JPH04236702A - Manufacture of metallic compact body using refined iron powder of converter dust - Google Patents

Manufacture of metallic compact body using refined iron powder of converter dust

Info

Publication number
JPH04236702A
JPH04236702A JP7813991A JP7813991A JPH04236702A JP H04236702 A JPH04236702 A JP H04236702A JP 7813991 A JP7813991 A JP 7813991A JP 7813991 A JP7813991 A JP 7813991A JP H04236702 A JPH04236702 A JP H04236702A
Authority
JP
Japan
Prior art keywords
iron powder
converter dust
refined
refined iron
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7813991A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishita
井下 力
Yoshiaki Takeda
武田 欣明
Katsumasa Mito
三戸 克正
Eiji Inoue
英二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASTECIRIE CORP Ltd
Nippon Steel Corp
Original Assignee
ASTECIRIE CORP Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASTECIRIE CORP Ltd, Nippon Steel Corp filed Critical ASTECIRIE CORP Ltd
Priority to JP7813991A priority Critical patent/JPH04236702A/en
Publication of JPH04236702A publication Critical patent/JPH04236702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a metallic compact body at a low cost by adding thermosetting resin to refined iron powder of converter dust as binder, packing this into a metallic mold and burning after compacting. CONSTITUTION:The iron powder dust generated at the time of steelmaking- refining by the converter is collected and ground and refined to remove impurity, and this is made to the iron powder having particle size distribution of 3-50% particle of 10-74mum the particle size, 50-70% particle of 74-149mum the particle size and 5-20% particle of 149-500mum the particle size. Into this refined iron powder, 0.5-2.0wt.% resol and 2.0-5.0wt.% novolak are added and mixed, and after packing this into the metallic mold having the desired shape, this is press- compacted at >=2ton/cm<2> pressure. This green compact is heated to 150-250 deg.C in a heating furnace under the air atmosphere and hardened to manufacture the compact body for counter-weight, etc., of car at the low cost with a low cost of equipment.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、転炉ダスト精製鉄粉を
主原料とする金属成形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal molded body using converter dust refined iron powder as the main raw material.

【0002】0002

【従来の技術】近年、産業機械及び金属部品の技術分野
において、積層、鍛造、鋳造等などの方法があるが、成
形性、コスト、技術の面で問題があり、これらの方法で
は製造困難な物や、材質あるいは形状の関係から仕上げ
の面倒な部品等に、例えば、特開平2−141502号
公報示されるように、金属粉末を主原料として、所望の
形状を有する型に充填し、プレス成形、焼結して部材品
を製造する方法が知られていた。
[Prior Art] In recent years, methods such as lamination, forging, and casting have been used in the technical field of industrial machinery and metal parts, but these methods have problems in terms of formability, cost, and technology, and these methods are difficult to manufacture. For example, as disclosed in Japanese Patent Application Laid-open No. 2-141502, metal powder is used as the main raw material to fill a mold with a desired shape and press-form it for objects, parts that are difficult to finish due to material or shape. , a method of manufacturing components by sintering was known.

【0003】そして、該方法においては、バインダーと
してパラフイン、カルナウバワックス、マイクロクリス
タン、ポリエチレンワックス等のワックス類、アクリル
樹脂、酢酸セルロース、ポリビニールアルコール等の有
機性物質などが使用されている。この金属粉とバインダ
ーの1種又は2種以上を用いて、これらを混練し、この
混練したもの金型に充填しプレス等で加圧成形し、更に
これを、焼結炉にいれて加熱脱脂後約1250℃まで昇
温して焼結していた。また、炉内には粉末粒子の酸化を
防ぐために真空装置や、還元雰囲気が必要なため水素ガ
ス、アンモニア分解ガス等が使用されていた。
[0003] In this method, waxes such as paraffin, carnauba wax, microcrystalline wax, and polyethylene wax, and organic substances such as acrylic resin, cellulose acetate, and polyvinyl alcohol are used as binders. This metal powder and one or more types of binder are used to knead them, and the kneaded product is filled into a mold and pressure-molded using a press, etc., and then placed in a sintering furnace to be heated and degreased. After that, the temperature was raised to about 1250°C and sintered. In addition, a vacuum device was installed in the furnace to prevent oxidation of the powder particles, and since a reducing atmosphere was required, hydrogen gas, ammonia decomposition gas, etc. were used.

