冷却する。結晶成長熱処理は、成型体を上記温度
1050〜1000℃から960〜940℃に至るまで
徐冷する。冷却速度は200℃/hr以下である。徐冷
速度が、200℃/hrを超えると、YBa2 Cu3
 O7−x 相の結晶粒が充分成長しないため、粒界が
多くなり臨界電流密度が低下する。このような熱処理に
よって、超電導相の中には細かなY2 BaCuO5 
相が含まれているため組織が細かく機械的強度も改善さ
れる。酸素量調整熱処理は、成型体を酸素雰囲気中また
は空気中で冷却する。冷却速度は10〜1℃/hr程度
である。酸素量調整熱処理では、YBa2 Cu3 O
7−x 中の酸素量O7−x を調整する。
In the partial melting heat treatment of the molded body, the molded body is
Heat to 000 to 1350°C and hold for about 0.1 to 2 hours. If the heating temperature of the molded body is less than 1000°C, partial melting will occur, but the amount will be small and the critical current density will not improve. On the other hand, if the heating temperature of the molded body exceeds 1350°C, fine Y
2 BaCuO5 phase is not obtained. In addition, the molded body is completely melted and does not retain its original shape, making it impossible to obtain a bulk material in the desired shape. Then 1050-1000
℃ relatively high cooling rate (e.g. 50-1℃/h
Cool at r). In the crystal growth heat treatment, the molded body is slowly cooled from the above temperature of 1050 to 1000°C to 960 to 940°C. The cooling rate is 200° C./hr or less. When the slow cooling rate exceeds 200°C/hr, YBa2 Cu3
Since the crystal grains of the O7-x phase do not grow sufficiently, the number of grain boundaries increases and the critical current density decreases. Through such heat treatment, fine Y2 BaCuO5 is present in the superconducting phase.
Because it contains a phase, it has a fine structure and improves mechanical strength. In the oxygen amount adjustment heat treatment, the molded body is cooled in an oxygen atmosphere or in air. The cooling rate is about 10 to 1°C/hr. In the oxygen content adjustment heat treatment, YBa2 Cu3 O
Adjust the oxygen amount O7-x in 7-x.

【0011】[0011]

【作用】成型体は1000℃〜1350℃に加熱すると
半溶融状態となり、Y2 O3 と液相(BaCu酸化
物) が反応し、Y2O3 を核として針状の細かいY
2 BaCuO5 相が成長する。このY2 BaCu
O5 相は分断されて微細な相となる。また、Ag,S
nBaO5 ,SiBaO3 その他の相は部分溶融状
態を経ても反応することもなく、添加時の粒径を維持し
微粒子が分散する。半溶融状態では、繊維状Y2 Ba
CuO5相が液相を吸収するため、成型体の形はほぼ維
持される。半溶融状態の成型体を徐冷すると、Y2 B
aCuO5 相と液相との包晶反応によりYBa2 C
u3 O7−x 相が析出する。この状態から、さらに
徐冷をすることによって核生成を抑制し、結晶の成長を
律速することによって粒界の少ない、すなわち大きな結
晶粒が得られる。このときできる組織はYBa2 Cu
3 O7−x 相中に細かいY2 BaCuO5 相お
よびAg,Bax Pty Oz ,SiBaO3 あ
るいはその他の相の微粒子を含んでおり、この微細分散
物の存在により、結晶成長を含む熱処理中に生ずる応力
を分散させることによって粒界および割れが少なく、方
位のそろった数ミリ以上の結晶の集合体となる。135
0℃を超える高温でYを含むBaCu組成のものを溶融
処理をすることがないので、Y2 O3 の凝集や、粗
大化がないためにY2 BaCuO5 相は微細となる
。また、YBa2 Cu3 O7−x 相中のY2 B
aCuO5 相およびAg,Bax Pty Oz ,
SiBaO3 その他の相の量の調整は、主に初期の添
加量で調整する。
[Operation] When the molded body is heated to 1000°C to 1350°C, it becomes a semi-molten state, and Y2O3 and the liquid phase (BaCu oxide) react, forming needle-like fine Y2O3 cores.
2 BaCuO5 phase grows. This Y2 BaCu
The O5 phase is divided into fine phases. Also, Ag,S
The nBaO5, SiBaO3, and other phases do not react even after passing through a partially melted state, and maintain the particle size at the time of addition, and the fine particles are dispersed. In the semi-molten state, fibrous Y2Ba
Since the CuO5 phase absorbs the liquid phase, the shape of the molded product is almost maintained. When the semi-molten molded body is slowly cooled, Y2 B
Due to the peritectic reaction between the aCuO5 phase and the liquid phase, YBa2C
A u3 O7-x phase precipitates. From this state, slow cooling is further performed to suppress nucleation and to control the rate of crystal growth, thereby obtaining large crystal grains with few grain boundaries. The structure formed at this time is YBa2Cu
The 3 O7-x phase contains fine Y2 BaCuO5 phase and fine particles of Ag, Bax Pty Oz, SiBaO3, or other phases, and the presence of this fine dispersion disperses stress generated during heat treatment including crystal growth. This results in an aggregate of crystals several millimeters or more in size with fewer grain boundaries and cracks and with uniform orientation. 135
Since the BaCu composition containing Y is not melted at a high temperature exceeding 0° C., the Y2 BaCuO5 phase becomes fine because there is no aggregation or coarsening of Y2 O3. In addition, Y2 B in the YBa2 Cu3 O7-x phase
aCuO5 phase and Ag, Bax Pty Oz,
The amount of SiBaO3 and other phases is adjusted mainly by the initial amount added.

【0012】Y2 BaCuO5 相およびAg,Ba
xPty Oz ,SiBaO3 あるいはその他の相
が微細であると、超電導体を貫通する磁束がY2 Ba
CuO5 相およびその他の相と鎖交する点が増し、ピ
ン止め効果は高くなる。また、割れも少なくなる。この
結果、臨界電流密度は向上する。
[0012] Y2 BaCuO5 phase and Ag, Ba
When xPtyOz, SiBaO3, or other phases are fine, the magnetic flux penetrating the superconductor becomes
The number of points interlinked with the CuO5 phase and other phases increases, and the pinning effect becomes higher. Moreover, cracks are also reduced. As a result, the critical current density is improved.

【0013】[0013]

【実施例】BaCo3 粉末、およびCuO粉末をモル
比で1:1.5になるように混合した粉末を1400℃
で溶融し、銅ハース上で急冷した。得られたBaCu酸
化物成型体を粉砕して100メッシュ以下の粉末を製造
した。これとは別にBaCO3 粉末とSnO2 粉末
をモル比で1:1になるようにした混合粉を大気中で1
100℃、5時間の熱処理を加えてBaSnO3 を得
る。これを充分に粉砕をして10μm以下の粉末にする
。先のBaCu酸化物にY2 O3 粉末を加え、Y:
Ba:Cuの比(モル比)1.2:2:3に成るように
し、さらに上記のBaSnO3 粉末を5%(モル%)
添加した。添加後、充分に混練した後に金型に充填、プ
レス、CIPして直径3cm、厚さ1.5cmのペレッ
トに成型した。
[Example] A powder prepared by mixing BaCo3 powder and CuO powder at a molar ratio of 1:1.5 was heated to 1400°C.
and quenched on a copper hearth. The obtained BaCu oxide molded body was pulverized to produce a powder of 100 mesh or less. Separately, a mixed powder of BaCO3 powder and SnO2 powder at a molar ratio of 1:1 was prepared in the atmosphere.
BaSnO3 is obtained by heat treatment at 100°C for 5 hours. This is thoroughly ground to a powder of 10 μm or less. Add Y2 O3 powder to the previous BaCu oxide, Y:
The Ba:Cu ratio (mole ratio) was adjusted to 1.2:2:3, and the above BaSnO3 powder was added at 5% (mol%).
Added. After addition, the mixture was sufficiently kneaded, filled into a mold, pressed, and CIPed to form pellets with a diameter of 3 cm and a thickness of 1.5 cm.

【0014】上記ペレットを1200℃、1時間の加熱
保持して成型体を部分溶融させる。この状態から100
0℃まで200℃/hrで冷却した。1000℃近傍か
らは超電導体YBa2 CU3 O7−x 結晶が成長
をはじめ960〜940℃程度で停止する。この温度域
を1℃/hrで徐冷してYBa2 Cu3 O7−x 
結晶の核生成を抑制し、結晶成長律速にして大きな結晶
を得た。940℃以降は常温まで100℃/hrの速度
で冷却し、この後に酸素量調整のため酸素気流中で60
0℃まで再加熱を行い、600℃8時間保持後200℃
まで10℃/hrの速度で冷却して酸素調整熱処理を行
った。
[0014] The above pellets are heated and held at 1200°C for 1 hour to partially melt the molded body. 100 from this state
It was cooled to 0°C at a rate of 200°C/hr. The superconductor YBa2 CU3 O7-x crystal begins to grow from around 1000°C and stops at about 960 to 940°C. This temperature range was slowly cooled at 1°C/hr to produce YBa2 Cu3 O7-x.
Large crystals were obtained by suppressing crystal nucleation and controlling the crystal growth rate. After 940℃, it is cooled to room temperature at a rate of 100℃/hr, and then heated for 60 minutes in an oxygen stream to adjust the amount of oxygen.
Reheat to 0℃, hold at 600℃ for 8 hours, then heat to 200℃
Oxygen adjustment heat treatment was performed by cooling at a rate of 10° C./hr.

【0015】この処理によって得られたミクロ組織は、
2μm程度のBaSnO3 (EDX分析による同定)
が均一に分散した良好な結晶であった。この結晶は、B
aSnO3 が添加されても超電導状態になる臨界温度
は−92℃を示し、添加による劣化はない(図3)。ま
た、このときの臨界電流密度を試料振動型磁力計を用い
て測定した磁気ヒステリシス曲線から換算した結果では
77K1テスラにおける臨界電流密度は9.7×103
 A/cm2 と高い値が得られた。
[0015] The microstructure obtained by this treatment is
BaSnO3 of about 2μm (identification by EDX analysis)
The crystals were uniformly dispersed and had good quality. This crystal is B
Even when aSnO3 is added, the critical temperature at which it becomes superconducting is -92°C, and there is no deterioration due to the addition (Figure 3). In addition, the critical current density at this time was converted from the magnetic hysteresis curve measured using a sample vibrating magnetometer, and the critical current density at 77K1 Tesla was 9.7 x 103
A high value of A/cm2 was obtained.