【0004】0004

【発明が解決しょうとする課題】しかしながら、上記方
法による金属焼結品の製造方法には以下のような問題点
を有していた。 ○11250℃という▲高▼温、且つ真空下で焼結が行
われるので、設備が大型で、複雑なものとなり、設備費
の増大を招く。そして、▲高▼温処理であるので脱脂を
行う必要があり、処理工程が複雑となる。 ○2▲高▼温度に加熱するので、収縮による変形が起こ
り寸法精度が悪い。 ○3加熱脱脂、焼結時に酸化が起こるので、真空または
還元性雰囲気が必要である。 ○4従来の粉末冶金法では原料として還元鉄粉や、電解
鉄粉が用いられるので、非常にコスト▲高▼となる。
[Problems to be Solved by the Invention] However, the method for manufacturing sintered metal products by the above method has the following problems. Since sintering is performed at a high temperature of 11,250°C and under vacuum, the equipment becomes large and complicated, leading to an increase in equipment costs. Furthermore, since it is a high-temperature treatment, it is necessary to degrease it, making the treatment process complicated. ○2▲ High▼ Since it is heated to a high temperature, deformation occurs due to shrinkage, resulting in poor dimensional accuracy. ○3 Oxidation occurs during heat degreasing and sintering, so a vacuum or reducing atmosphere is required. ○4 Conventional powder metallurgy methods use reduced iron powder or electrolytic iron powder as raw materials, resulting in extremely high costs.

【0005】一方において、製鉄所の転炉操業中に鉄粉
ダストが舞い上がり、これを集めて精製すれば転炉ダス
ト精製鉄粉(OGPという)となるが、現在のところ該
転炉ダスト精製鉄粉の有効利用がなされておらず、適当
に塊状化し原料として還元されていた。本発明は上記事
情に鑑みてなされたもので、製鉄所で発生する転炉ダス
ト精製鉄粉の有効利用を図り、更には低コストの転炉ダ
スト精製鉄粉を用いた金属成形体の製造方法を提供する
ことを目的とする。
On the other hand, iron powder dust is thrown up during the operation of a converter in a steel mill, and if it is collected and refined, it becomes converter dust refined iron powder (OGP). The powder was not being used effectively and was being lumped into lumps and being reduced as a raw material. The present invention has been made in view of the above circumstances, and aims to effectively utilize converter dust refined iron powder generated in steel works, and furthermore, provides a low-cost method for manufacturing metal molded bodies using converter dust refined iron powder. The purpose is to provide

【0006】[0006]

【課題を解決するための手段】上記目的に沿う請求項第
1項記載の転炉ダスト精製鉄粉を用いた金属成形体の製
造方法は、転炉ダスト精製鉄粉に少量の熱硬化性樹脂を
添加混練した後、該混練鉄粉を金型に充填し、2t/c
m2以上の圧力下でプレス成形し、該成形体を加熱して
硬化させて構成されている。
[Means for Solving the Problems] A method for manufacturing a metal molded body using converter dust refined iron powder according to claim 1, which meets the above object, comprises adding a small amount of thermosetting resin to converter dust refined iron powder. After adding and kneading, the kneaded iron powder was filled into a mold and 2t/c
It is constructed by press molding under a pressure of m2 or more and heating and curing the molded product.

【0007】また、請求項第2項記載の転炉ダスト精製
鉄粉を用いた金属成形体の製造方法は、特に自動車用カ
ウンターウエイトに適するように、転炉ダストを磨鉱し
その粒度を10〜74μm;5〜30%、74〜149
μm;50〜70%;149〜500μm;5〜20%
とした転炉ダスト精製鉄粉に、適当量のリゾールとノボ
ラックを添加して再混練し、次いで該混練鉄粉を金型に
充填し、2t/cm2以上の圧力下でプレス成形し、該
成形体を150〜250℃で焼成して構成されている。
[0007] Furthermore, the method for manufacturing a metal molded body using refined iron powder from converter dust according to claim 2 is such that the converter dust is polished to a particle size of 10% so as to be particularly suitable for automobile counterweights. ~74 μm; 5-30%, 74-149
μm; 50-70%; 149-500 μm; 5-20%
Appropriate amounts of Lysol and Novolac are added to the converted converter dust refined iron powder and kneaded again.Then, the kneaded iron powder is filled into a mold, press-molded under a pressure of 2t/cm2 or more, and the molded It is constructed by firing the body at 150 to 250°C.