【0016】[0016]

【発明の効果】この発明によれば、YBa2 Cu3 
O7−x 相中にY2 BaCuO5 相その他の相の
微細粒子が均一に分布した超電導バルク材を得ることが
できる。また、得られたYBa2 Cu3 O7−x 
相は、一つの粒径が数ミリと大きく、粒界および割れも
少ない。この結果、Y2 BaCuO5 相その他の相
の微細粒子による磁束のピン止め効果が向上し、高磁場
中でも従来法と比較して高い臨界電流密度を得ることが
できる。
[Effect of the invention] According to this invention, YBa2 Cu3
A superconducting bulk material in which fine particles of the Y2 BaCuO5 phase and other phases are uniformly distributed in the O7-x phase can be obtained. In addition, the obtained YBa2 Cu3 O7-x
The phase has a large grain size of several millimeters, and there are few grain boundaries and cracks. As a result, the magnetic flux pinning effect by fine particles of the Y2 BaCuO5 phase and other phases is improved, and a higher critical current density can be obtained than in the conventional method even in a high magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の工程を示すフローチャートである。FIG. 1 is a flowchart showing the steps of the invention.

【図2】この発明の工程を示す模式図である。FIG. 2 is a schematic diagram showing the steps of the present invention.

【図3】4端子法によって測定した臨界温度測定図であ
る。
FIG. 3 is a critical temperature measurement diagram measured by a four-terminal method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  BaCO3 粉末とCuO粉末との混
合粉末を溶融し、急冷し、粉砕してBa2 Cu3 O
x 粉末を作製し、前記Ba2 Cu3 Ox 粉末に
Y2 O3 とモル比で5%から20%までのAg,B
ax Pty Oz ,SiBaO3 ,GeBaO3
 ,SnBaO3 ,PbBaO3 ,BaTiO3 
およびBaZrO3 のうちの少くとも一つとからなる
混合粉末を添加して混練し、成型し、前記成型体を部分
溶融熱処理し、引き続き結晶成長熱処理し、酸素量調整
熱処理することを特徴とする酸化物超電導バルク材の製
造方法。
[Claim 1] A mixed powder of BaCO3 powder and CuO powder is melted, rapidly cooled, and pulverized to form Ba2 Cu3 O.
x powder was prepared, and Y2 O3 and Ag, B in a molar ratio of 5% to 20% were added to the Ba2 Cu3 Ox powder.
ax Pty Oz, SiBaO3, GeBaO3
, SnBaO3 , PbBaO3 , BaTiO3
and BaZrO. A method for manufacturing superconducting bulk materials.
JP3007034A 1991-01-24 1991-01-24 Production of oxide superconducting bulk material Withdrawn JPH04240115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007034A JPH04240115A (en) 1991-01-24 1991-01-24 Production of oxide superconducting bulk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007034A JPH04240115A (en) 1991-01-24 1991-01-24 Production of oxide superconducting bulk material

Publications (1)

Publication Number Publication Date
JPH04240115A true JPH04240115A (en) 1992-08-27

Family

ID=11654757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007034A Withdrawn JPH04240115A (en) 1991-01-24 1991-01-24 Production of oxide superconducting bulk material

Country Status (1)

Country Link
JP (1) JPH04240115A (en)

Similar Documents

Publication Publication Date Title
JPH0440289B2 (en)
JP2839415B2 (en) Method for producing rare earth superconducting composition
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
WO1990013517A1 (en) Oxide superconductor and method of producing the same
JPH0558626A (en) Oxide superconductor and its production
US5395820A (en) Oxide superconductor and process for producing the same
JPH04224111A (en) Rare earth type oxide superconductor and its production
US5430010A (en) Process for preparing oxide superconductor
JPH04240115A (en) Production of oxide superconducting bulk material
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JP3115696B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JPH05279033A (en) Production of oxide superconductor having high critical current density
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JPH04119968A (en) Production of oxide superconductor
JPH10245223A (en) Oxide superconductor and its production
JP3159764B2 (en) Manufacturing method of rare earth superconductor
Yanmaz et al. Melt processing of powdered arc-cast YBa2Cu3Oy materials
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JPH04254466A (en) Production of yittrium-base superconducting bulk material
JP2004203727A (en) Oxide superconductor having high critical current density
JP2006036574A (en) METHOD FOR MANUFACTURING RE-Ba-Cu-O-BASED OXIDE SUPERCONDUCTOR
JPH08325013A (en) Neodymium based oxide superconducting formed body and its manufacture
JPH04243917A (en) Preparation of oxide superconducting sintered compact
JPH0421505A (en) Ceramic superconductor and production thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514