【0008】[0008]

【作用】請求項第1項記載の転炉ダスト精製鉄粉を用い
た金属成形体の製造方法においては、転炉ダスト精製鉄
粉に少量の熱硬化性樹脂を添加混練した後、該混練鉄粉
を金型に充填し、2t/cm2以上の圧力下でプレス成
形しているので、これによって所定の形状の成形体が出
来上がる。そして、これを加熱することによって、熱硬
化性樹脂を硬化させているが、ここで加熱温度は熱硬化
性樹脂の硬化温度まで加熱すれば充分であるので、比較
的低い温度で加熱することになり、これによって製品寸
法の狂いが少なくて済む。
[Operation] In the method for manufacturing a metal molded body using converter dust refined iron powder according to claim 1, after adding and kneading a small amount of thermosetting resin to converter dust refined iron powder, the kneaded iron powder is Since the powder is filled into a mold and press-molded under a pressure of 2 t/cm2 or more, a molded article of a predetermined shape is completed. Then, by heating this, the thermosetting resin is cured, but since it is sufficient to heat it to the curing temperature of the thermosetting resin, we decided to heat it at a relatively low temperature. This reduces deviations in product dimensions.

【0009】請求項第2項記載の転炉ダスト精製鉄粉を
用いた金属成形体の製造方法においては、転炉ダストの
粒度分布を10〜74μm;5〜30%、74〜149
μm;50〜70%;149〜500μm;5〜20%
としているので、粗粒と細粒の混合比率が理想的である
ので、鉄粉の充填密度が極めて▲高▼くなる。次に適当
量のレゾールとノボラックを混入するが、レゾールは0
.5〜2.0重量%、ノボラックは2.0〜5.0重量
%の範囲内が良く、これらの添加量以下であると焼結後
の強度不足をもたらし、これらの添加量以上であると焼
結時に膨張、亀裂が発生する。また、レゾールの添加量
が多過ぎると寸法精度が悪くなるので、減らすようにす
るのが好ましい。次に、金型に投入して2t/cm2以
上の圧力下が加圧成形を行うが、これによって充填密度
の▲高▼い成形品が製造される。そして、150〜25
0℃の温度が該成形品を焼成するが、これによってフェ
ノール樹脂が硬化する。この場合、温度が▲高▼過ぎる
とフェノール樹脂が飛んでしまい、低過ぎるとフェノー
ル樹脂が硬化しない。
[0009] In the method for producing a metal molded body using converter dust refined iron powder according to claim 2, the particle size distribution of the converter dust is 10 to 74 μm; 5 to 30%, 74 to 149 μm;
μm; 50-70%; 149-500 μm; 5-20%
Since the mixing ratio of coarse particles and fine particles is ideal, the packing density of iron powder is extremely high. Next, mix appropriate amounts of resol and novolac, but the resol is 0.
.. 5 to 2.0% by weight, and novolac should preferably be in the range of 2.0 to 5.0% by weight; less than these amounts will result in insufficient strength after sintering, and more than these amounts will result in poor strength. Expansion and cracks occur during sintering. Furthermore, if the amount of resol added is too large, the dimensional accuracy will deteriorate, so it is preferable to reduce the amount. Next, it is put into a mold and subjected to pressure molding under a pressure of 2 t/cm2 or more, thereby producing a molded product with a high packing density. And 150-25
A temperature of 0° C. bakes the molded article, which causes the phenolic resin to harden. In this case, if the temperature is too high, the phenolic resin will fly off, and if the temperature is too low, the phenolic resin will not harden.

【0010】0010

【実施例】続いて、本発明を具体化した実施例につき説
明し、本発明の理解に供する。酸素転炉操業における発
生ガスを非燃焼状態で処理する際に、捕集される粗粒ダ
ストを精製して転炉ダスト精製鉄粉(OGP)を製造し
た。この転炉ダスト精製鉄粉の成分はT・Fe>92%
で金属鉄を90%以上有している。そして、その粒度分
布は多少のバラツキを有するが表1の通りである。原料
の粒度範囲が表1の上限あるいは下限の何れかに外れる
と、充填密度が低下するが、転炉ダスト精製鉄粉は、転
炉に酸素を吹付け精錬時に飛散し、冷却回収されるので
、大粒から小粒が存在した状態となり、この範囲で磨鉱
精製して不純物を除去すれば、鉄粉粒径が表1の範囲に
なる。この範囲で混合充填すると最も効率の良い充填密
度が達成できることになる。
[Examples] Next, examples embodying the present invention will be explained to provide an understanding of the present invention. When gas generated during oxygen converter operation is treated in a non-combustible state, coarse dust collected is purified to produce converter dust refined iron powder (OGP). The composition of this converter dust refined iron powder is T・Fe>92%
It contains over 90% metallic iron. The particle size distribution is shown in Table 1, although there is some variation. If the particle size range of the raw material deviates from either the upper or lower limit in Table 1, the packing density will decrease, but since the converter dust refined iron powder is scattered during refining by blowing oxygen into the converter, it is cooled and recovered. , the iron powder particle size will be in the range shown in Table 1 if the iron powder is polished to remove impurities within this range. The most efficient packing density can be achieved by mixing and packing within this range.

【0011】上記の転炉ダスト精製鉄粉にバインダーと
して熱硬化性樹脂の一例であるフェノール樹脂を所定量
混合するが、バインダーとしてフェノール樹脂を使用し
た理由については以下の通りである。 ○1フェノール樹脂は成形性が良く、成形強度が比較的
強い。 ○2一般的に使用されている通常のバインダー(例えば
、メチルセルロース、アルギン酸、ポリビニルアルコー
ル)は保形剤であり、150〜250℃の加熱では強度
は出ない。勿論、高温(例えば1150℃)に加熱すれ
ばその間に飛んでしまい、金属粉が焼結して強度を出す
ことができるが、極めて▲高▼い温度に加熱する必要が
ある。一方、上記フェノール樹脂は熱硬化性樹脂である
ので、比較的低温(150〜250℃)に加熱すること
によってその強度を発揮することができる。 ○3フェノール樹脂を使用すると加熱温度が低いので、
適当な材料の配分を選ぶと、この温度から常温まで降下
させても寸法精度が狂わない。
A predetermined amount of phenol resin, which is an example of a thermosetting resin, is mixed as a binder into the above-mentioned converter dust refined iron powder.The reason for using the phenol resin as the binder is as follows. ○1 Phenol resin has good moldability and relatively strong molding strength. ○2 Commonly used binders (for example, methyl cellulose, alginic acid, polyvinyl alcohol) are shape retainers, and do not develop strength when heated at 150 to 250°C. Of course, if the metal powder is heated to a high temperature (for example, 1150°C), it will fly away and the metal powder will sinter and become stronger, but it is necessary to heat it to an extremely high temperature. On the other hand, since the phenol resin is a thermosetting resin, it can exhibit its strength by heating to a relatively low temperature (150 to 250°C). ○3 When using phenolic resin, the heating temperature is low, so
If appropriate material distribution is selected, dimensional accuracy will not be lost even if the temperature is lowered from this temperature to room temperature.

【0012】そして、上記転炉ダスト精製鉄粉にアルカ
リ触媒(フォルマリン/フェノール=1以上)にて造ら
れた液状のレゾール(R)を転炉ダスト精製鉄粉に対し
て約1重量%混ぜて、均一に混練した後、酸触媒(フォ
ルマリン/フェノール=1以下)にて造られた粉末状の
ノボラック(N)を転炉ダスト精製鉄粉の約3重量%に
なるように添加し、均一に混合する。
[0012] Then, about 1% by weight of liquid Resol (R) made with an alkaline catalyst (formalin/phenol = 1 or more) is mixed with the converter dust purified iron powder. After uniformly kneading, powdered novolak (N) made with an acid catalyst (formalin/phenol = 1 or less) was added to the converter dust refined iron powder in an amount of about 3% by weight, Mix evenly.

【0013】この場合、その添加順序は、レゾール(R
)が液体でありノボラック(N)は粉末であるため、ま
ず上述の転炉ダスト精製鉄粉に液体のレゾール(R)を
添加混練して転炉ダスト精製鉄粉の表面を均一に被い、
その後、粉体のノボラック(N)を添加して再混練する
と、鉄粉の周囲に均一にノボラック(N)が付着する。 ここで、レゾール(R)とノボラック(N)の添加順序
を逆にするとノボラック(N)の数珠玉が出来やすく、
転炉ダスト精製鉄粉に均一にノボラック(N)が付着し
ないという欠点を有する。
In this case, the order of addition is resol (R
) is a liquid and novolac (N) is a powder, so first add and knead liquid Resol (R) to the above-mentioned converter dust refined iron powder to uniformly cover the surface of the converter dust refined iron powder,
Thereafter, when powdered novolak (N) is added and kneaded again, novolak (N) is uniformly attached around the iron powder. Here, if the order of addition of resol (R) and novolac (N) is reversed, beads of novolac (N) can be easily formed.
Converter dust has the disadvantage that novolak (N) does not adhere uniformly to refined iron powder.

【0014】ここでレゾール(R)は前記した通り、0
.5〜2.0重量%、ノボラック(N)は2.0〜5.
0重量%の範囲内が良い。この後、該混合物を45mm
×79mm×13mmの型に充填して2t/cm2、5
t/cm2、7t/cm2で成形した。
[0014] As mentioned above, Resol (R) is 0
.. 5-2.0% by weight, novolak (N) 2.0-5.
It is preferably within the range of 0% by weight. After this, the mixture was poured into 45 mm
Fill a mold of x79mm x 13mm and make 2t/cm2,5
It was molded at t/cm2 and 7t/cm2.

【0015】次に、この成形品を焼成炉に入れて、大気
中の雰囲気でフェノール樹脂を硬化させたが、その時の
温度を、その強度を十分に発現させる150〜250℃
とした。
[0015] Next, this molded product was placed in a firing furnace and the phenolic resin was cured in the atmosphere, but the temperature at that time was set at 150 to 250°C to fully develop its strength.
And so.

【0016】また、レゾール(R)が硬化するときに、
80〜130℃で水分が発生し、ノボラック(N)が硬
化するときに130〜180℃でアンモニアが発生する
。そのため、2t/cm2位の成形圧では成形物の気孔
が比較的大きく、従ってガスが抜けやすく、早い昇温速
度でも膨張、割れ、剥離等は起こらないので、図2に示
すように早い焼成パターンであっても良い。一方、成形
圧が5t/cm2や7t/cm2程の成形圧力になると
成形物からのガスが抜け難くなり、製品の膨張、割れ、
剥離の原因となるので、図1のように、ゆっくりした昇
温条件で焼成を行う。
[0016] Furthermore, when Resol (R) is cured,
Moisture is generated at 80-130°C, and ammonia is generated at 130-180°C when novolak (N) is cured. Therefore, at a molding pressure of around 2t/cm2, the pores of the molded product are relatively large, so gas easily escapes, and expansion, cracking, peeling, etc. do not occur even at a high temperature increase rate. It may be. On the other hand, when the molding pressure is about 5t/cm2 or 7t/cm2, it becomes difficult for gas to escape from the molded product, causing the product to expand, crack, etc.
Since this may cause peeling, firing is performed under conditions of slow temperature rise, as shown in FIG.

【0017】以上の工程によって製造された製品の性状
を表2に示す。また、成形圧と製品の嵩比重を図3に示
すが、点線で示す還元鉄粉の場合に比較して、実線で示
す転炉ダスト精製鉄粉の場合には成形圧力が成形圧5t
/cm2を越えると飽和状態となる。これは転炉ダスト
精製鉄粉が成形時の変形抵抗が大であるからと考えられ
る。従って、転炉ダスト精製鉄粉を用いた金属成形体の
製造方法においては、成形圧は5t/cm2程度で曲げ
、圧縮とも優れた強度を有することがわかる。なお、表
2の最後の2欄は全体評価は×であったが、比較の為に
掲載した。
Table 2 shows the properties of the product manufactured by the above steps. In addition, the molding pressure and bulk specific gravity of the product are shown in Figure 3. Compared to the case of reduced iron powder shown by the dotted line, the molding pressure is 5t for the converter dust refined iron powder shown by the solid line.
/cm2, saturation occurs. This is thought to be because the converter dust refined iron powder has high deformation resistance during molding. Therefore, it can be seen that in the method of manufacturing a metal molded body using converter dust refined iron powder, the molding pressure is about 5 t/cm2, and the molded body has excellent strength in both bending and compression. The last two columns of Table 2 gave an overall evaluation of ×, but are listed for comparison.

【0018】なお、他の熱硬化性樹脂として、尿素樹脂
、メラミン樹脂、ポリエステル樹脂、ポリウレタン、エ
ポキシ樹脂等がある。
[0018] Other thermosetting resins include urea resin, melamine resin, polyester resin, polyurethane, and epoxy resin.

【0019】[0019]

【発明の効果】請求項第1項及び第2項記載の転炉ダス
ト精製鉄粉を用いた金属成形体の製造方法においては、
以上の説明から明らかなように原料として転炉ダスト精
製鉄粉を使用するため、材料原価が低廉となる。また、
その製造方法においては、比較的低温で樹脂を硬化させ
ているため、設備費が安く、しかも加熱する為のエネル
ギーコストも安い。そして、混合した樹脂が鉄粉の酸化
を防ぐための真空設備や水素ガス、アンモニア分解ガス
等の還元雰囲気の為の設備等も不要となる。更には、加
熱温度が低いので常温降下に伴う熱収縮も小さく、従来
の方法による成形品に比較して寸法精度が良い。特に、
請求項第2項記載の転炉ダスト精製鉄粉を用いた金属成
形体の製造方法のように、自動車の振動防止用カウンタ
ーウエイト(例、44×78×12mmの板からなる)
に適用した場合、従来よりコストが安く、寿命の長い製
品を製造することができる。
Effects of the Invention In the method for manufacturing a metal molded body using converter dust refined iron powder according to claims 1 and 2,
As is clear from the above description, since converter dust refined iron powder is used as the raw material, the material cost is low. Also,
In this manufacturing method, the resin is cured at a relatively low temperature, so the equipment cost is low, and the energy cost for heating is also low. Further, there is no need for vacuum equipment to prevent the mixed resin from oxidizing the iron powder, or equipment for a reducing atmosphere such as hydrogen gas or ammonia decomposition gas. Furthermore, since the heating temperature is low, the thermal shrinkage caused by the drop in room temperature is also small, and the dimensional accuracy is better than molded products made by conventional methods. especially,
A counterweight for vibration prevention of an automobile (for example, made of a plate of 44 x 78 x 12 mm), as in the method for producing a metal molded body using converter dust refined iron powder according to claim 2.
When applied to , it is possible to manufacture products with lower cost and longer lifespan than before.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】金属成形体の焼成条件を示すグラフである。FIG. 1 is a graph showing firing conditions for a metal molded body.

【図2】金属成形体の焼成条件を示すグラフである。FIG. 2 is a graph showing firing conditions for a metal molded body.

【図3】成形圧力と嵩比重の関係を示すグラフである。FIG. 3 is a graph showing the relationship between molding pressure and bulk specific gravity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  転炉ダスト精製鉄粉に少量の熱硬化性
樹脂を添加混練した後、該混練鉄粉を金型に充填し、2
t/cm2以上の圧力下でプレス成形し、該成形体を加
熱して硬化させたことを特徴とする転炉ダスト精製鉄粉
を用いた金属成形体の製造方法。
Claim 1: After adding and kneading a small amount of thermosetting resin to converter dust refined iron powder, the kneaded iron powder is filled into a mold, and 2
1. A method for producing a metal molded body using converter dust refined iron powder, characterized in that the molded body is press-formed under a pressure of t/cm2 or more, and the molded body is heated and hardened.
【請求項2】  転炉ダストを磨鉱しその粒度を10〜
74μm;5〜30%、74〜149μm;50〜70
%;149〜500μm;5〜20%とした転炉ダスト
精製鉄粉に、適当量のリゾールとノボラックを添加して
再混練し、次いで該混練鉄粉を金型に充填し、2t/c
m2以上の圧力下でプレス成形し、該成形体を150〜
250℃で焼成した、特に自動車用カウンターウエイト
に適する転炉ダスト精製鉄粉を用いた金属成形体の製造
方法。
[Claim 2] Converter dust is polished to a grain size of 10 to
74 μm; 5-30%, 74-149 μm; 50-70
%; 149-500 μm; Converter dust refined iron powder with a concentration of 5-20%, an appropriate amount of Lysol and Novolak added and kneaded again, then the kneaded iron powder was filled into a mold, and 2t/c
The molded body is press-formed under a pressure of 150 m2 or more.
A method for manufacturing a metal molded body using converter dust refined iron powder fired at 250°C and particularly suitable for automobile counterweights.
JP7813991A 1991-01-19 1991-01-19 Manufacture of metallic compact body using refined iron powder of converter dust Pending JPH04236702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7813991A JPH04236702A (en) 1991-01-19 1991-01-19 Manufacture of metallic compact body using refined iron powder of converter dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7813991A JPH04236702A (en) 1991-01-19 1991-01-19 Manufacture of metallic compact body using refined iron powder of converter dust

Publications (1)

Publication Number Publication Date
JPH04236702A true JPH04236702A (en) 1992-08-25

Family

ID=13653553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7813991A Pending JPH04236702A (en) 1991-01-19 1991-01-19 Manufacture of metallic compact body using refined iron powder of converter dust

Country Status (1)

Country Link
JP (1) JPH04236702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262996A (en) * 2009-04-30 2010-11-18 Hitachi Metals Ltd Rare earth permanent magnet and method of manufacturing the same
JP2012504189A (en) * 2008-09-29 2012-02-16 タータ スチール リミテッド Agglomerate formation method of alloy iron fine powder such as ferromanganese fine powder, ferrochrome fine powder and ferrosilicon fine powder
JP2012144784A (en) * 2011-01-13 2012-08-02 Astec Irie Co Ltd Method for agglomerating metal iron-containing dust, and agglomerated material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504189A (en) * 2008-09-29 2012-02-16 タータ スチール リミテッド Agglomerate formation method of alloy iron fine powder such as ferromanganese fine powder, ferrochrome fine powder and ferrosilicon fine powder
JP2010262996A (en) * 2009-04-30 2010-11-18 Hitachi Metals Ltd Rare earth permanent magnet and method of manufacturing the same
JP2012144784A (en) * 2011-01-13 2012-08-02 Astec Irie Co Ltd Method for agglomerating metal iron-containing dust, and agglomerated material

Similar Documents

Publication Publication Date Title
JP6373955B2 (en) Method for manufacturing heat-resistant parts using granules
JPH06144948A (en) Production of ceramic porous body
JPH04236702A (en) Manufacture of metallic compact body using refined iron powder of converter dust
JP3094148B2 (en) Manufacturing method of lightweight refractory
JP2007509497A (en) Unit block for core production using soft magnetic metal powder, and method for producing core having high current DC superposition characteristics using the unit block
EP3225327B1 (en) An inorganic binder system for foundries
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JPH04308005A (en) Production of metal molded with iron powder
CN106673661A (en) Thick-plate silicon carbide ceramic material and preparation method and application thereof
JP3869057B2 (en) Low density molybdenum sintered body and method for producing the same
CN111848171A (en) Aluminum silicon carbide material and preparation method thereof
JPS5835953B2 (en) Silicon carbide unfired refractory material for vibration molding
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JPH06279124A (en) Production of silicon nitride sintered compact
JPS5895658A (en) Manufacture of silicon nitride sintered body
JPH07113103A (en) Production of gas permeable compact
JPS62267402A (en) Production of porous metallic body by activated sintering
CN110818396B (en) High-temperature-resistant material and preparation method thereof
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JPH0219430A (en) Production of metallic porous body
JPH04285141A (en) Manufacture of ferrous sintered body
US3153825A (en) Carbon-bonded refractory casting mold and process for fabrication thereof
JP2005320581A (en) Method for manufacturing porous metal body
JPH02141502A (en) Manufacture of metal sintered product